
NAME
pci, pci_alloc_msi, pci_alloc_msix, pci_disable_busmaster, pci_disable_io, pci_enable_busmaster,

pci_enable_io, pci_find_bsf, pci_find_cap, pci_find_dbsf, pci_find_device, pci_find_extcap,

pci_find_htcap, pci_find_next_cap, pci_find_next_extcap, pci_find_next_htcap,

pci_find_pcie_root_port, pci_get_id, pci_get_max_payload, pci_get_max_read_req, pci_get_powerstate,

pci_get_vpd_ident, pci_get_vpd_readonly, pci_iov_attach, pci_iov_attach_name, pci_iov_detach,

pci_msi_count, pci_msix_count, pci_msix_pba_bar, pci_msix_table_bar, pci_pending_msix,

pci_read_config, pci_release_msi, pci_remap_msix, pci_restore_state, pci_save_state,

pci_set_max_read_req, pci_set_powerstate, pci_write_config, pcie_adjust_config, pcie_flr,

pcie_get_max_completion_timeout, pcie_read_config, pcie_wait_for_pending_transactions,

pcie_write_config - PCI bus interface

SYNOPSIS
#include <sys/bus.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

int

pci_alloc_msi(device_t dev, int *count);

int

pci_alloc_msix(device_t dev, int *count);

int

pci_disable_busmaster(device_t dev);

int

pci_disable_io(device_t dev, int space);

int

pci_enable_busmaster(device_t dev);

int

pci_enable_io(device_t dev, int space);

device_t

pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func);

int

pci_find_cap(device_t dev, int capability, int *capreg);

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

device_t

pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func);

device_t

pci_find_device(uint16_t vendor, uint16_t device);

int

pci_find_extcap(device_t dev, int capability, int *capreg);

int

pci_find_htcap(device_t dev, int capability, int *capreg);

int

pci_find_next_cap(device_t dev, int capability, int start, int *capreg);

int

pci_find_next_extcap(device_t dev, int capability, int start, int *capreg);

int

pci_find_next_htcap(device_t dev, int capability, int start, int *capreg);

device_t

pci_find_pcie_root_port(device_t dev);

int

pci_get_id(device_t dev, enum pci_id_type type, uintptr_t *id);

int

pci_get_max_payload(device_t dev);

int

pci_get_max_read_req(device_t dev);

int

pci_get_powerstate(device_t dev);

int

pci_get_vpd_ident(device_t dev, const char **identptr);

int

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

pci_get_vpd_readonly(device_t dev, const char *kw, const char **vptr);

int

pci_msi_count(device_t dev);

int

pci_msix_count(device_t dev);

int

pci_msix_pba_bar(device_t dev);

int

pci_msix_table_bar(device_t dev);

int

pci_pending_msix(device_t dev, u_int index);

uint32_t

pci_read_config(device_t dev, int reg, int width);

int

pci_release_msi(device_t dev);

int

pci_remap_msix(device_t dev, int count, const u_int *vectors);

void

pci_restore_state(device_t dev);

void

pci_save_state(device_t dev);

int

pci_set_max_read_req(device_t dev, int size);

int

pci_set_powerstate(device_t dev, int state);

void

pci_write_config(device_t dev, int reg, uint32_t val, int width);

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

uint32_t

pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t val, int width);

bool

pcie_flr(device_t dev, u_int max_delay, bool force);

int

pcie_get_max_completion_timeout(device_t dev);

uint32_t

pcie_read_config(device_t dev, int reg, int width);

bool

pcie_wait_for_pending_transactions(device_t dev, u_int max_delay);

void

pcie_write_config(device_t dev, int reg, uint32_t val, int width);

void

pci_event_fn(void *arg, device_t dev);

EVENTHANDLER_REGISTER(pci_add_device, pci_event_fn);

EVENTHANDLER_DEREGISTER(pci_delete_resource, pci_event_fn);

#include <dev/pci/pci_iov.h>

int

pci_iov_attach(device_t dev, nvlist_t *pf_schema, nvlist_t *vf_schema);

int

pci_iov_attach_name(device_t dev, nvlist_t *pf_schema, nvlist_t *vf_schema, const char *fmt, ...);

int

pci_iov_detach(device_t dev);

DESCRIPTION
The pci set of functions are used for managing PCI devices. The functions are split into several groups:

raw configuration access, locating devices, device information, device configuration, and message

signaled interrupts.

