
NAME
open, openat - open or create a file for reading, writing or executing

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int

open(const char *path, int flags, ...);

int

openat(int fd, const char *path, int flags, ...);

DESCRIPTION
The file name specified by path is opened for either execution or reading and/or writing as specified by

the argument flags and the file descriptor returned to the calling process. The flags argument may

indicate the file is to be created if it does not exist (by specifying the O_CREAT flag). In this case

open() and openat() require an additional argument mode_t mode, and the file is created with mode

mode as described in chmod(2) and modified by the process’ umask value (see umask(2)).

The openat() function is equivalent to the open() function except in the case where the path specifies a

relative path. For openat() and relative path, the file to be opened is determined relative to the directory

associated with the file descriptor fd instead of the current working directory. The flag parameter and

the optional fourth parameter correspond exactly to the parameters of open(). If openat() is passed the

special value AT_FDCWD in the fd parameter, the current working directory is used and the behavior is

identical to a call to open().

When openat() is called with an absolute path, it ignores the fd argument.

In capsicum(4) capability mode, open() is not permitted. The path argument to openat() must be strictly

relative to a file descriptor fd. path must not be an absolute path and must not contain ".." components

which cause the path resolution to escape the directory hierarchy starting at fd. Additionally, no

symbolic link in path may target absolute path or contain escaping ".." components. fd must not be

AT_FDCWD.

If the vfs.lookup_cap_dotdot sysctl(3) MIB is set to zero, ".." components in the paths, used in capability

mode, are completely disabled. If the vfs.lookup_cap_dotdot_nonlocal MIB is set to zero, ".." is not

allowed if found on non-local filesystem.

OPEN(2) FreeBSD System Calls Manual OPEN(2)

FreeBSD 14.0-RELEASE-p11 May 29, 2023 FreeBSD 14.0-RELEASE-p11



The flags specified are formed by or’ing the following values

O_RDONLY open for reading only

O_WRONLY open for writing only

O_RDWR open for reading and writing

O_EXEC open for execute only

O_SEARCH open for search only, an alias for O_EXEC

O_NONBLOCK do not block on open

O_APPEND append on each write

O_CREAT create file if it does not exist

O_TRUNC truncate size to 0

O_EXCL error if create and file exists

O_SHLOCK atomically obtain a shared lock

O_EXLOCK atomically obtain an exclusive lock

O_DIRECT eliminate or reduce cache effects

O_FSYNC synchronous writes (historical synonym for O_SYNC)

O_SYNC synchronous writes

O_DSYNC synchronous data writes

O_NOFOLLOW do not follow symlinks

O_NOCTTY ignored

O_TTY_INIT ignored

O_DIRECTORY error if file is not a directory

O_CLOEXEC set FD_CLOEXEC upon open

O_VERIFY verify the contents of the file

O_RESOLVE_BENEATH path resolution must not cross the fd directory

O_PATH record only the target path in the opened descriptor

O_EMPTY_PATH openat, open file referenced by fd if path is empty

Opening a file with O_APPEND set causes each write on the file to be appended to the end. If

O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL is set with

O_CREAT and the file already exists, open() returns an error. This may be used to implement a simple

exclusive access locking mechanism. If O_EXCL is set and the last component of the pathname is a

symbolic link, open() will fail even if the symbolic link points to a non-existent name. If the

O_NONBLOCK flag is specified and the open() system call would result in the process being blocked

for some reason (e.g., waiting for carrier on a dialup line), open() returns immediately. The descriptor

remains in non-blocking mode for subsequent operations.

If O_SYNC is used in the mask, all writes will immediately and synchronously be written to disk.

O_FSYNC is an historical synonym for O_SYNC.

OPEN(2) FreeBSD System Calls Manual OPEN(2)

FreeBSD 14.0-RELEASE-p11 May 29, 2023 FreeBSD 14.0-RELEASE-p11



If O_DSYNC is used in the mask, all data and metadata required to read the data will be synchronously

written to disk, but changes to metadata such as file access and modification timestamps may be written

later.

If O_NOFOLLOW is used in the mask and the target file passed to open() is a symbolic link then the

open() will fail.

When opening a file, a lock with flock(2) semantics can be obtained by setting O_SHLOCK for a shared

lock, or O_EXLOCK for an exclusive lock. If creating a file with O_CREAT, the request for the lock

will never fail (provided that the underlying file system supports locking).

O_DIRECT may be used to minimize or eliminate the cache effects of reading and writing. The system

will attempt to avoid caching the data you read or write. If it cannot avoid caching the data, it will

minimize the impact the data has on the cache. Use of this flag can drastically reduce performance if not

used with care.

O_NOCTTY may be used to ensure the OS does not assign this file as the controlling terminal when it

opens a tty device. This is the default on FreeBSD, but is present for POSIX compatibility. The open()

system call will not assign controlling terminals on FreeBSD.

