
NAME
cbreak, echo, halfdelay, intrflush, is_cbreak, is_echo, is_nl, is_raw, keypad, meta, nl, nocbreak,

nodelay, noecho, nonl, noqiflush, noraw, notimeout, qiflush, raw, timeout, wtimeout, typeahead - get

and set curses terminal input options

SYNOPSIS
#include <curses.h>

int cbreak(void);
int nocbreak(void);

int echo(void);
int noecho(void);

int intrflush(WINDOW *win, bool bf);
int keypad(WINDOW *win, bool bf);
int meta(WINDOW *win, bool bf);
int nodelay(WINDOW *win, bool bf);
int notimeout(WINDOW *win, bool bf);

int nl(void);
int nonl(void);

int raw(void);
int noraw(void);

void qiflush(void);
void noqiflush(void);

int halfdelay(int tenths);
void timeout(int delay);
void wtimeout(WINDOW *win, int delay);

int typeahead(int fd);

/* extensions */

int is_cbreak(void);
int is_echo(void);
int is_nl(void);
int is_raw(void);

curs_inopts(3X) Library calls curs_inopts(3X)

ncurses 6.5 2024-04-13 curs_inopts(3X)



DESCRIPTION
ncurses provides several functions that let an application change the way input from the terminal is

handled. Some are global, applying to all windows. Others apply only to a specific window.

Window-specific settings are not automatically applied to new or derived windows. An application

must apply these to each window if the same behavior is desired.

cbreak, nocbreak
Normally, the terminal driver buffers typed characters until a newline or carriage return is typed. The

cbreak routine disables line buffering and erase/kill character-processing (interrupt and flow control

characters are unaffected), making characters typed by the user immediately available to the program.

The nocbreak routine returns the terminal to normal (cooked) mode.

Initially the terminal may or may not be in cbreak mode, as the mode is inherited; therefore, a program

should call cbreak or nocbreak explicitly. Most interactive programs using curses set the cbreak mode.

Note that cbreak overrides raw. [See curs_getch(3X) for a discussion of how these routines interact

with echo and noecho.]

echo, noecho
The echo and noecho routines control whether characters typed by the user are echoed by getch(3X) as

they are typed. Echoing by the terminal driver is always disabled, but initially getch is in echo mode,

so characters typed are echoed. Authors of most interactive programs prefer to do their own echoing in

a controlled area of the screen, or not to echo at all, so they disable echoing by calling noecho. [See

curs_getch(3X) for a discussion of how these routines interact with cbreak and nocbreak.]

halfdelay
The halfdelay routine is used for half-delay mode, which is similar to cbreak mode in that characters

typed by the user are immediately available to the program. However, after blocking for tenths tenths

of seconds, ERR is returned if nothing has been typed. The value of tenths must be a number between

1 and 255. Use nocbreak to leave half-delay mode.

intrflush
If the intrflush option is enabled (bf is TRUE), and an interrupt key is pressed on the keyboard

(interrupt, break, quit), all output in the terminal driver queue is flushed, giving the effect of faster

response to the interrupt, but causing curses to have the wrong idea of what is on the screen. Disabling

the option (bf is FALSE), prevents the flush. The default for the option is inherited from the terminal

driver settings. The win argument is ignored.

keypad
The keypad option enables the keypad of the user’s terminal. If enabled (bf is TRUE), the user can

press a function key (such as an arrow key) and wgetch(3X) returns a single value representing the

curs_inopts(3X) Library calls curs_inopts(3X)

ncurses 6.5 2024-04-13 curs_inopts(3X)



function key, as in KEY_LEFT. If disabled (bf is FALSE), curses does not treat function keys

specially and the program has to interpret the escape sequences itself. If the keypad in the terminal can

be turned on (made to transmit) and off (made to work locally), turning on this option causes the

terminal keypad to be turned on when wgetch(3X) is called. The default value for keypad is FALSE.

meta
Initially, whether the terminal returns 7 or 8 significant bits on input depends on the control mode of

the terminal driver [see termios(3)]. To force 8 bits to be returned, invoke meta(win, TRUE); this is

equivalent, under POSIX, to setting the CS8 flag on the terminal. To force 7 bits to be returned, invoke

meta(win, FALSE); this is equivalent, under POSIX, to setting the CS7 flag on the terminal. The

window argument, win, is always ignored. If the terminfo capabilities smm (meta_on) and rmm
(meta_off) are defined for the terminal, smm is sent to the terminal when meta(win, TRUE) is called

and rmm is sent when meta(win, FALSE) is called.

nl, nonl
The nl and nonl routines control whether the underlying display device translates the return key into

newline on input.

nodelay
The nodelay option causes getch to be a non-blocking call. If no input is ready, getch returns ERR. If

disabled (bf is FALSE), getch waits until a key is pressed.

notimeout
When interpreting an escape sequence, wgetch(3X) sets a timer while waiting for the next character. If

notimeout(win, TRUE) is called, then wgetch does not set a timer. The purpose of the timeout is to

distinguish sequences produced by a function key from those typed by a user.

raw, noraw
The raw and noraw routines place the terminal into or out of raw mode. Raw mode is similar to cbreak
mode, in that characters typed are immediately passed through to the user program. The differences

are that in raw mode, the interrupt, quit, suspend, and flow control characters are all passed through

uninterpreted, instead of generating a signal. The behavior of the BREAK key depends on other bits in

the terminal driver that are not set by curses.

qiflush, nqiflush
When the noqiflush routine is used, normal flush of input and output queues associated with the INTR,

QUIT and SUSP characters will not be done [see termios(3)]. When qiflush is called, the queues will

be flushed when these control characters are read. You may want to call noqiflush in a signal handler

if you want output to continue as though the interrupt had not occurred, after the handler exits.

