
NAME
openssl-pkcs8 - PKCS#8 format private key conversion command

SYNOPSIS
openssl pkcs8 [-help] [-topk8] [-inform DER|PEM] [-outform DER|PEM] [-in filename] [-passin arg]

[-out filename] [-passout arg] [-iter count] [-noiter] [-nocrypt] [-traditional] [-v2 alg] [-v2prf alg] [-v1
alg] [-scrypt] [-scrypt_N N] [-scrypt_r r] [-scrypt_p p] [-rand files] [-writerand file] [-engine id]

[-provider name] [-provider-path path] [-propquery propq]

DESCRIPTION
This command processes private keys in PKCS#8 format. It can handle both unencrypted PKCS#8

PrivateKeyInfo format and EncryptedPrivateKeyInfo format with a variety of PKCS#5 (v1.5 and v2.0)

and PKCS#12 algorithms.

OPTIONS
-help

Print out a usage message.

-topk8
Normally a PKCS#8 private key is expected on input and a private key will be written to the

output file. With the -topk8 option the situation is reversed: it reads a private key and writes a

PKCS#8 format key.

-inform DER|PEM, -outform DER|PEM
The input and formats; the default is PEM. See openssl-format-options(1) for details.

If a key is being converted from PKCS#8 form (i.e. the -topk8 option is not used) then the input

file must be in PKCS#8 format. An encrypted key is expected unless -nocrypt is included.

If -topk8 is not used and PEM mode is set the output file will be an unencrypted private key in

PKCS#8 format. If the -traditional option is used then a traditional format private key is written

instead.

If -topk8 is not used and DER mode is set the output file will be an unencrypted private key in

traditional DER format.

If -topk8 is used then any supported private key can be used for the input file in a format specified

by -inform. The output file will be encrypted PKCS#8 format using the specified encryption

parameters unless -nocrypt is included.

OPENSSL-PKCS8(1ossl) OpenSSL OPENSSL-PKCS8(1ossl)

3.0.11 2023-09-22 OPENSSL-PKCS8(1ossl)

-traditional
When this option is present and -topk8 is not a traditional format private key is written.

-in filename

This specifies the input filename to read a key from or standard input if this option is not

specified. If the key is encrypted a pass phrase will be prompted for.

-passin arg, -passout arg

The password source for the input and output file. For more information about the format of arg
see openssl-passphrase-options(1).

-out filename

This specifies the output filename to write a key to or standard output by default. If any encryption

options are set then a pass phrase will be prompted for. The output filename should not be the

same as the input filename.

-iter count

When creating new PKCS#8 containers, use a given number of iterations on the password in

deriving the encryption key for the PKCS#8 output. High values increase the time required to

brute-force a PKCS#8 container.

-noiter
When creating new PKCS#8 containers, use 1 as iteration count.

-nocrypt
PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo structures using

an appropriate password based encryption algorithm. With this option an unencrypted

PrivateKeyInfo structure is expected or output. This option does not encrypt private keys at all

and should only be used when absolutely necessary. Certain software such as some versions of

Java code signing software used unencrypted private keys.

-v2 alg

This option sets the PKCS#5 v2.0 algorithm.

The alg argument is the encryption algorithm to use, valid values include aes128, aes256 and

des3. If this option isn’t specified then aes256 is used.

-v2prf alg

This option sets the PRF algorithm to use with PKCS#5 v2.0. A typical value value would be

hmacWithSHA256. If this option isn’t set then the default for the cipher is used or

OPENSSL-PKCS8(1ossl) OpenSSL OPENSSL-PKCS8(1ossl)

3.0.11 2023-09-22 OPENSSL-PKCS8(1ossl)

hmacWithSHA256 if there is no default.

Some implementations may not support custom PRF algorithms and may require the

hmacWithSHA1 option to work.

-v1 alg

This option indicates a PKCS#5 v1.5 or PKCS#12 algorithm should be used. Some older

implementations may not support PKCS#5 v2.0 and may require this option. If not specified

PKCS#5 v2.0 form is used.

-scrypt
Uses the scrypt algorithm for private key encryption using default parameters: currently N=16384,

r=8 and p=1 and AES in CBC mode with a 256 bit key. These parameters can be modified using

the -scrypt_N, -scrypt_r, -scrypt_p and -v2 options.

-scrypt_N N, -scrypt_r r, -scrypt_p p

Sets the scrypt N, r or p parameters.

-rand files, -writerand file

See "Random State Options" in openssl(1) for details.

-engine id

See "Engine Options" in openssl(1). This option is deprecated.

-provider name

-provider-path path

-propquery propq

See "Provider Options" in openssl(1), provider(7), and property(7).

NOTES
By default, when converting a key to PKCS#8 format, PKCS#5 v2.0 using 256 bit AES with HMAC

and SHA256 is used.

