
NAME
patch - apply a diff file to an original

SYNOPSIS
patch [-bCcEeflNnRstuv] [-B backup-prefix] [-D symbol] [-d directory] [-F max-fuzz] [-i patchfile]

[-o out-file] [-p strip-count] [-r rej-name] [-V t | nil | never | none] [-x number] [-z backup-ext]

[--posix] [origfile [patchfile]]

patch <patchfile

DESCRIPTION
patch will take a patch file containing any of the four forms of difference listing produced by the diff(1)

program and apply those differences to an original file, producing a patched version. If patchfile is

omitted, or is a hyphen, the patch will be read from the standard input.

patch will attempt to determine the type of the diff listing, unless overruled by a -c, -e, -n, or -u option.

Context diffs (old-style, new-style, and unified) and normal diffs are applied directly by the patch
program itself, whereas ed diffs are simply fed to the ed(1) editor via a pipe.

If the patchfile contains more than one patch, patch will try to apply each of them as if they came from

separate patch files. This means, among other things, that it is assumed that the name of the file to patch

must be determined for each diff listing, and that the garbage before each diff listing will be examined

for interesting things such as file names and revision level (see the section on Filename Determination

below).

The options are as follows:

-B backup-prefix, --prefix backup-prefix

Causes the next argument to be interpreted as a prefix to the backup file name. If this argument

is specified, any argument to -z will be ignored.

-b, --backup
Save a backup copy of the file before it is modified. By default the original file is saved with a

backup extension of ".orig" unless the file already has a numbered backup, in which case a

numbered backup is made. This is equivalent to specifying "-V existing". This option is

currently the default, unless --posix is specified.

-C, --check, --dry-run
Checks that the patch would apply cleanly, but does not modify anything.

-c, --context

PATCH(1) FreeBSD General Commands Manual PATCH(1)

FreeBSD 14.0-RELEASE-p6 November 3, 2019 FreeBSD 14.0-RELEASE-p6

Forces patch to interpret the patch file as a context diff.

-D symbol, --ifdef symbol

Causes patch to use the "#ifdef...#endif" construct to mark changes. The argument following

will be used as the differentiating symbol. Note that, unlike the C compiler, there must be a

space between the -D and the argument.

-d directory, --directory directory

Causes patch to interpret the next argument as a directory, and change the working directory to

it before doing anything else.

-E, --remove-empty-files
Causes patch to remove output files that are empty after the patches have been applied. This

option is useful when applying patches that create or remove files.

-e, --ed Forces patch to interpret the patch file as an ed(1) script.

-F max-fuzz, --fuzz max-fuzz

Sets the maximum fuzz factor. This option only applies to context diffs, and causes patch to

ignore up to that many lines in looking for places to install a hunk. Note that a larger fuzz

factor increases the odds of a faulty patch. The default fuzz factor is 2, and it may not be set to

more than the number of lines of context in the context diff, ordinarily 3.

-f, --force
Forces patch to assume that the user knows exactly what he or she is doing, and to not ask any

questions. It assumes the following: skip patches for which a file to patch cannot be found;

patch files even though they have the wrong version for the "Prereq": line in the patch; and

assume that patches are not reversed even if they look like they are. This option does not

suppress commentary; use -s for that.

-i patchfile, --input patchfile

Causes the next argument to be interpreted as the input file name (i.e., a patchfile). This option

may be specified multiple times.

-l, --ignore-whitespace
Causes the pattern matching to be done loosely, in case the tabs and spaces have been munged

in your input file. Any sequence of whitespace in the pattern line will match any sequence in

the input file. Normal characters must still match exactly. Each line of the context must still

match a line in the input file.

PATCH(1) FreeBSD General Commands Manual PATCH(1)

FreeBSD 14.0-RELEASE-p6 November 3, 2019 FreeBSD 14.0-RELEASE-p6

-N, --forward
Causes patch to ignore patches that it thinks are reversed or already applied. See also -R.

-n, --normal
Forces patch to interpret the patch file as a normal diff.

-o out-file, --output out-file

Causes the next argument to be interpreted as the output file name.

