
NAME
pcap_loop, pcap_dispatch - process packets from a live capture or savefile

SYNOPSIS
#include <pcap/pcap.h>

typedef void (*pcap_handler)(u_char *user, const struct pcap_pkthdr *h,
const u_char *bytes);

int pcap_loop(pcap_t *p, int cnt,
pcap_handler callback, u_char *user);
int pcap_dispatch(pcap_t *p, int cnt,
pcap_handler callback, u_char *user);

DESCRIPTION
pcap_loop() processes packets from a live capture or ‘‘savefile’’ until cnt packets are processed, the

end of the ‘‘savefile’’ is reached when reading from a ‘‘savefile’’, pcap_breakloop(3) is called, or an

error occurs. It does not return when live packet buffer timeouts occur. A value of -1 or 0 for cnt is

equivalent to infinity, so that packets are processed until another ending condition occurs.

pcap_dispatch() processes packets from a live capture or ‘‘savefile’’ until cnt packets are processed, the

end of the current bufferful of packets is reached when doing a live capture, the end of the ‘‘savefile’’

is reached when reading from a ‘‘savefile’’, pcap_breakloop() is called, or an error occurs. Thus, when

doing a live capture, cnt is the maximum number of packets to process before returning, but is not a

minimum number; when reading a live capture, only one bufferful of packets is read at a time, so fewer

than cnt packets may be processed. A value of -1 or 0 for cnt causes all the packets received in one

buffer to be processed when reading a live capture, and causes all the packets in the file to be processed

when reading a ‘‘savefile’’.

Note that, when doing a live capture on some platforms, if the read timeout expires when there are no

packets available, pcap_dispatch() will return 0, even when not in non-blocking mode, as there are no

packets to process. Applications should be prepared for this to happen, but must not rely on it

happening.

callback specifies a pcap_handler routine to be called with three arguments: a u_char pointer which is

passed in the user argument to pcap_loop() or pcap_dispatch(), a const struct pcap_pkthdr pointer

pointing to the packet time stamp and lengths, and a const u_char pointer to the first caplen (as given in

the struct pcap_pkthdr a pointer to which is passed to the callback routine) bytes of data from the

packet. The struct pcap_pkthdr and the packet data are not to be freed by the callback routine, and are

not guaranteed to be valid after the callback routine returns; if the code needs them to be valid after the

PCAP_LOOP(3) FreeBSD Library Functions Manual PCAP_LOOP(3)

5 March 2022 PCAP_LOOP(3)



callback, it must make a copy of them.

The bytes of data from the packet begin with a link-layer header. The format of the link-layer header is

indicated by the return value of the pcap_datalink(3) routine when handed the pcap_t value also passed

to pcap_loop() or pcap_dispatch(). https://www.tcpdump.org/linktypes.html lists the values

pcap_datalink() can return and describes the packet formats that correspond to those values. The value

it returns will be valid for all packets received unless and until pcap_set_datalink(3) is called; after a

successful call to pcap_set_datalink(), all subsequent packets will have a link-layer header of the type

specified by the link-layer header type value passed to pcap_set_datalink().

Do NOT assume that the packets for a given capture or ‘‘savefile‘‘ will have any given link-layer

header type, such as DLT_EN10MB for Ethernet. For example, the "any" device on Linux will have a

link-layer header type of DLT_LINUX_SLL or DLT_LINUX_SLL2 even if all devices on the system

at the time the "any" device is opened have some other data link type, such as DLT_EN10MB for

Ethernet.

RETURN VALUE
pcap_loop() returns 0 if cnt is exhausted or if, when reading from a ‘‘savefile’’, no more packets are

available. It returns PCAP_ERROR_BREAK if the loop terminated due to a call to pcap_breakloop()

before any packets were processed, PCAP_ERROR_NOT_ACTIVATED if called on a capture handle

that has been created but not activated, or PCAP_ERROR if another error occurs. It does not return

when live packet buffer timeouts occur; instead, it attempts to read more packets.

pcap_dispatch() returns the number of packets processed on success; this can be 0 if no packets were

read from a live capture (if, for example, they were discarded because they didn’t pass the packet filter,

or if, on platforms that support a packet buffer timeout that starts before any packets arrive, the timeout

expires before any packets arrive, or if the file descriptor for the capture device is in non-blocking

mode and no packets were available to be read) or if no more packets are available in a ‘‘savefile.’’ It

returns PCAP_ERROR_BREAK if the loop terminated due to a call to pcap_breakloop() before any

packets were processed, PCAP_ERROR_NOT_ACTIVATED if called on a capture handle that has

been created but not activated, or PCAP_ERROR if another error occurs. If your application uses
pcap_breakloop(), make sure that you explicitly check for PCAP_ERROR and
PCAP_ERROR_BREAK, rather than just checking for a return value < 0.

If PCAP_ERROR is returned, pcap_geterr(3) or pcap_perror(3) may be called with p as an argument to

fetch or display the error text.

BACKWARD COMPATIBILITY
In libpcap versions before 1.5.0, the behavior when cnt was 0 was undefined; different platforms and

devices behaved differently, so code that must work with these versions of libpcap should use -1, not 0,

PCAP_LOOP(3) FreeBSD Library Functions Manual PCAP_LOOP(3)

5 March 2022 PCAP_LOOP(3)



as the value of cnt.

SEE ALSO
pcap(3)

PCAP_LOOP(3) FreeBSD Library Functions Manual PCAP_LOOP(3)

5 March 2022 PCAP_LOOP(3)


