
NAME
osd, osd_register, osd_deregister, osd_set, osd_reserve, osd_set_reserved, osd_free_reserved, osd_get,
osd_del, osd_call, osd_exit - Object Specific Data

SYNOPSIS
#include <sys/osd.h>

typedef void

(*osd_destructor_t)(void *value);

typedef int

(*osd_method_t)(void *obj, void *data);

int

osd_register(u_int type, osd_destructor_t destructor, osd_method_t *methods);

void

osd_deregister(u_int type, u_int slot);

int

osd_set(u_int type, struct osd *osd, u_int slot, void *value);

void **

osd_reserve(u_int slot);

int

osd_set_reserved(u_int type, struct osd *osd, u_int slot, void **rsv, void *value);

void

osd_free_reserved(void **rsv);

void *

osd_get(u_int type, struct osd *osd, u_int slot);

void

osd_del(u_int type, struct osd *osd, u_int slot);

int

osd_call(u_int type, u_int method, void *obj, void *data);

OSD(9) FreeBSD Kernel Developer’s Manual OSD(9)

FreeBSD 14.0-RELEASE-p6 April 26, 2016 FreeBSD 14.0-RELEASE-p6

void

osd_exit(u_int type, struct osd *osd);

DESCRIPTION
The osd framework provides a mechanism to dynamically associate arbitrary data at run-time with any

kernel data structure which has been suitably modified for use with osd. The one-off modification

required involves embedding a struct osd inside the kernel data structure.

An additional benefit is that after the initial change to a structure is made, all subsequent use of osd with

the structure involves no changes to the structure’s layout. By extension, if the data structure is part of

the ABI, osd provides a way of extending the structure in an ABI preserving manner.

The details of the embedded struct osd are not relevant to consumers of the osd framework and should

not be manipulated directly.

Data associated with a structure is referenced by the osd framework using a type/slot identifier pair.

Types are statically defined in <sys/osd.h> and provide a high-level grouping for slots to be registered

under. Slot identifiers are dynamically assigned by the framework when a data type is registered using

osd_register() and remains valid until a corresponding call to osd_deregister().

Functions
The osd_register() function registers a type/slot identifier pair with the osd framework for use with a

new data type. The function may sleep and therefore cannot be called from a non-sleepable context.

The type argument specifies which high-level type grouping from <sys/osd.h> the slot identifier should

be allocated under. The destructor argument specifies an optional osd_destructor_t function pointer that

will be called for objects of the type being registered which are later destroyed by the osd_del() function.

NULL may be passed if no destructor is required. The methods argument specifies an optional array of

osd_method_t function pointers which can be later invoked by the osd_call() function. NULL may be

passed if no methods are required. The methods argument is currently only useful with the OSD_JAIL

type identifier.

The osd_deregister() function deregisters a previously registered type/slot identifier pair. The function

may sleep and therefore cannot be called from a non-sleepable context. The type argument specifies

which high-level type grouping from <sys/osd.h> the slot identifier is allocated under. The slot

argument specifies the slot identifier which is being deregistered and should be the value that was

returned by osd_register() when the data type was registered.

The osd_set() function associates a data object pointer with a kernel data structure’s struct osd member.

The type argument specifies which high-level type grouping from <sys/osd.h> the slot identifier is

allocated under. The osd argument is a pointer to the kernel data structure’s struct osd which will have

OSD(9) FreeBSD Kernel Developer’s Manual OSD(9)

FreeBSD 14.0-RELEASE-p6 April 26, 2016 FreeBSD 14.0-RELEASE-p6

the value pointer associated with it. The slot argument specifies the slot identifier to assign the value

pointer to. The value argument points to a data object to associate with osd.

The osd_set_reserved() function does the same as osd_set(), but with an extra argument rsv that is

internal-use memory previously allocated via osd_reserve().

The osd_get() function returns the data pointer associated with a kernel data structure’s struct osd

member from the specified type/slot identifier pair. The type argument specifies which high-level type

grouping from <sys/osd.h> the slot identifier is allocated under. The osd argument is a pointer to the

kernel data structure’s struct osd to retrieve the data pointer from. The slot argument specifies the slot

identifier to retrieve the data pointer from.

The osd_del() function removes the data pointer associated with a kernel data structure’s struct osd

member from the specified type/slot identifier pair. The type argument specifies which high-level type

grouping from <sys/osd.h> the slot identifier is allocated under. The osd argument is a pointer to the

kernel data structure’s struct osd to remove the data pointer from. The slot argument specifies the slot

identifier to remove the data pointer from. If an osd_destructor_t function pointer was specified at

registration time, the destructor function will be called and passed the data pointer for the type/slot

identifier pair which is being deleted.