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

Raw Configuration Access
The pci_read_config() function is used to read data from the PCI configuration space of the device dev,

at offset reg, with width specifying the size of the access.

The pci_write_config() function is used to write the value val to the PCI configuration space of the

device dev, at offset reg, with width specifying the size of the access.

The pcie_adjust_config() function is used to modify the value of a register in the PCI-express capability

register set of device dev. The offset reg specifies a relative offset in the register set with width

specifying the size of the access. The new value of the register is computed by modifying bits set in

mask to the value in val. Any bits not specified in mask are preserved. The previous value of the

register is returned.

The pcie_read_config() function is used to read the value of a register in the PCI-express capability

register set of device dev. The offset reg specifies a relative offset in the register set with width

specifying the size of the access.

The pcie_write_config() function is used to write the value val to a register in the PCI-express capability

register set of device dev. The offset reg specifies a relative offset in the register set with width

specifying the size of the access.

NOTE: Device drivers should only use these functions for functionality that is not available via another

pci() function.

Locating Devices
The pci_find_bsf() function looks up the device_t of a PCI device, given its bus, slot, and func. The slot

number actually refers to the number of the device on the bus, which does not necessarily indicate its

geographic location in terms of a physical slot. Note that in case the system has multiple PCI domains,

the pci_find_bsf() function only searches the first one. Actually, it is equivalent to:

pci_find_dbsf(0, bus, slot, func);

The pci_find_dbsf() function looks up the device_t of a PCI device, given its domain, bus, slot, and

func. The slot number actually refers to the number of the device on the bus, which does not necessarily

indicate its geographic location in terms of a physical slot.

The pci_find_device() function looks up the device_t of a PCI device, given its vendor and device IDs.

Note that there can be multiple matches for this search; this function only returns the first matching

device.

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

Device Information
The pci_find_cap() function is used to locate the first instance of a PCI capability register set for the

device dev. The capability to locate is specified by ID via capability. Constant macros of the form

PCIY_xxx for standard capability IDs are defined in <dev/pci/pcireg.h>. If the capability is found, then

*capreg is set to the offset in configuration space of the capability register set, and pci_find_cap()

returns zero. If the capability is not found or the device does not support capabilities, pci_find_cap()

returns an error. The pci_find_next_cap() function is used to locate the next instance of a PCI capability

register set for the device dev. The start should be the *capreg returned by a prior pci_find_cap() or

pci_find_next_cap(). When no more instances are located pci_find_next_cap() returns an error.

The pci_find_extcap() function is used to locate the first instance of a PCI-express extended capability

register set for the device dev. The extended capability to locate is specified by ID via capability.

Constant macros of the form PCIZ_xxx for standard extended capability IDs are defined in

<dev/pci/pcireg.h>. If the extended capability is found, then *capreg is set to the offset in configuration

space of the extended capability register set, and pci_find_extcap() returns zero. If the extended

capability is not found or the device is not a PCI-express device, pci_find_extcap() returns an error. The

pci_find_next_extcap() function is used to locate the next instance of a PCI-express extended capability

register set for the device dev. The start should be the *capreg returned by a prior pci_find_extcap() or

pci_find_next_extcap(). When no more instances are located pci_find_next_extcap() returns an error.