O_TTY_INIT may be used to ensure the OS restores the terminal attributes when initially opening a

TTY. This is the default on FreeBSD, but is present for POSIX compatibility. The initial call to open()

on a TTY will always restore default terminal attributes on FreeBSD.

O_DIRECTORY may be used to ensure the resulting file descriptor refers to a directory. This flag can

be used to prevent applications with elevated privileges from opening files which are even unsafe to

open with O_RDONLY, such as device nodes.

O_CLOEXEC may be used to set FD_CLOEXEC flag for the newly returned file descriptor.

O_VERIFY may be used to indicate to the kernel that the contents of the file should be verified before

allowing the open to proceed. The details of what "verified" means is implementation specific. The

run-time linker (rtld) uses this flag to ensure shared objects have been verified before operating on them.

O_RESOLVE_BENEATH returns ENOTCAPABLE if any intermediate component of the specified

relative path does not reside in the directory hierarchy beneath the starting directory. Absolute paths or

even the temporal escape from beneath of the starting directory is not allowed.

When fd is opened with O_SEARCH, execute permissions are checked at open time. The fd may not be

used for any read operations like getdirentries(2). The primary use for this descriptor will be as the

OPEN(2) FreeBSD System Calls Manual OPEN(2)

FreeBSD 14.0-RELEASE-p11 May 29, 2023 FreeBSD 14.0-RELEASE-p11



lookup descriptor for the *at() family of functions.

O_PATH returns a file descriptor that can be used as a directory file descriptor for openat(2) and other

system calls taking a file descriptor argument, like fstatat(2) and others. The other functionality of the

returned file descriptor is limited to the descriptor-level operations. It can be used for

fcntl(2) but advisory locking is not allowed

dup(2)

close(2)

fstat(2)

fexecve(2)

SCM_RIGHTS

can be passed over a unix(4) socket using a SCM_RIGHTS message

kqueue(2) using for EVFILT_VNODE

readlinkat(2)

__acl_get_fd(2), __acl_aclcheck_fd(2)

But operations like read(2), ftruncate(2), and any other that operate on file and not on file descriptor

(except fstat(2) ), are not allowed.

A file descriptor created with the O_PATH flag can be opened into normal (operable) file descriptor by

specifying it as the fd argument to openat() with empty path and flag O_EMPTY_PATH. Such an open

behaves as if the current path of the file referenced by fd is passed, except that the path walk permissions

are not checked. See also the description of AT_EMPTY_PATH flag for fstatat(2) and related syscalls.

If successful, open() returns a non-negative integer, termed a file descriptor. It returns -1 on failure. The

file pointer used to mark the current position within the file is set to the beginning of the file.

If a sleeping open of a device node from devfs(5) is interrupted by a signal, the call always fails with

EINTR, even if the SA_RESTART flag is set for the signal. A sleeping open of a fifo (see mkfifo(2)) is

restarted as normal.

When a new file is created it is given the group of the directory which contains it.

Unless O_CLOEXEC flag was specified, the new descriptor is set to remain open across execve(2)

system calls; see close(2), fcntl(2) and O_CLOEXEC description.

The system imposes a limit on the number of file descriptors open simultaneously by one process. The

getdtablesize(2) system call returns the current system limit.

RETURN VALUES
If successful, open() and openat() return a non-negative integer, termed a file descriptor. They return -1

OPEN(2) FreeBSD System Calls Manual OPEN(2)

FreeBSD 14.0-RELEASE-p11 May 29, 2023 FreeBSD 14.0-RELEASE-p11



on failure, and set errno to indicate the error.

ERRORS
The named file is opened unless:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

A component of a pathname exceeded 255 characters, or an entire path name

exceeded 1023 characters.

[ENOENT] O_CREAT is not set and the named file does not exist.

[ENOENT] A component of the path name that must exist does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The required permissions (for reading and/or writing) are denied for the given

flags.

[EACCES] O_TRUNC is specified and write permission is denied.

[EACCES] O_CREAT is specified, the file does not exist, and the directory in which it is to

be created does not permit writing.

[EPERM] O_CREAT is specified, the file does not exist, and the directory in which it is to

be created has its immutable flag set, see the chflags(2) manual page for more

information.

[EPERM] The named file has its immutable flag set and the file is to be modified.

[EPERM] The named file has its append-only flag set, the file is to be modified, and

O_TRUNC is specified or O_APPEND is not specified.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EISDIR] The named file is a directory, and the arguments specify it is to be modified.

[EISDIR] The named file is a directory, and the flags specified O_CREAT without

O_DIRECTORY.

OPEN(2) FreeBSD System Calls Manual OPEN(2)

FreeBSD 14.0-RELEASE-p11 May 29, 2023 FreeBSD 14.0-RELEASE-p11



[EROFS] The named file resides on a read-only file system, and the file is to be modified.