The osd_call() function calls the specified osd_method_t function pointer for all currently registered

slots of a given type on the specified obj and data pointers. The function may sleep and therefore cannot

be called from a non-sleepable context. The type argument specifies which high-level type grouping

from <sys/osd.h> to call the method for. The method argument specifies the index into the

osd_method_t array that was passed to osd_register(). The obj and data arguments are passed to the

method function pointer of each slot.

The osd_exit() function removes all data object pointers from all currently registered slots for a given

type for the specified kernel data structure’s struct osd member. The type argument specifies which

high-level type grouping from <sys/osd.h> to remove data pointers from. The osd argument is a pointer

to the kernel data structure’s struct osd to remove all data object pointers for all currently registered slots

from.

IMPLEMENTATION NOTES
osd uses a two dimensional matrix (array of arrays) as the data structure to manage the external data

associated with a kernel data structure’s struct osd member. The type identifier is used as the index into

the outer array, and the slot identifier is used as the index into the inner array. To set or retrieve a data

pointer for a given type/slot identifier pair, osd_set() and osd_get() perform the equivalent of

array[type][slot], which is both constant time and fast.

OSD(9) FreeBSD Kernel Developer’s Manual OSD(9)

FreeBSD 14.0-RELEASE-p6 April 26, 2016 FreeBSD 14.0-RELEASE-p6

If osd_set() is called on a struct osd for the first time, the array for storing data pointers is dynamically

allocated using malloc(9) with M_NOWAIT to a size appropriate for the slot identifier being set. If a

subsequent call to osd_set() attempts to set a slot identifier which is numerically larger than the slot used

in the previous osd_set() call, realloc(9) is used to grow the array to the appropriate size such that the

slot identifier can be used. To maximise the efficiency of any code which calls osd_set() sequentially on

a number of different slot identifiers (e.g., during an initialisation phase) one should loop through the

slot identifiers in descending order from highest to lowest. This will result in only a single malloc(9)

call to create an array of the largest slot size and all subsequent calls to osd_set() will proceed without

any realloc(9) calls.

It is possible for osd_set() to fail to allocate this array. To ensure that such allocation succeeds,

osd_reserve() may be called (in a non-blocking context), and it will pre-allocate the memory via

malloc(9) with M_WAITOK. Then this pre-allocated memory is passed to osd_set_reserved(), which

will use it if necessary or otherwise discard it. The memory may also be explicitly discarded by calling

osd_free_reserved(). As this method always allocates memory whether or not it is ultimately needed, it

should be used only rarely, such as in the unlikely event that osd_set() fails.

The osd API is geared towards slot identifiers storing pointers to the same underlying data structure type

for a given osd type identifier. This is not a requirement, and khelp(9) for example stores completely

different data types in slots under the OSD_KHELP type identifier.

Locking
osd internally uses a mix of mutex(9), rmlock(9) and sx(9) locks to protect its internal data structures

and state.

Responsibility for synchronising access to a kernel data structure’s struct osd member is left to the

subsystem that uses the data structure and calls the osd API.

osd_get() only acquires an rmlock in read mode, therefore making it safe to use in the majority of

contexts within the kernel including most fast paths.

RETURN VALUES
osd_register() returns the slot identifier for the newly registered data type.

osd_set() and osd_set_reserved() return zero on success or ENOMEM if the specified type/slot identifier

pair triggered an internal realloc(9) which failed (osd_set_reserved() will always succeed when rsv is

non-NULL).

osd_get() returns the data pointer for the specified type/slot identifier pair, or NULL if the slot has not

been initialised yet.

OSD(9) FreeBSD Kernel Developer’s Manual OSD(9)

FreeBSD 14.0-RELEASE-p6 April 26, 2016 FreeBSD 14.0-RELEASE-p6

osd_reserve() returns a pointer suitable for passing to osd_set_reserved() or osd_free_reserved().

osd_call() returns zero if no method is run or the method for each slot runs successfully. If a method for

a slot returns non-zero, osd_call() terminates prematurely and returns the method’s error to the caller.

SEE ALSO
khelp(9)

HISTORY
The Object Specific Data (OSD) facility first appeared in FreeBSD 8.0.

AUTHORS
The osd facility was written by Pawel Jakub Dawidek <pjd@FreeBSD.org>.

This manual page was written by Lawrence Stewart <lstewart@FreeBSD.org>.

OSD(9) FreeBSD Kernel Developer’s Manual OSD(9)

FreeBSD 14.0-RELEASE-p6 April 26, 2016 FreeBSD 14.0-RELEASE-p6

