
NAME
ng_bpf - Berkeley packet filter netgraph node type

SYNOPSIS
#include <sys/types.h>
#include <net/bpf.h>
#include <netgraph.h>
#include <netgraph/ng_bpf.h>

DESCRIPTION
The bpf node type allows Berkeley Packet Filter (see bpf(4)) filters to be applied to data travelling

through a Netgraph network. Each node allows an arbitrary number of connections to arbitrarily named

hooks. With each hook is associated a bpf(4) filter program which is applied to incoming data only, a

destination hook for matching packets, a destination hook for non-matching packets, and various

statistics counters.

A bpf(4) program returns an unsigned integer, which is normally interpreted as the length of the prefix

of the packet to return. In the context of this node type, returning zero is considered a non-match, in

which case the entire packet is delivered out the non-match destination hook. Returning a value greater

than zero causes the packet to be truncated to that length and delivered out the match destination hook.

Either or both destination hooks may be the empty string, or may not exist, in which case the packet is

dropped.

New hooks are initially configured to drop all packets. A new filter program may be installed using the

NGM_BPF_SET_PROGRAM control message.

HOOKS
This node type supports any number of hooks having arbitrary names.

CONTROL MESSAGES
This node type supports the generic control messages, plus the following:

NGM_BPF_SET_PROGRAM (setprogram)

This command sets the filter program that will be applied to incoming data on a hook. The

following structure must be supplied as an argument:

struct ng_bpf_hookprog {

char thisHook[NG_HOOKSIZ]; /* name of hook */

char ifMatch[NG_HOOKSIZ]; /* match dest hook */

char ifNotMatch[NG_HOOKSIZ]; /* !match dest hook */

NG_BPF(4) FreeBSD Kernel Interfaces Manual NG_BPF(4)

FreeBSD 14.0-RELEASE-p6 September 20, 2020 FreeBSD 14.0-RELEASE-p6

int32_t bpf_prog_len; /* #insns in program */

struct bpf_insn bpf_prog[]; /* bpf program */

};

The hook to be updated is specified in thisHook. The BPF program is the sequence of instructions

in the bpf_prog array; there must be bpf_prog_len of them. Matching and non-matching incoming

packets are delivered out the hooks named ifMatch and ifNotMatch, respectively. The program

must be a valid bpf(4) program or else EINVAL is returned.

NGM_BPF_GET_PROGRAM (getprogram)

This command takes an ASCII string argument, the hook name, and returns the corresponding struct

ng_bpf_hookprog as shown above.

NGM_BPF_GET_STATS (getstats)

This command takes an ASCII string argument, the hook name, and returns the statistics associated

with the hook as a struct ng_bpf_hookstat.

NGM_BPF_CLR_STATS (clrstats)

This command takes an ASCII string argument, the hook name, and clears the statistics associated

with the hook.

NGM_BPF_GETCLR_STATS (getclrstats)

This command is identical to NGM_BPF_GET_STATS, except that the statistics are also

atomically cleared.

SHUTDOWN
This node shuts down upon receipt of a NGM_SHUTDOWN control message, or when all hooks have

been disconnected.

EXAMPLES
It is possible to configure a node from the command line, using tcpdump(1) to generate raw BPF

instructions which are then transformed into the ASCII form of a NGM_BPF_SET_PROGRAM control

message, as demonstrated here:

#!/bin/sh

PATTERN="tcp dst port 80"

NODEPATH="my_node:"

INHOOK="hook1"

MATCHHOOK="hook2"

NG_BPF(4) FreeBSD Kernel Interfaces Manual NG_BPF(4)

FreeBSD 14.0-RELEASE-p6 September 20, 2020 FreeBSD 14.0-RELEASE-p6

NOTMATCHHOOK="hook3"

BPFPROG=$(tcpdump -s 8192 -p -ddd ${PATTERN} | \

(read len ; \

echo -n "bpf_prog_len=$len " ; \

echo -n "bpf_prog=[" ; \

while read code jt jf k ; do \

echo -n " { code=$code jt=$jt jf=$jf k=$k }" ; \

done ; \

echo "]"))

ngctl msg ${NODEPATH} setprogram { thisHook=\"${INHOOK}\" \

ifMatch=\"${MATCHHOOK}\" \

ifNotMatch=\"${NOTMATCHHOOK}\" \

${BPFPROG} }

Based on the previous example, it is possible to prevent a jail (or a VM) from spoofing by allowing only

traffic that has the expected ethernet and IP addresses:

#!/bin/sh

NODEPATH="my_node:"

JAIL_MAC="0a:00:de:ad:be:ef"

JAIL_IP="128.66.1.42"

JAIL_HOOK="jail"

HOST_HOOK="host"

DEBUG_HOOK="nomatch"

bpf_prog() {

local PATTERN=$1

tcpdump -s 8192 -p -ddd ${PATTERN} | (

read len

echo -n "bpf_prog_len=$len "

echo -n "bpf_prog=["

while read code jt jf k ; do

echo -n " { code=$code jt=$jt jf=$jf k=$k }"

done

echo "]"

)

NG_BPF(4) FreeBSD Kernel Interfaces Manual NG_BPF(4)

FreeBSD 14.0-RELEASE-p6 September 20, 2020 FreeBSD 14.0-RELEASE-p6

}

Prevent jail from spoofing (filter packets coming from jail)

ngctl msg ${NODEPATH} setprogram { \

thisHook=\"${JAIL_HOOK}\" \

ifMatch=\"${HOST_HOOK}\" \

ifNotMatch=\"${DEBUG_HOOK}\" \

$(bpf_prog "ether src ${JAIL_MAC} && src ${JAIL_IP}") \

}

Prevent jail from receiving spoofed packets (filter packets

coming from host)

ngctl msg ${NODEPATH} setprogram { \

thisHook=\"${HOST_HOOK}\" \

ifMatch=\"${JAIL_HOOK}\" \

ifNotMatch=\"${DEBUG_HOOK}\" \

$(bpf_prog "ether dst ${JAIL_MAC} && dst ${JAIL_IP}") \

}

SEE ALSO
bpf(4), netgraph(4), ngctl(8)

HISTORY
The ng_bpf node type was implemented in FreeBSD 4.0.

AUTHORS
Archie Cobbs <archie@FreeBSD.org>

BUGS
When built as a loadable kernel module, this module includes the file net/bpf_filter.c. Although loading

the module should fail if net/bpf_filter.c already exists in the kernel, currently it does not, and the

duplicate copies of the file do not interfere. However, this may change in the future.

NG_BPF(4) FreeBSD Kernel Interfaces Manual NG_BPF(4)

FreeBSD 14.0-RELEASE-p6 September 20, 2020 FreeBSD 14.0-RELEASE-p6