-p strip-count, --strip strip-count

Sets the pathname strip count, which controls how pathnames found in the patch file are treated,

in case you keep your files in a different directory than the person who sent out the patch. The

strip count specifies how many slashes are to be stripped from the front of the pathname. (Any

intervening directory names also go away.) For example, supposing the file name in the patch

file was /u/howard/src/blurfl/blurfl.c:

Setting -p0 gives the entire pathname unmodified.

-p1 gives

u/howard/src/blurfl/blurfl.c

without the leading slash.

-p4 gives

blurfl/blurfl.c

Not specifying -p at all just gives you blurfl.c, unless all of the directories in the leading path

(u/howard/src/blurfl) exist and that path is relative, in which case you get the entire pathname

unmodified. Whatever you end up with is looked for either in the current directory, or the

directory specified by the -d option.

-R, --reverse
Tells patch that this patch was created with the old and new files swapped. (Yes, I am afraid

that does happen occasionally, human nature being what it is.) patch will attempt to swap each

hunk around before applying it. Rejects will come out in the swapped format. The -R option

will not work with ed diff scripts because there is too little information to reconstruct the

reverse operation.

PATCH(1) FreeBSD General Commands Manual PATCH(1)

FreeBSD 14.0-RELEASE-p6 November 3, 2019 FreeBSD 14.0-RELEASE-p6

If the first hunk of a patch fails, patch will reverse the hunk to see if it can be applied that way.

If it can, you will be asked if you want to have the -R option set. If it cannot, the patch will

continue to be applied normally. (Note: this method cannot detect a reversed patch if it is a

normal diff and if the first command is an append (i.e., it should have been a delete) since

appends always succeed, due to the fact that a null context will match anywhere. Luckily, most

patches add or change lines rather than delete them, so most reversed normal diffs will begin

with a delete, which will fail, triggering the heuristic.)

-r rej-name, --reject-file rej-name

Causes the next argument to be interpreted as the reject file name.

-s, --quiet, --silent
Makes patch do its work silently, unless an error occurs.

-t, --batch
Similar to -f, in that it suppresses questions, but makes some different assumptions: skip

patches for which a file to patch cannot be found (the same as -f); skip patches for which the

file has the wrong version for the "Prereq": line in the patch; and assume that patches are

reversed if they look like they are.

-u, --unified
Forces patch to interpret the patch file as a unified context diff (a unidiff).

-V t | nil | never | none, --version-control t | nil | never | none
Causes the next argument to be interpreted as a method for creating backup file names. The

type of backups made can also be given in the PATCH_VERSION_CONTROL or

VERSION_CONTROL environment variables, which are overridden by this option. The -B
option overrides this option, causing the prefix to always be used for making backup file names.

The values of the PATCH_VERSION_CONTROL and VERSION_CONTROL environment

variables and the argument to the -V option are like the GNU Emacs "version-control" variable;

they also recognize synonyms that are more descriptive. The valid values are (unique

abbreviations are accepted):

t, numbered
Always make numbered backups.

nil, existing
Make numbered backups of files that already have them, simple backups of the

others.

PATCH(1) FreeBSD General Commands Manual PATCH(1)

FreeBSD 14.0-RELEASE-p6 November 3, 2019 FreeBSD 14.0-RELEASE-p6

never, simple
Always make simple backups.

none Do not make backups.

-v, --version
Causes patch to print out its revision header and patch level.

-x number, --debug number

Sets internal debugging flags, and is of interest only to patch patchers.

-z backup-ext, --suffix backup-ext

Causes the next argument to be interpreted as the backup extension, to be used in place of

".orig".

--posix Enables strict IEEE Std 1003.1-2008 ("POSIX.1") conformance, specifically:

1. Backup files are not created unless the -b option is specified.

2. If unspecified, the file name used is the first of the old, new and index files that exists.

Patch Application
patch will try to skip any leading garbage, apply the diff, and then skip any trailing garbage. Thus you

could feed an article or message containing a diff listing to patch, and it should work. If the entire diff is

indented by a consistent amount, this will be taken into account.

