OPENSSL-PKEY UTL (1ossl) OpenSSL OPENSSL-PKEYUTL (1osd)

NAME
openssl-pkeyutl - public key algorithm command

SYNOPSIS
openss pkeyutl [-help] [-in filg] [-rawin] [-digest algorithm] [-out file] [-sigfilefile] [-inkey
filenamejuri] [-keyform DER|PEM |P12|ENGINE] [-passin arg] [-peerkey file] [-peerform
DER|PEM |P12|[ENGINE] [-pubin] [-certin] [-rev] [-sign] [-verify] [-verifyrecover] [-encrypt] [-decrypt]
[-derive] [-kdf algorithm] [-kdflen length] [-pkeyopt opt:value] [-pkeyopt_passin opt[:passarg]]
[-hexdump] [-asnlparsg] [-engineid] [-engine_impl] [-rand files] [-writerand file] [-provider name]
[-provider-path path] [-propquery propq] [-config configfile]

DESCRIPTION
This command can be used to perform low-level public key operations using any supported algorithm.

OPTIONS
-help
Print out a usage message.

-in filename
This specifies the input filename to read data from or standard input if this option is not specified.

-rawin
Thisindicates that the input datais raw data, which is not hashed by any message digest
algorithm. The user can specify a digest algorithm by using the -digest option. This option can
only be used with -sign and -verify and must be used with the Ed25519 and Ed448 a gorithms.

-digest algorithm
This specifies the digest algorithm which is used to hash the input data before signing or verifying
it with the input key. This option could be omitted if the signature algorithm does not require one
(for instance, EADSA). If this option is omitted but the signature algorithm requires one, a default
value will be used. For signature algorithms like RSA, DSA and ECDSA, SHA-256 will be the
default digest algorithm. For SM2, it will be SM3. If this option is present, then the -rawin option
must be also specified.

-out filename
Specifies the output filename to write to or standard output by default.

-sigfilefile
Signature file, required for -verify operations only

3.011 2023-09-22 OPENSSL-PKEYUTL (1lossl)

OPENSSL-PKEY UTL (1ossl) OpenSSL OPENSSL-PKEYUTL (1osd)

-inkey filenameluri
Theinput key, by default it should be a private key.

-keyform DER|PEM |P12[ENGINE
The key format; unspecified by default. See openss-for mat-options(1) for details.

-passin arg
The input key password source. For more information about the format of arg see
openssl-passphrase-options(1).

-peerkey file
The peer key file, used by key derivation (agreement) operations.

-peerform DER|PEM |P12[ENGINE
The peer key format; unspecified by default. See openssl-for mat-options(1) for details.

-pubin
Theinput fileisapublic key.

-certin
Theinput is a certificate containing a public key.

-rev Reverse the order of theinput buffer. Thisis useful for some libraries (such as CryptoAPI) which
represent the buffer in little endian format.

-sign
Sign the input data (which must be a hash) and output the signed result. This requires a private
key.

-verify
Verify the input data (which must be a hash) against the signature file and indicate if the
verification succeeded or failed.

-verifyrecover
Verify the input data (which must be a hash) and output the recovered data.

-encrypt
Encrypt the input data using a public key.

-decrypt

3.011 2023-09-22 OPENSSL-PKEYUTL (1ossl)

OPENSSL-PKEY UTL (1ossl) OpenSSL OPENSSL-PKEYUTL (1osd)

Decrypt the input data using a private key.

-derive
Derive a shared secret using the peer key.

-kdf algorithm
Use key derivation function algorithm. The supported algorithms are at present TL S1-PRF and
HKDF. Note: additional parameters and the KDF output length will normally have to be set for
thistowork. See EVP_PKEY_CTX_set_hkdf md(3) and EVP_PKEY_CTX_set_tlsl prf_md(3)
for the supported string parameters of each algorithm.

-kdflen length
Set the output length for KDF.

-pkeyopt opt:value
Public key options specified as opt:value. See NOTES below for more details.

-pkeyopt_passin opt[:passarg]
Allows reading a public key option opt from stdin or a password source. If only opt is specified,
the user will be prompted to enter a password on stdin. Alternatively, passarg can be specified
which can be any value supported by openssl-passphrase-options(1).

-hexdump
hex dump the output data.

-asnlparse
Parse the ASN.1 output data, thisis useful when combined with the -verifyrecover option when an

ASNL1 structure is signed.

-engineid
See "Engine Options' in openss(1). Thisoption is deprecated.

-engine_impl
When used with the -engine option, it specifiesto also use engineid for crypto operations.