Some older implementations do not support PKCS#5 v2.0 format and require the older PKCS#5 v1.5

form instead, possibly also requiring insecure weak encryption algorithms such as 56 bit DES.

Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration counts are more secure that

those encrypted using the traditional SSLeay compatible formats. So if additional security is considered

important the keys should be converted.

OPENSSL-PKCS8(1ossl) OpenSSL OPENSSL-PKCS8(1ossl)

3.0.11 2023-09-22 OPENSSL-PKCS8(1ossl)

It is possible to write out DER encoded encrypted private keys in PKCS#8 format because the

encryption details are included at an ASN1 level whereas the traditional format includes them at a PEM

level.

PKCS#5 V1.5 AND PKCS#12 ALGORITHMS
Various algorithms can be used with the -v1 command line option, including PKCS#5 v1.5 and

PKCS#12. These are described in more detail below.

PBE-MD2-DES PBE-MD5-DES
These algorithms were included in the original PKCS#5 v1.5 specification. They only offer 56

bits of protection since they both use DES.

PBE-SHA1-RC2-64, PBE-MD2-RC2-64, PBE-MD5-RC2-64, PBE-SHA1-DES
These algorithms are not mentioned in the original PKCS#5 v1.5 specification but they use the

same key derivation algorithm and are supported by some software. They are mentioned in

PKCS#5 v2.0. They use either 64 bit RC2 or 56 bit DES.

PBE-SHA1-RC4-128, PBE-SHA1-RC4-40, PBE-SHA1-3DES, PBE-SHA1-2DES,

PBE-SHA1-RC2-128, PBE-SHA1-RC2-40
These algorithms use the PKCS#12 password based encryption algorithm and allow strong

encryption algorithms like triple DES or 128 bit RC2 to be used.

EXAMPLES
Convert a private key to PKCS#8 format using default parameters (AES with 256 bit key and

hmacWithSHA256):

openssl pkcs8 -in key.pem -topk8 -out enckey.pem

Convert a private key to PKCS#8 unencrypted format:

openssl pkcs8 -in key.pem -topk8 -nocrypt -out enckey.pem

Convert a private key to PKCS#5 v2.0 format using triple DES:

openssl pkcs8 -in key.pem -topk8 -v2 des3 -out enckey.pem

Convert a private key to PKCS#5 v2.0 format using AES with 256 bits in CBC mode and

hmacWithSHA512 PRF:

openssl pkcs8 -in key.pem -topk8 -v2 aes-256-cbc -v2prf hmacWithSHA512 -out enckey.pem

OPENSSL-PKCS8(1ossl) OpenSSL OPENSSL-PKCS8(1ossl)

3.0.11 2023-09-22 OPENSSL-PKCS8(1ossl)

Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algorithm (DES):

openssl pkcs8 -in key.pem -topk8 -v1 PBE-MD5-DES -out enckey.pem

Convert a private key to PKCS#8 using a PKCS#12 compatible algorithm (3DES):

openssl pkcs8 -in key.pem -topk8 -out enckey.pem -v1 PBE-SHA1-3DES

Read a DER unencrypted PKCS#8 format private key:

openssl pkcs8 -inform DER -nocrypt -in key.der -out key.pem

Convert a private key from any PKCS#8 encrypted format to traditional format:

openssl pkcs8 -in pk8.pem -traditional -out key.pem

Convert a private key to PKCS#8 format, encrypting with AES-256 and with one million iterations of

the password:

openssl pkcs8 -in key.pem -topk8 -v2 aes-256-cbc -iter 1000000 -out pk8.pem

STANDARDS
Test vectors from this PKCS#5 v2.0 implementation were posted to the pkcs-tng mailing list using

triple DES, DES and RC2 with high iteration counts, several people confirmed that they could decrypt

the private keys produced and therefore, it can be assumed that the PKCS#5 v2.0 implementation is

reasonably accurate at least as far as these algorithms are concerned.

The format of PKCS#8 DSA (and other) private keys is not well documented: it is hidden away in

PKCS#11 v2.01, section 11.9. OpenSSL’s default DSA PKCS#8 private key format complies with this

standard.

BUGS
There should be an option that prints out the encryption algorithm in use and other details such as the

iteration count.

SEE ALSO
openssl(1), openssl-dsa(1), openssl-rsa(1), openssl-genrsa(1), openssl-gendsa(1)

HISTORY
The -iter option was added in OpenSSL 1.1.0.

OPENSSL-PKCS8(1ossl) OpenSSL OPENSSL-PKCS8(1ossl)

3.0.11 2023-09-22 OPENSSL-PKCS8(1ossl)

The -engine option was deprecated in OpenSSL 3.0.

COPYRIGHT
Copyright 2000-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

OPENSSL-PKCS8(1ossl) OpenSSL OPENSSL-PKCS8(1ossl)

3.0.11 2023-09-22 OPENSSL-PKCS8(1ossl)

