
NAME
ng_source - netgraph node for traffic generation

SYNOPSIS
#include <sys/types.h>
#include <netgraph/ng_source.h>

DESCRIPTION
The source node acts as a source of packets according to the parameters set up using control messages

and input packets. The ng_source node type is used primarily for testing and benchmarking.

HOOKS
The source node has two hooks: input and output. The output hook must remain connected, its

disconnection will shutdown the node.

OPERATION
The operation of the node is as follows. Packets received on the input hook are queued internally.

When output hook is connected, ng_source node assumes that its neighbour node is of ng_ether(4) node

type. The neighbour is queried for its interface name. The ng_source node then uses queue of the

interface for its evil purposes. The ng_source node also disables autosrc option on neighbour

ng_ether(4) node. If interface name cannot be obtained automatically, it should be configured explicitly

with the NGM_SOURCE_SETIFACE control message, and autosrc should be turned off on ng_ether(4)

node manually.

If the node is connected to a netgraph network, which does not terminate in a real ng_ether(4) interface,

limit the packet injection rate explicitly with the NGM_SOURCE_SETPPS control message.

Upon receipt of a NGM_SOURCE_START control message the node starts sending the previously

queued packets out the output hook on every clock tick as fast as the connected interface will take them.

While active, on every clock tick the node checks the available space in the interface queue and sends

that many packets out its output hook. Once the number of packets indicated in the start message has

been sent, or upon receipt of a NGM_SOURCE_STOP message, the node stops sending data.

CONTROL MESSAGES
This node type supports the generic control messages as well as the following, which must be sent with

the NGM_SOURCE_COOKIE attached.

NGM_SOURCE_GET_STATS (getstats)

Returns a structure containing the following fields:

NG_SOURCE(4) FreeBSD Kernel Interfaces Manual NG_SOURCE(4)

FreeBSD 14.2-RELEASE January 18, 2021 FreeBSD 14.2-RELEASE

outOctets The number of octets/bytes sent out the output hook.

outFrames The number of frames/packets sent out the output hook.

queueOctets The number of octets queued from the input hook.

queueFrames

The number of frames queued from the input hook.

startTime The time the last start message was received.

endTime The time the last end message was received or the output packet count was reached.

elapsedTime Either endTime - startTime or current time - startTime.

NGM_SOURCE_CLR_STATS (clrstats)

Clears and resets the statistics returned by getstats (except queueOctets and queueFrames).

NGM_SOURCE_GETCLR_STATS (getclrstats)

As getstats but clears the statistics at the same time.

NGM_SOURCE_START (start)
This message requires a single uint64_t parameter which is the number of packets to send before

stopping. Node starts sending the queued packets out the output hook. The output hook must be

connected and node must have interface configured.

NGM_SOURCE_STOP (stop)

Stops the node if it is active.

NGM_SOURCE_CLR_DATA (clrdata)

Clears the packets queued from the input hook.

NGM_SOURCE_SETIFACE (setiface)

This message requires the name of the interface to be configured as an argument.

NGM_SOURCE_SETPPS (setpps)

This message requires a single uint32_t parameter which puts upper limit on the amount of packets

sent per second.

NGM_SOURCE_SET_TIMESTAMP (settimestamp)

NG_SOURCE(4) FreeBSD Kernel Interfaces Manual NG_SOURCE(4)

FreeBSD 14.2-RELEASE January 18, 2021 FreeBSD 14.2-RELEASE

This message specifies that a timestamp (in the format of a struct timeval) should be inserted in the

transmitted packets. This message requires a structure containing the following fields:

offset The offset from the beginning of the packet at which the timestamp is to be inserted.

flags Set to 1 to enable the timestamp.

NGM_SOURCE_GET_TIMESTAMP (gettimestamp)

Returns the current timestamp settings in the form of the structure described above.

NGM_SOURCE_SET_COUNTER (setcounter)

This message specifies that a counter should be embedded in transmitted packets. Up to four

counters may be independently configured. This message requires a structure containing the

following fields:

offset The offset from the beginning of the packet at which the counter is to be inserted.

flags Set to 1 to enable the counter.

width The byte width of the counter. It may be 1, 2, or 4.

next_val The value for the next insertion of the counter.

min_val The minimum value to be used by the counter.

max_val The maximum value to be used by the counter.

increment The value to be added to the counter after each insertion. It may be negative.

index The counter to be configured, from 0 to 3.

NGM_SOURCE_GET_COUNTER (getcounter)

This message requires a single uint8_t parameter which specifies the counter to query. Returns the

current counter settings in the form of the structure described above.

SHUTDOWN
This node shuts down upon receipt of a NGM_SHUTDOWN control message, when all hooks have

been disconnected, or when the output hook has been disconnected.

EXAMPLES

NG_SOURCE(4) FreeBSD Kernel Interfaces Manual NG_SOURCE(4)

FreeBSD 14.2-RELEASE January 18, 2021 FreeBSD 14.2-RELEASE

Attach the node to an ng_ether(4) node for an interface. If ng_ether is not already loaded you will need

to do so. For example, these commands load the ng_ether module and attach the output hook of a new

source node to orphans hook of the bge0: ng_ether node.

kldload ng_ether

ngctl mkpeer bge0: source orphans output

At this point the new node can be referred to as "bge0:orphans". The node can be given its own name

like this:

ngctl name bge0:orphans src0

After which it can be referred to as "src0:".

Once created, packets can be sent to the node as raw binary data. Each packet must be delivered in a

separate netgraph message.

The following example uses a short Perl script to convert the hex representation of an ICMP packet to

binary and deliver it to the source node’s input hook via nghook(8):

perl -pe ’s/(..)[\t\n]*/chr(hex($1))/ge’ <<EOF | nghook src0: input

ff ff ff ff ff ff 00 00 00 00 00 00 08 00 45 00

00 54 cb 13 00 00 40 01 b9 87 c0 a8 2b 65 0a 00

00 01 08 00 f8 d0 c9 76 00 00 45 37 01 73 00 01

04 0a 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25

26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35

36 37

EOF

To check that the node has queued these packets you can get the node statistics:

ngctl msg bge0:orphans getstats

Args: { queueOctets=64 queueFrames=1 }

Send as many packets as required out the output hook:

ngctl msg bge0:orphans start 16

Either wait for them to be sent (periodically fetching stats if desired) or send the stop message:

NG_SOURCE(4) FreeBSD Kernel Interfaces Manual NG_SOURCE(4)

FreeBSD 14.2-RELEASE January 18, 2021 FreeBSD 14.2-RELEASE

ngctl msg bge0:orphans stop

Check the statistics (here we use getclrstats to also clear the statistics):

ngctl msg bge0:orphans getclrstats

Args: { outOctets=1024 outFrames=16 queueOctets=64 queueFrames=1

startTime={ tv_sec=1035305880 tv_usec=758036 } endTime={ tv_sec=1035305880

tv_usec=759041 } elapsedTime={ tv_usec=1005 } }

The times are from struct timevals, the tv_sec field is seconds since the Epoch and can be converted into

a date string via TCL’s [clock format] or via the date(1) command:

date -r 1035305880

Tue Oct 22 12:58:00 EDT 2002

SEE ALSO
netgraph(4), ng_echo(4), ng_hole(4), ng_tee(4), ngctl(8), nghook(8)

HISTORY
The ng_source node type was implemented in FreeBSD 4.8.

AUTHORS
Dave Chapeskie

NG_SOURCE(4) FreeBSD Kernel Interfaces Manual NG_SOURCE(4)

FreeBSD 14.2-RELEASE January 18, 2021 FreeBSD 14.2-RELEASE