-rand files, -writerand file
See "Random State Options” in openssl(1) for details.

-provider name
-provider-path path

3.011 2023-09-22 OPENSSL-PKEYUTL (1ossl)

OPENSSL-PKEY UTL (1ossl) OpenSSL OPENSSL-PKEYUTL (1osd)

-propquery propq
See "Provider Options' in openssl (1), provider (7), and property(7).

-config configfile
See "Configuration Option" in openssl(1).

NOTES
The operations and options supported vary according to the key algorithm and its implementation. The
OpenSSL operations and options are indicated below.

Unless atherwise mentioned all algorithms support the digest:alg option which specifiesthe digest in
use for sign, verify and verifyrecover operations. The value alg should represent a digest name as used
inthe EVP_get_digestbyname() function for example shal. Thisvalueis not used to hash the input
data. It is used (by some algorithms) for sanity-checking the lengths of data passed in and for creating
the structures that make up the signature (e.g. Digestinfo in RSASSA PKCS#1 v1.5 signatures).

This command does not hash the input data (except where -rawin is used) but rather it will use the data
directly asinput to the signature algorithm. Depending on the key type, signature type, and mode of
padding, the maximum acceptable lengths of input data differ. The signed data can’t be longer than the
key modulus with RSA. In case of ECDSA and DSA the data shouldn’t be longer than the field size,
otherwise it will be silently truncated to the field size. 1n any event the input size must not be larger
than the largest supported digest size.

In other words, if the value of digest is shal the input should be the 20 bytes long binary encoding of
the SHA-1 hash function output.

RSA ALGORITHM
The RSA agorithm generally supports the encrypt, decrypt, sign, verify and verifyrecover operations.
However, some padding modes support only a subset of these operations. The following additional
pkeyopt values are supported:

rsa_padding_mode:mode
This sets the RSA padding mode. Acceptable values for mode are pkcsl for PK CS#1 padding,
none for no padding, oaep for OAEP mode, x931 for X9.31 mode and pss for PSS.
In PKCS#H1 padding if the message digest is not set then the supplied datais signed or verified
directly instead of using a Digestl nfo structure. If adigest is set then the a Digestl nfo structureis
used and its the length must correspond to the digest type.

For oaep mode only encryption and decryption is supported.

3.011 2023-09-22 OPENSSL-PKEYUTL (1ossl)

OPENSSL-PKEY UTL (1ossl) OpenSSL OPENSSL-PKEYUTL (1osd)

For x931 if the digest typeis set it is used to format the block data otherwise the first byteis used
to specify the X9.31 digest ID. Sign, verify and verifyrecover are can be performed in this mode.

For pss mode only sign and verify are supported and the digest type must be specified.

rsa_pss saltlen:len
For pss made only this option specifies the salt length. Three special values are supported: digest
sets the salt length to the digest length, max sets the salt length to the maximum permissible value.
When verifying auto causes the salt length to be automatically determined based on the PSS block
structure.

rsa_ mgfl md:digest
For PSS and OAEP padding sets the MGF1 digest. If the MGF1 digest is not explicitly set in PSS
mode then the signing digest is used.

rsa_oaep_md:digest
Sets the digest used for the OAEP hash function. If not explicitly set then SHAL is used.

RSA-PSSALGORITHM
The RSA-PSS algorithm is arestricted version of the RSA agorithm which only supports the sign and
verify operations with PSS padding. The following additional -pkeyopt values are supported:

rsa_padding_mode:mode, rsa_pss saltlen:len, rsa_mgfl md:digest
These have the same meaning as the RSA agorithm with some additional restrictions. The
padding mode can only be set to pss which is the default value.

If the key has parameter restrictions than the digest, MGF1 digest and salt length are set to the
values specified in the parameters. The digest and MG cannot be changed and the salt length
cannot be set to a value less than the minimum restriction.

DSA ALGORITHM
The DSA algorithm supports signing and verification operations only. Currently there are no additional
-pkeyopt options other than digest. The SHA1 digest is assumed by default.

DH ALGORITHM
The DH agorithm only supports the derivation operation and no additional -pkeyopt options.

EC ALGORITHM
The EC algorithm supports sign, verify and derive operations. The sign and verify operations use
ECDSA and derive uses ECDH. SHA1 is assumed by default for the -pkeyopt digest option.

3011 2023-09-22 OPENSSL-PKEYUTL (1lossl)

OPENSSL-PKEY UTL (1ossl) OpenSSL OPENSSL-PKEYUTL(1osd)

X25519 AND X448 ALGORITHMS
The X25519 and X448 algorithms support key derivation only. Currently there are no additional
options.