The pci_find_htcap() function is used to locate the first instance of a HyperTransport capability register

set for the device dev. The capability to locate is specified by type via capability. Constant macros of

the form PCIM_HTCAP_xxx for standard HyperTransport capability types are defined in

<dev/pci/pcireg.h>. If the capability is found, then *capreg is set to the offset in configuration space of

the capability register set, and pci_find_htcap() returns zero. If the capability is not found or the device

is not a HyperTransport device, pci_find_htcap() returns an error. The pci_find_next_htcap() function is

used to locate the next instance of a HyperTransport capability register set for the device dev. The start

should be the *capreg returned by a prior pci_find_htcap() or pci_find_next_htcap(). When no more

instances are located pci_find_next_htcap() returns an error.

The pci_find_pcie_root_port() function walks up the PCI device hierarchy to locate the PCI-express root

port upstream of dev. If a root port is not found, pci_find_pcie_root_port() returns NULL.

The pci_get_id() function is used to read an identifier from a device. The type flag is used to specify

which identifier to read. The following flags are supported:

PCI_ID_RID Read the routing identifier for the device.

PCI_ID_MSI Read the MSI routing ID. This is needed by some interrupt controllers to route MSI and

MSI-X interrupts.

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

The pci_get_vpd_ident() function is used to fetch a device’s Vital Product Data (VPD) identifier string.

If the device dev supports VPD and provides an identifier string, then *identptr is set to point at a read-

only, null-terminated copy of the identifier string, and pci_get_vpd_ident() returns zero. If the device

does not support VPD or does not provide an identifier string, then pci_get_vpd_ident() returns an error.

The pci_get_vpd_readonly() function is used to fetch the value of a single VPD read-only keyword for

the device dev. The keyword to fetch is identified by the two character string kw. If the device supports

VPD and provides a read-only value for the requested keyword, then *vptr is set to point at a read-only,

null-terminated copy of the value, and pci_get_vpd_readonly() returns zero. If the device does not

support VPD or does not provide the requested keyword, then pci_get_vpd_readonly() returns an error.

The pcie_get_max_completion_timeout() function returns the maximum completion timeout configured

for the device dev in microseconds. If the dev device is not a PCI-express device,

pcie_get_max_completion_timeout() returns zero. When completion timeouts are disabled for dev, this

function returns the maxmimum timeout that would be used if timeouts were enabled.

The pcie_wait_for_pending_transactions() function waits for any pending transactions initiated by the

dev device to complete. The function checks for pending transactions by polling the transactions

pending flag in the PCI-express device status register. It returns true once the transaction pending flag is

clear. If transactions are still pending after max_delay milliseconds,

pcie_wait_for_pending_transactions() returns false. If max_delay is set to zero,

pcie_wait_for_pending_transactions() performs a single check; otherwise, this function may sleep while

polling the transactions pending flag. pcie_wait_for_pending_transactions returns true if dev is not a

PCI-express device.

Device Configuration
The pci_enable_busmaster() function enables PCI bus mastering for the device dev, by setting the

PCIM_CMD_BUSMASTEREN bit in the PCIR_COMMAND register. The pci_disable_busmaster()

function clears this bit.

The pci_enable_io() function enables memory or I/O port address decoding for the device dev, by

setting the PCIM_CMD_MEMEN or PCIM_CMD_PORTEN bit in the PCIR_COMMAND register

appropriately. The pci_disable_io() function clears the appropriate bit. The space argument specifies

which resource is affected; this can be either SYS_RES_MEMORY or SYS_RES_IOPORT as

appropriate. Device drivers should generally not use these routines directly. The PCI bus will enable

decoding automatically when a SYS_RES_MEMORY or SYS_RES_IOPORT resource is activated via

bus_alloc_resource(9) or bus_activate_resource(9).

The pci_get_max_payload() function returns the current maximum TLP payload size in bytes for a PCI-

express device. If the dev device is not a PCI-express device, pci_get_max_payload() returns zero.

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

The pci_get_max_read_req() function returns the current maximum read request size in bytes for a PCI-

express device. If the dev device is not a PCI-express device, pci_get_max_read_req() returns zero.