With context diffs, and to a lesser extent with normal diffs, patch can detect when the line numbers

mentioned in the patch are incorrect, and will attempt to find the correct place to apply each hunk of the

patch. As a first guess, it takes the line number mentioned for the hunk, plus or minus any offset used in

applying the previous hunk. If that is not the correct place, patch will scan both forwards and backwards

for a set of lines matching the context given in the hunk. First patch looks for a place where all lines of

the context match. If no such place is found, and it is a context diff, and the maximum fuzz factor is set

to 1 or more, then another scan takes place ignoring the first and last line of context. If that fails, and the

maximum fuzz factor is set to 2 or more, the first two and last two lines of context are ignored, and

another scan is made. (The default maximum fuzz factor is 2).

If patch cannot find a place to install that hunk of the patch, it will put the hunk out to a reject file, which

normally is the name of the output file plus ".rej". (Note that the rejected hunk will come out in context

diff form whether the input patch was a context diff or a normal diff. If the input was a normal diff,

many of the contexts will simply be null.) The line numbers on the hunks in the reject file may be

PATCH(1) FreeBSD General Commands Manual PATCH(1)

FreeBSD 14.0-RELEASE-p6 November 3, 2019 FreeBSD 14.0-RELEASE-p6

different than in the patch file: they reflect the approximate location patch thinks the failed hunks belong

in the new file rather than the old one.

As each hunk is completed, you will be told whether the hunk succeeded or failed, and which line (in the

new file) patch thought the hunk should go on. If this is different from the line number specified in the

diff, you will be told the offset. A single large offset MAY be an indication that a hunk was installed in

the wrong place. You will also be told if a fuzz factor was used to make the match, in which case you

should also be slightly suspicious.

Filename Determination
If no original file is specified on the command line, patch will try to figure out from the leading garbage

what the name of the file to edit is. When checking a prospective file name, pathname components are

stripped as specified by the -p option and the file’s existence and writability are checked relative to the

current working directory (or the directory specified by the -d option).

If the diff is a context or unified diff, patch is able to determine the old and new file names from the diff

header. For context diffs, the "old" file is specified in the line beginning with "***" and the "new" file is

specified in the line beginning with "---". For a unified diff, the "old" file is specified in the line

beginning with "---" and the "new" file is specified in the line beginning with "+++". If there is an

"Index": line in the leading garbage (regardless of the diff type), patch will use the file name from that

line as the "index" file.

patch will choose the file name by performing the following steps, with the first match used:

1. If patch is operating in strict IEEE Std 1003.1-2008 ("POSIX.1") mode, the first of the "old", "new"

and "index" file names that exist is used. Otherwise, patch will examine either the "old" and "new"

file names or, for a non-context diff, the "index" file name, and choose the file name with the

fewest path components, the shortest basename, and the shortest total file name length (in that

order).

2. If no suitable file was found to patch, the patch file is a context or unified diff, and the old file was

zero length, the new file name is created and used.

3. If the file name still cannot be determined, patch will prompt the user for the file name to use.

Additionally, if the leading garbage contains a "Prereq: " line, patch will take the first word from the

prerequisites line (normally a version number) and check the input file to see if that word can be found.

If not, patch will ask for confirmation before proceeding.

The upshot of all this is that you should be able to say, while in a news interface, the following:

PATCH(1) FreeBSD General Commands Manual PATCH(1)

FreeBSD 14.0-RELEASE-p6 November 3, 2019 FreeBSD 14.0-RELEASE-p6

| patch -d /usr/src/local/blurfl

and patch a file in the blurfl directory directly from the article containing the patch.

Backup Files
By default, the patched version is put in place of the original, with the original file backed up to the

same name with the extension ".orig", or as specified by the -B, -V, or -z options. The extension used

for making backup files may also be specified in the SIMPLE_BACKUP_SUFFIX environment

variable, which is overridden by the options above.

If the backup file is a symbolic or hard link to the original file, patch creates a new backup file name by

changing the first lowercase letter in the last component of the file’s name into uppercase. If there are

no more lowercase letters in the name, it removes the first character from the name. It repeats this

process until it comes up with a backup file that does not already exist or is not linked to the original

file.