ED25519 AND ED448 ALGORITHMS
These algorithms only support signing and verifying. OpenSSL only implements the "pure” variants of
these algorithms so raw data can be passed directly to them without hashing them first. The option
-rawin must be used with these algorithms with no -digest specified. Additionally OpenSSL only
supports "oneshot" operation with these algorithms. This means that the entire file to be signed/verified
must be read into memory before processing it. Signing or Verifying very large files should be avoided.
Additionally the size of the file must be known for thisto work. If the size of the file cannot be
determined (for exampleif the input is stdin) then the sign or verify operation will fail.

SM2
The SM2 agorithm supports sign, verify, encrypt and decrypt operations. For the sign and verify
operations, SM2 requires an Distinguishing ID string to be passed in. The following -pkeyopt valueis
supported:

distid:string
This setsthe ID string used in SM2 sign or verify operations. While verifying an SM2 signature,
the ID string must be the same one used when signing the data. Otherwise the verification will
fail.

hexdistid:hex_string
This setsthe ID string used in SM2 sign or verify operations. While verifying an SM2 signature,
the ID string must be the same one used when signing the data. Otherwise the verification will

fail. The ID string provided with this option should be avalid hexadecimal value.

EXAMPLES
Sign some data using a private key:

openssl pkeyutl -sign -in file -inkey key.pem -out sig
Recover the signed data (e.g. if an RSA key is used):
openssl pkeyutl -verifyrecover -in sig -inkey key.pem
Verify the signature (e.g. aDSA key):

openssl pkeyutl -verify -in file -sigfile sig -inkey key.pem

3011 2023-09-22 OPENSSL-PKEYUTL (lossl)

OPENSSL-PKEY UTL (1ossl) OpenSSL OPENSSL-PKEYUTL (1osd)

Sign data using a message digest value (thisis currently only valid for RSA):
openssl pkeyutl -sign -in file -inkey key.pem -out sig -pkeyopt digest:sha256
Derive a shared secret value:

openssl pkeyutl -derive -inkey key.pem -peerkey pubkey.pem -out secret

Hexdump 48 bytes of TLS1 PRF using digest SHA 256 and shared secret and seed consisting of the
single byte OxFF:

openss pkeyutl -kdf TLS1-PRF -kdflen 48 -pkeyopt md:SHA256 \
-pkeyopt hexsecret:ff -pkeyopt hexseed:ff -hexdump

Derive akey using scrypt where the password is read from command line:

openssl pkeyutl -kdf scrypt -kdflen 16 -pkeyopt_passin pass\
-pkeyopt hexsalt:aabbcc -pkeyopt N:16384 -pkeyopt r:8 -pkeyopt p:1

Derive using the same agorithm, but read key from environment variable MY PASS:;

openssl pkeyutl -kdf scrypt -kdflen 16 -pkeyopt_passin pass.env:MY PASS\
-pkeyopt hexsalt:aabbcc -pkeyopt N:16384 -pkeyopt r:8 -pkeyopt p:1

Sign some data using an SM 2(7) private key and a specific ID:

openssl pkeyutl -sign -in file -inkey sm2.key -out sig -rawin -digest sm3\
-pkeyopt distid:someid

Verify some data using an SM 2(7) certificate and a specific ID:

openssl pkeyutl -verify -certin -in file -inkey sm2.cert -sigfilesig\
-rawin -digest sm3 -pkeyopt distid:someid

Decrypt some data using a private key with OAEP padding using SHA256:

openssl pkeyutl -decrypt -in file -inkey key.pem -out secret \
-pkeyopt rsa_padding_mode:oaep -pkeyopt rsa_oaep_md:sha256

SEE ALSO

3.011 2023-09-22 OPENSSL-PKEYUTL (1ossl)

OPENSSL-PKEY UTL (1ossl) OpenSSL OPENSSL-PKEYUTL (1osd)

openss (1), openssl-genpkey(1), openss-pkey(1), openss-rsautl(1) openssl-dgst(1), openss-rsa(l),
openss-genrsa(l), openssl-kdf(1) EVP_PKEY_CTX set_hkdf _md(3),
EVP_PKEY_CTX_set_tlsl _prf_md(3),

HISTORY
The -engine option was deprecated in OpenSSL 3.0.

COPYRIGHT
Copyright 2006-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use thisfile except in

compliance with the License. Y ou can obtain a copy in the file LICENSE in the source distribution or
at <https://www.openssl .org/source/license.html>.

3.011 2023-09-22 OPENSSL-PKEYUTL (1lossl)