The pci_set_max_read_req() sets the PCI-express maximum read request size for dev. The requested

size may be adjusted, and pci_set_max_read_req() returns the actual size set in bytes. If the dev device

is not a PCI-express device, pci_set_max_read_req() returns zero.

The pci_get_powerstate() function returns the current power state of the device dev. If the device does

not support power management capabilities, then the default state of PCI_POWERSTATE_D0 is

returned. The following power states are defined by PCI:

PCI_POWERSTATE_D0 State in which device is on and running. It is receiving full power

from the system and delivering full functionality to the user.

PCI_POWERSTATE_D1 Class-specific low-power state in which device context may or may

not be lost. Buses in this state cannot do anything to the bus, to

force devices to lose context.

PCI_POWERSTATE_D2 Class-specific low-power state in which device context may or may

not be lost. Attains greater power savings than

PCI_POWERSTATE_D1. Buses in this state can cause devices to

lose some context. Devices must be prepared for the bus to be in

this state or higher.

PCI_POWERSTATE_D3 State in which the device is off and not running. Device context is

lost, and power from the device can be removed.

PCI_POWERSTATE_UNKNOWN State of the device is unknown.

The pci_set_powerstate() function is used to transition the device dev to the PCI power state state. If the

device does not support power management capabilities or it does not support the specific power state

state, then the function will fail with EOPNOTSUPP.

The pci_iov_attach() function is used to advertise that the given device (and associated device driver)

supports PCI Single-Root I/O Virtualization (SR-IOV). A driver that supports SR-IOV must implement

the PCI_IOV_INIT(9), PCI_IOV_ADD_VF(9) and PCI_IOV_UNINIT(9) methods. This function

should be called during the DEVICE_ATTACH(9) method. If this function returns an error, it is

recommended that the device driver still successfully attaches, but runs with SR-IOV disabled. The

pf_schema and vf_schema parameters are used to define what device-specific configuration parameters

the device driver accepts when SR-IOV is enabled for the Physical Function (PF) and for individual

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

Virtual Functions (VFs) respectively. See pci_iov_schema(9) for details on how to construct the

schema. If either the pf_schema or vf_schema is invalid or specifies parameter names that conflict with

parameter names that are already in use, pci_iov_attach() will return an error and SR-IOV will not be

available on the PF device. If a driver does not accept configuration parameters for either the PF device

or the VF devices, the driver must pass an empty schema for that device. The SR-IOV infrastructure

takes ownership of the pf_schema and vf_schema and is responsible for freeing them. The driver must

never free the schemas itself.

The pci_iov_attach_name() function is a variant of pci_iov_attach() that allows the name of the

associated character device in /dev/iov to be specified by fmt. The pci_iov_attach() function uses the

name of dev as the device name.

The pci_iov_detach() function is used to advise the SR-IOV infrastructure that the driver for the given

device is attempting to detach and that all SR-IOV resources for the device must be released. This

function must be called during the DEVICE_DETACH(9) method if pci_iov_attach() was successfully

called on the device and pci_iov_detach() has not subsequently been called on the device and returned

no error. If this function returns an error, the DEVICE_DETACH(9) method must fail and return an

error, as detaching the PF driver while VF devices are active would cause system instability. This

function is safe to call and will always succeed if pci_iov_attach() previously failed with an error on the

given device, or if pci_iov_attach() was never called on the device.

The pci_save_state() and pci_restore_state() functions can be used by a device driver to save and restore

standard PCI config registers. The pci_save_state() function must be invoked while the device has valid

state before pci_restore_state() can be used. If the device is not in the fully-powered state

(PCI_POWERSTATE_D0) when pci_restore_state() is invoked, then the device will be transitioned to

PCI_POWERSTATE_D0 before any config registers are restored.

The pcie_flr() function requests a Function Level Reset (FLR) of dev. If dev is not a PCI-express device

or does not support Function Level Resets via the PCI-express device control register, false is returned.

