
NAME
openssl-threads - Overview of thread safety in OpenSSL

DESCRIPTION
In this man page, we use the term thread-safe to indicate that an object or function can be used by

multiple threads at the same time.

OpenSSL can be built with or without threads support. The most important use of this support is so that

OpenSSL itself can use a single consistent API, as shown in "EXAMPLES" in

CRYPTO_THREAD_run_once(3). Multi-platform applications can also use this API.

In particular, being configured for threads support does not imply that all OpenSSL objects are thread-

safe. To emphasize: most objects are not safe for simultaneous use. Exceptions to this should be

documented on the specific manual pages, and some general high-level guidance is given here.

One major use of the OpenSSL thread API is to implement reference counting. Many objects within

OpenSSL are reference-counted, so resources are not released, until the last reference is removed.

References are often increased automatically (such as when an X509 certificate object is added into an

X509_STORE trust store). There is often an object_up_ref() function that can be used to increase the

reference count. Failure to match object_up_ref() calls with the right number of object_free() calls is a

common source of memory leaks when a program exits.

Many objects have set and get API’s to set attributes in the object. A "set0" passes ownership from the

caller to the object and a "get0" returns a pointer but the attribute ownership remains with the object

and a reference to it is returned. A "set1" or "get1" function does not change the ownership, but instead

updates the attribute’s reference count so that the object is shared between the caller and the object; the

caller must free the returned attribute when finished. Functions that involve attributes that have

reference counts themselves, but are named with just "set" or "get" are historical; and the

documentation must state how the references are handled. Get methods are often thread-safe as long as

the ownership requirements are met and shared objects are not modified. Set methods, or modifying

shared objects, are generally not thread-safe as discussed below.

Objects are thread-safe as long as the API’s being invoked don’t modify the object; in this case the

parameter is usually marked in the API as "const". Not all parameters are marked this way. Note that a

"const" declaration does not mean immutable; for example X509_cmp(3) takes pointers to "const"

objects, but the implementation uses a C cast to remove that so it can lock objects, generate and cache a

DER encoding, and so on.

Another instance of thread-safety is when updates to an object’s internal state, such as cached values,

are done with locks. One example of this is the reference counting API’s described above.

OPENSSL-THREADS(7ossl) OpenSSL OPENSSL-THREADS(7ossl)

3.0.11 2023-09-19 OPENSSL-THREADS(7ossl)



In all cases, however, it is generally not safe for one thread to mutate an object, such as setting

elements of a private or public key, while another thread is using that object, such as verifying a

signature.

The same API’s can usually be used simultaneously on different objects without interference. For

example, two threads can calculate a signature using two different EVP_PKEY_CTX objects.

For implicit global state or singletons, thread-safety depends on the facility. The

CRYPTO_secure_malloc(3) and related API’s have their own lock, while CRYPTO_malloc(3)

assumes the underlying platform allocation will do any necessary locking. Some API’s, such as

NCONF_load(3) and related, or OBJ_create(3) do no locking at all; this can be considered a bug.

A separate, although related, issue is modifying "factory" objects when other objects have been created

from that. For example, an SSL_CTX object created by SSL_CTX_new(3) is used to create per-

connection SSL objects by calling SSL_new(3). In this specific case, and probably for factory methods

in general, it is not safe to modify the factory object after it has been used to create other objects.

SEE ALSO
CRYPTO_THREAD_run_once(3), local system threads documentation.

BUGS
This page is admittedly very incomplete.

COPYRIGHT
Copyright 2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

OPENSSL-THREADS(7ossl) OpenSSL OPENSSL-THREADS(7ossl)

3.0.11 2023-09-19 OPENSSL-THREADS(7ossl)