You may also specify where you want the output to go with the -o option; if that file already exists, it is

backed up first.

Notes For Patch Senders
There are several things you should bear in mind if you are going to be sending out patches:

First, you can save people a lot of grief by keeping a patchlevel.h file which is patched to increment the

patch level as the first diff in the patch file you send out. If you put a "Prereq": line in with the patch, it

will not let them apply patches out of order without some warning.

Second, make sure you have specified the file names right, either in a context diff header, or with an

"Index": line. If you are patching something in a subdirectory, be sure to tell the patch user to specify a

-p option as needed.

Third, you can create a file by sending out a diff that compares a null file to the file you want to create.

If the file you want to create already exists in the target directory when the diff is applied, then patch
will identify the patch as potentially reversed and offer to reverse the patch.

Fourth, take care not to send out reversed patches, since it makes people wonder whether they already

applied the patch.

Fifth, while you may be able to get away with putting 582 diff listings into one file, it is probably wiser

to group related patches into separate files in case something goes haywire.

PATCH(1) FreeBSD General Commands Manual PATCH(1)

FreeBSD 14.0-RELEASE-p6 November 3, 2019 FreeBSD 14.0-RELEASE-p6

ENVIRONMENT
POSIXLY_CORRECT When set, patch behaves as if the --posix option has been specified.

SIMPLE_BACKUP_SUFFIX Extension to use for backup file names instead of ".orig".

TMPDIR Directory to put temporary files in; default is /tmp.

PATCH_VERSION_CONTROL Selects when numbered backup files are made.

VERSION_CONTROL Same as PATCH_VERSION_CONTROL.

FILES
$TMPDIR/patch* patch temporary files

/dev/tty used to read input when patch prompts the user

EXIT STATUS
The patch utility exits with one of the following values:

0 Successful completion.

1 One or more lines were written to a reject file.

>1 An error occurred.

When applying a set of patches in a loop it behooves you to check this exit status so you do not apply a

later patch to a partially patched file.

DIAGNOSTICS
Too many to list here, but generally indicative that patch couldn’t parse your patch file.

The message "Hmm..." indicates that there is unprocessed text in the patch file and that patch is

attempting to intuit whether there is a patch in that text and, if so, what kind of patch it is.

SEE ALSO
diff(1)

STANDARDS
The patch utility is compliant with the IEEE Std 1003.1-2008 ("POSIX.1") specification, except as

detailed above for the --posix option.

The flags [-BCEFfstVvxz] and [--posix] are extensions to that specification.

AUTHORS
Larry Wall with many other contributors.

CAVEATS

PATCH(1) FreeBSD General Commands Manual PATCH(1)

FreeBSD 14.0-RELEASE-p6 November 3, 2019 FreeBSD 14.0-RELEASE-p6

patch cannot tell if the line numbers are off in an ed script, and can only detect bad line numbers in a

normal diff when it finds a "change" or a "delete" command. A context diff using fuzz factor 3 may

have the same problem. Until a suitable interactive interface is added, you should probably do a context

diff in these cases to see if the changes made sense. Of course, compiling without errors is a pretty good

indication that the patch worked, but not always.

patch usually produces the correct results, even when it has to do a lot of guessing. However, the results

are guaranteed to be correct only when the patch is applied to exactly the same version of the file that

the patch was generated from.

BUGS
Could be smarter about partial matches, excessively deviant offsets and swapped code, but that would

take an extra pass.

Check patch mode (-C) will fail if you try to check several patches in succession that build on each

other. The entire patch code would have to be restructured to keep temporary files around so that it can

handle this situation.

If code has been duplicated (for instance with #ifdef OLDCODE ... #else ... #endif), patch is incapable

of patching both versions, and, if it works at all, will likely patch the wrong one, and tell you that it

succeeded to boot.

If you apply a patch you have already applied, patch will think it is a reversed patch, and offer to un-

apply the patch. This could be construed as a feature.

PATCH(1) FreeBSD General Commands Manual PATCH(1)

FreeBSD 14.0-RELEASE-p6 November 3, 2019 FreeBSD 14.0-RELEASE-p6