Pending transactions are drained by disabling busmastering and calling

pcie_wait_for_pending_transactions() before resetting the device. The max_delay argument specifies

the maximum timeout to wait for pending transactions as described for

pcie_wait_for_pending_transactions(). If pcie_wait_for_pending_transactions() fails with a timeout and

force is false, busmastering is re-enabled and false is returned. If pcie_wait_for_pending_transactions()

fails with a timeout and force is true, the device is reset despite the timeout. After the reset has been

requested, pcie_flr sleeps for at least 100 milliseconds before returning true. Note that pcie_flr does not

save and restore any state around the reset. The caller should save and restore state as needed.

Message Signaled Interrupts
Message Signaled Interrupts (MSI) and Enhanced Message Signaled Interrupts (MSI-X) are PCI

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

capabilities that provide an alternate method for PCI devices to signal interrupts. The legacy INTx

interrupt is available to PCI devices as a SYS_RES_IRQ resource with a resource ID of zero. MSI and

MSI-X interrupts are available to PCI devices as one or more SYS_RES_IRQ resources with resource

IDs greater than zero. A driver must ask the PCI bus to allocate MSI or MSI-X interrupts using

pci_alloc_msi() or pci_alloc_msix() before it can use MSI or MSI-X SYS_RES_IRQ resources. A

driver is not allowed to use the legacy INTx SYS_RES_IRQ resource if MSI or MSI-X interrupts have

been allocated, and attempts to allocate MSI or MSI-X interrupts will fail if the driver is currently using

the legacy INTx SYS_RES_IRQ resource. A driver is only allowed to use either MSI or MSI-X, but not

both.

The pci_msi_count() function returns the maximum number of MSI messages supported by the device

dev. If the device does not support MSI, then pci_msi_count() returns zero.

The pci_alloc_msi() function attempts to allocate *count MSI messages for the device dev. The

pci_alloc_msi() function may allocate fewer messages than requested for various reasons including

requests for more messages than the device dev supports, or if the system has a shortage of available

MSI messages. On success, *count is set to the number of messages allocated and pci_alloc_msi()
returns zero. The SYS_RES_IRQ resources for the allocated messages will be available at consecutive

resource IDs beginning with one. If pci_alloc_msi() is not able to allocate any messages, it returns an

error. Note that MSI only supports message counts that are powers of two; requests to allocate a non-

power of two count of messages will fail.

The pci_release_msi() function is used to release any allocated MSI or MSI-X messages back to the

system. If any MSI or MSI-X SYS_RES_IRQ resources are allocated by the driver or have a configured

interrupt handler, this function will fail with EBUSY. The pci_release_msi() function returns zero on

success and an error on failure.

The pci_msix_count() function returns the maximum number of MSI-X messages supported by the

device dev. If the device does not support MSI-X, then pci_msix_count() returns zero.

The pci_msix_pba_bar() function returns the offset in configuration space of the Base Address Register

(BAR) containing the MSI-X Pending Bit Array (PBA) for device dev. The returned value can be used

as the resource ID with bus_alloc_resource(9) and bus_release_resource(9) to allocate the BAR. If the

device does not support MSI-X, then pci_msix_pba_bar() returns -1.

The pci_msix_table_bar() function returns the offset in configuration space of the BAR containing the

MSI-X vector table for device dev. The returned value can be used as the resource ID with

bus_alloc_resource(9) and bus_release_resource(9) to allocate the BAR. If the device does not support

MSI-X, then pci_msix_table_bar() returns -1.

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

The pci_alloc_msix() function attempts to allocate *count MSI-X messages for the device dev. The

pci_alloc_msix() function may allocate fewer messages than requested for various reasons including

requests for more messages than the device dev supports, or if the system has a shortage of available

MSI-X messages. On success, *count is set to the number of messages allocated and pci_alloc_msix()

returns zero. For MSI-X messages, the resource ID for each SYS_RES_IRQ resource identifies the

index in the MSI-X table of the corresponding message. A resource ID of one maps to the first index of

the MSI-X table; a resource ID two identifies the second index in the table, etc. The pci_alloc_msix()

function assigns the *count messages allocated to the first *count table indices. If pci_alloc_msix() is

not able to allocate any messages, it returns an error. Unlike MSI, MSI-X does not require message

counts that are powers of two.