curs_inopts(3X) Library calls curs_inopts(3X)

ncurses 6.5 2024-04-13 curs_inopts(3X)



timeout, wtimeout
The timeout and wtimeout routines set blocking or non-blocking read for a given window. If delay is

negative, a blocking read is used (i.e., waits indefinitely for input). If delay is zero, then a non-

blocking read is used (i.e., read returns ERR if no input is waiting). If delay is positive, then read

blocks for delay milliseconds, and returns ERR if there is still no input. Hence, these routines provide

the same functionality as nodelay, plus the additional capability of being able to block for only delay

milliseconds (where delay is positive).

typeahead
curses does "line-breakout optimization" by looking for typeahead periodically while updating the

screen. If input is found, and it is coming from a terminal, the current update is postponed until

refresh(3X) or doupdate is called again. This allows faster response to commands typed in advance.

Normally, the input FILE pointer passed to newterm, or stdin in the case that initscr was used, will be

used to do this typeahead checking. The typeahead routine specifies that the file descriptor fd is to be

used to check for typeahead instead. If fd is -1, then no typeahead checking is done.

RETURN VALUE
All routines that return an integer return ERR upon failure and OK (SVr4 specifies only "an integer

value other than ERR") upon successful completion, unless otherwise noted in the preceding routine

descriptions.

X/Open Curses does not specify any error conditions. In this implementation, functions with a window

parameter will return an error if it is null. Any function will also return an error if the terminal was not

initialized. Also,

halfdelay
returns an error if its parameter is outside the range 1..255.

NOTES
echo, noecho, halfdelay, intrflush, meta, nl, nonl, nodelay, notimeout, noqiflush, qiflush, timeout, and

wtimeout may be implemented as macros.

noraw and nocbreak follow historical practice in that they attempt to restore normal ("cooked") mode

from raw and cbreak modes respectively. Mixing raw/noraw and cbreak/nocbreak calls leads to

terminal driver control states that are hard to predict or understand; doing so is not recommended.

EXTENSIONS
ncurses provides four "is_" functions that may be used to detect if the corresponding flags were set or

reset.

curs_inopts(3X) Library calls curs_inopts(3X)

ncurses 6.5 2024-04-13 curs_inopts(3X)



Query Set Reset
-------------------------------------

is_cbreakcbreaknocbreak

is_echo echo noecho

is_nl nl nonl

is_raw raw noraw

In each case, the function returns

1 if the flag is set,

0 if the flag is reset, or

-1 if the library is not initialized.

They were designed for ncurses(3X), and are not found in SVr4 curses, 4.4BSD curses, or any other

previous curses implementation.

PORTABILITY
Applications employing ncurses extensions should condition their use on the visibility of the

NCURSES_VERSION preprocessor macro.

Except as noted in section "EXTENSIONS" above, X/Open Curses, Issue 4, Version 2 describes these

functions.

ncurses follows X/Open Curses and the historical practice of AT&T curses implementations, in that the

echo bit is cleared when curses initializes the terminal state. BSD curses differed from this slightly; it

left the echo bit on at initialization, but the BSD raw call turned it off as a side effect. For best

portability, set echo or noecho explicitly just after initialization, even if your program remains in

cooked mode.

X/Open Curses is ambiguous regarding whether raw should disable the CR/LF translations controlled

by nl and nonl. BSD curses did turn off these translations; AT&T curses (at least as late as SVr1) did

not. ncurses does so, on the assumption that a programmer requesting raw input wants a clean (ideally,

8-bit clean) connection that the operating system will not alter.

When keypad is first enabled, ncurses loads the key definitions for the current terminal description. If

the terminal description includes extended string capabilities, e.g., from using the -x option of tic, then

ncurses also defines keys for the capabilities whose names begin with "k". The corresponding

keycodes are generated and (depending on previous loads of terminal descriptions) may differ from one

curs_inopts(3X) Library calls curs_inopts(3X)

ncurses 6.5 2024-04-13 curs_inopts(3X)



execution of a program to the next. The generated keycodes are recognized by the keyname(3X)

function (which will then return a name beginning with "k" denoting the terminfo capability name

rather than "K", used for curses key names). On the other hand, an application can use define_key(3X)

to establish a specific keycode for a given string. This makes it possible for an application to check for

an extended capability’s presence with tigetstr, and reassign the keycode to match its own needs.

Low-level applications can use tigetstr to obtain the definition of any particular string capability.

Higher-level applications which use the curses wgetch and similar functions to return keycodes rely

upon the order in which the strings are loaded. If more than one key definition has the same string

value, then wgetch can return only one keycode. Most curses implementations (including ncurses) load

key definitions in the order defined by the array of string capability names. The last key to be loaded

determines the keycode which will be returned. In ncurses, you may also have extended capabilities

interpreted as key definitions. These are loaded after the predefined keys, and if a capability’s value is

the same as a previously-loaded key definition, the later definition is the one used.

HISTORY
Formerly, ncurses used nl and nonl to control the conversion of newlines to carriage return/line feed on

output as well as input. X/Open Curses documents the use of these functions only for input. This

difference arose from converting the pcurses source (1986), which used ioctl(2) calls and the sgttyb

structure, to termios (the POSIX terminal API). In the former, both input and output were controlled

via a single option CRMOD, while the latter separates these features. Because that conversion

interferes with output optimization, ncurses 6.2 (2020) amended nl and nonl to eliminate their effect on

output.

SEE ALSO
curses(3X), curs_getch(3X), curs_initscr(3X), curs_util(3X), define_key(3X), termios(3)

curs_inopts(3X) Library calls curs_inopts(3X)

ncurses 6.5 2024-04-13 curs_inopts(3X)