[EROFS] O_CREAT is specified and the named file would reside on a read-only file

system.

[EMFILE] The process has already reached its limit for open file descriptors.

[ENFILE] The system file table is full.

[EMLINK] O_NOFOLLOW was specified and the target is a symbolic link.

[ENXIO] The named file is a character special or block special file, and the device

associated with this special file does not exist.

[ENXIO] O_NONBLOCK is set, the named file is a fifo, O_WRONLY is set, and no

process has the file open for reading.

[EINTR] The open() operation was interrupted by a signal.

[EOPNOTSUPP] O_SHLOCK or O_EXLOCK is specified but the underlying file system does not

support locking.

[EOPNOTSUPP] The named file is a special file mounted through a file system that does not

support access to it (e.g. NFS).

[EWOULDBLOCK] O_NONBLOCK and one of O_SHLOCK or O_EXLOCK is specified and the file

is locked.

[ENOSPC] O_CREAT is specified, the file does not exist, and the directory in which the

entry for the new file is being placed cannot be extended because there is no space

left on the file system containing the directory.

[ENOSPC] O_CREAT is specified, the file does not exist, and there are no free inodes on the

file system on which the file is being created.

[EDQUOT] O_CREAT is specified, the file does not exist, and the directory in which the

entry for the new file is being placed cannot be extended because the user’s quota

of disk blocks on the file system containing the directory has been exhausted.

[EDQUOT] O_CREAT is specified, the file does not exist, and the user’s quota of inodes on

OPEN(2) FreeBSD System Calls Manual OPEN(2)

FreeBSD 14.0-RELEASE-p11 May 29, 2023 FreeBSD 14.0-RELEASE-p11



the file system on which the file is being created has been exhausted.

[EIO] An I/O error occurred while making the directory entry or allocating the inode for

O_CREAT.

[EINTEGRITY] Corrupted data was detected while reading from the file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and the open()

system call requests write access.

[EFAULT] The path argument points outside the process’s allocated address space.

[EEXIST] O_CREAT and O_EXCL were specified and the file exists.

[EOPNOTSUPP] An attempt was made to open a socket (not currently implemented).

[EINVAL] An attempt was made to open a descriptor with an illegal combination of

O_RDONLY, O_WRONLY, or O_RDWR, and O_EXEC or O_SEARCH.

[EBADF] The path argument does not specify an absolute path and the fd argument is

neither AT_FDCWD nor a valid file descriptor open for searching.

[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a file

descriptor associated with a directory.

[ENOTDIR] O_DIRECTORY is specified and the file is not a directory.

[ECAPMODE] AT_FDCWD is specified and the process is in capability mode.

[ECAPMODE] open() was called and the process is in capability mode.

[ENOTCAPABLE] path is an absolute path and the process is in capability mode.

[ENOTCAPABLE] path is an absolute path and O_RESOLVE_BENEATH is specified.

[ENOTCAPABLE] path contains a ".." component leading to a directory outside of the directory

hierarchy specified by fd and the process is in capability mode.

[ENOTCAPABLE] path contains a ".." component leading to a directory outside of the directory

hierarchy specified by fd and O_RESOLVE_BENEATH is specified.

OPEN(2) FreeBSD System Calls Manual OPEN(2)

FreeBSD 14.0-RELEASE-p11 May 29, 2023 FreeBSD 14.0-RELEASE-p11



[ENOTCAPABLE] path contains a ".." component, the vfs.lookup_cap_dotdot sysctl(3) is set, and the

process is in capability mode.

SEE ALSO
chmod(2), close(2), dup(2), fexecve(2), fhopen(2), getdtablesize(2), getfh(2), lgetfh(2), lseek(2), read(2),

umask(2), write(2), fopen(3), capsicum(4)

STANDARDS
These functions are specified by IEEE Std 1003.1-2008 ("POSIX.1"). FreeBSD sets errno to EMLINK

instead of ELOOP as specified by POSIX when O_NOFOLLOW is set in flags and the final component

of pathname is a symbolic link to distinguish it from the case of too many symbolic link traversals in one

of its non-final components.

HISTORY
The open() function appeared in Version 1 AT&T UNIX. The openat() function was introduced in

FreeBSD 8.0. O_DSYNC appeared in 13.0.

BUGS
The Open Group Extended API Set 2 specification requires that the test for whether fd is searchable is

based on whether fd is open for searching, not whether the underlying directory currently permits

searches. The present implementation of the openat checks the current permissions of directory instead.

The mode argument is variadic and may result in different calling conventions than might otherwise be

expected.

OPEN(2) FreeBSD System Calls Manual OPEN(2)

FreeBSD 14.0-RELEASE-p11 May 29, 2023 FreeBSD 14.0-RELEASE-p11