The BARs containing the MSI-X vector table and PBA must be allocated via bus_alloc_resource(9)

before calling pci_alloc_msix() and must not be released until after calling pci_release_msi(). Note that

the vector table and PBA may be stored in the same BAR or in different BARs.

The pci_pending_msix() function examines the dev device’s PBA to determine the pending status of the

MSI-X message at table index index. If the indicated message is pending, this function returns a non-

zero value; otherwise, it returns zero. Passing an invalid index to this function will result in undefined

behavior.

As mentioned in the description of pci_alloc_msix(), MSI-X messages are initially assigned to the first

N table entries. A driver may use a different distribution of available messages to table entries via the

pci_remap_msix() function. Note that this function must be called after a successful call to

pci_alloc_msix() but before any of the SYS_RES_IRQ resources are allocated. The pci_remap_msix()

function returns zero on success, or an error on failure.

The vectors array should contain count message vectors. The array maps directly to the MSI-X table in

that the first entry in the array specifies the message used for the first entry in the MSI-X table, the

second entry in the array corresponds to the second entry in the MSI-X table, etc. The vector value in

each array index can either be zero to indicate that no message should be assigned to the corresponding

MSI-X table entry, or it can be a number from one to N (where N is the count returned from the previous

call to pci_alloc_msix()) to indicate which of the allocated messages should be assigned to the

corresponding MSI-X table entry.

If pci_remap_msix() succeeds, each MSI-X table entry with a non-zero vector will have an associated

SYS_RES_IRQ resource whose resource ID corresponds to the table index as described above for

pci_alloc_msix(). MSI-X table entries that with a vector of zero will not have an associated

SYS_RES_IRQ resource. Additionally, if any of the original messages allocated by pci_alloc_msix()

are not used in the new distribution of messages in the MSI-X table, they will be released automatically.

Note that if a driver wishes to use fewer messages than were allocated by pci_alloc_msix(), the driver

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

must use a single, contiguous range of messages beginning with one in the new distribution. The

pci_remap_msix() function will fail if this condition is not met.

Device Events
The pci_add_device event handler is invoked every time a new PCI device is added to the system. This

includes the creation of Virtual Functions via SR-IOV.

The pci_delete_device event handler is invoked every time a PCI device is removed from the system.

Both event handlers pass the device_t object of the relevant PCI device as dev to each callback function.

Both event handlers are invoked while dev is unattached but with valid instance variables.

SEE ALSO
pci(4), pciconf(8), bus_alloc_resource(9), bus_dma(9), bus_release_resource(9), bus_setup_intr(9),

bus_teardown_intr(9), devclass(9), device(9), driver(9), eventhandler(9), rman(9)

NewBus, FreeBSD Developers’ Handbook, https://docs.freebsd.org/en/books/developers-handbook/.

Shanley and Anderson, PCI System Architecture, Addison-Wesley, 2nd Edition, ISBN 0-201-30974-2.

AUTHORS
This manual page was written by Bruce M Simpson <bms@FreeBSD.org> and John Baldwin

<jhb@FreeBSD.org>.

BUGS
The kernel PCI code has a number of references to "slot numbers". These do not refer to the geographic

location of PCI devices, but to the device number assigned by the combination of the PCI IDSEL

mechanism and the platform firmware. This should be taken note of when working with the kernel PCI

code.

The PCI bus driver should allocate the MSI-X vector table and PBA internally as necessary rather than

requiring the caller to do so.

PCI(9) FreeBSD Kernel Developer’s Manual PCI(9)

FreeBSD 14.0-RELEASE-p6 May 20, 2021 FreeBSD 14.0-RELEASE-p6

