
NAME
PCRE2 - Perl-compatible regular expressions (revised API)

INTRODUCTION
PCRE2 is the name used for a revised API for the PCRE library, which is a set of functions, written in

C, that implement regular expression pattern matching using the same syntax and semantics as Perl,

with just a few differences. After nearly two decades, the limitations of the original API were making

development increasingly difficult. The new API is more extensible, and it was simplified by

abolishing the separate "study" optimizing function; in PCRE2, patterns are automatically optimized

where possible. Since forking from PCRE1, the code has been extensively refactored and new features

introduced. The old library is now obsolete and is no longer maintained.

As well as Perl-style regular expression patterns, some features that appeared in Python and the

original PCRE before they appeared in Perl are available using the Python syntax. There is also some

support for one or two .NET and Oniguruma syntax items, and there are options for requesting some

minor changes that give better ECMAScript (aka JavaScript) compatibility.

The source code for PCRE2 can be compiled to support strings of 8-bit, 16-bit, or 32-bit code units,

which means that up to three separate libraries may be installed, one for each code unit size. The size of

code unit is not related to the bit size of the underlying hardware. In a 64-bit environment that also

supports 32-bit applications, versions of PCRE2 that are compiled in both 64-bit and 32-bit modes may

be needed.

The original work to extend PCRE to 16-bit and 32-bit code units was done by Zoltan Herczeg and

Christian Persch, respectively. In all three cases, strings can be interpreted either as one character per

code unit, or as UTF-encoded Unicode, with support for Unicode general category properties. Unicode

support is optional at build time (but is the default). However, processing strings as UTF code units

must be enabled explicitly at run time. The version of Unicode in use can be discovered by running

pcre2test -C

The three libraries contain identical sets of functions, with names ending in _8, _16, or _32,

respectively (for example, pcre2_compile_8()). However, by defining PCRE2_CODE_UNIT_WIDTH

to be 8, 16, or 32, a program that uses just one code unit width can be written using generic names such

as pcre2_compile(), and the documentation is written assuming that this is the case.

In addition to the Perl-compatible matching function, PCRE2 contains an alternative function that

matches the same compiled patterns in a different way. In certain circumstances, the alternative

function has some advantages. For a discussion of the two matching algorithms, see the pcre2matching
page.

PCRE2(3) FreeBSD Library Functions Manual PCRE2(3)

PCRE2 10.38 27 August 2021 PCRE2(3)



Details of exactly which Perl regular expression features are and are not supported by PCRE2 are given

in separate documents. See the pcre2pattern and pcre2compat pages. There is a syntax summary in the

pcre2syntax page.

Some features of PCRE2 can be included, excluded, or changed when the library is built. The

pcre2_config() function makes it possible for a client to discover which features are available. The

features themselves are described in the pcre2build page. Documentation about building PCRE2 for

various operating systems can be found in the README and NON-AUTOTOOLS_BUILD files in the

source distribution.

The libraries contains a number of undocumented internal functions and data tables that are used by

more than one of the exported external functions, but which are not intended for use by external callers.

Their names all begin with "_pcre2", which hopefully will not provoke any name clashes. In some

environments, it is possible to control which external symbols are exported when a shared library is

built, and in these cases the undocumented symbols are not exported.

SECURITY CONSIDERATIONS
If you are using PCRE2 in a non-UTF application that permits users to supply arbitrary patterns for

compilation, you should be aware of a feature that allows users to turn on UTF support from within a

pattern. For example, an 8-bit pattern that begins with "(*UTF)" turns on UTF-8 mode, which

interprets patterns and subjects as strings of UTF-8 code units instead of individual 8-bit characters.

This causes both the pattern and any data against which it is matched to be checked for UTF-8 validity.

If the data string is very long, such a check might use sufficiently many resources as to cause your

application to lose performance.

One way of guarding against this possibility is to use the pcre2_pattern_info() function to check the

compiled pattern’s options for PCRE2_UTF. Alternatively, you can set the PCRE2_NEVER_UTF

option when calling pcre2_compile(). This causes a compile time error if the pattern contains a UTF-

setting sequence.

The use of Unicode properties for character types such as \d can also be enabled from within the

pattern, by specifying "(*UCP)". This feature can be disallowed by setting the PCRE2_NEVER_UCP

option.

If your application is one that supports UTF, be aware that validity checking can take time. If the same

data string is to be matched many times, you can use the PCRE2_NO_UTF_CHECK option for the

second and subsequent matches to avoid running redundant checks.

The use of the \C escape sequence in a UTF-8 or UTF-16 pattern can lead to problems, because it may

leave the current matching point in the middle of a multi-code-unit character. The

PCRE2(3) FreeBSD Library Functions Manual PCRE2(3)

PCRE2 10.38 27 August 2021 PCRE2(3)



PCRE2_NEVER_BACKSLASH_C option can be used by an application to lock out the use of \C,

causing a compile-time error if it is encountered. It is also possible to build PCRE2 with the use of \C

permanently disabled.

Another way that performance can be hit is by running a pattern that has a very large search tree

against a string that will never match. Nested unlimited repeats in a pattern are a common example.

PCRE2 provides some protection against this: see the pcre2_set_match_limit() function in the pcre2api
page. There is a similar function called pcre2_set_depth_limit() that can be used to restrict the amount

of memory that is used.

USER DOCUMENTATION
The user documentation for PCRE2 comprises a number of different sections. In the "man" format,

each of these is a separate "man page". In the HTML format, each is a separate page, linked from the

index page. In the plain text format, the descriptions of the pcre2grep and pcre2test programs are in

files called pcre2grep.txt and pcre2test.txt, respectively. The remaining sections, except for the

pcre2demo section (which is a program listing), and the short pages for individual functions, are

concatenated in pcre2.txt, for ease of searching. The sections are as follows:

pcre2 this document

pcre2-config show PCRE2 installation configuration information

pcre2api details of PCRE2’s native C API

pcre2build building PCRE2

pcre2callout details of the pattern callout feature

pcre2compat discussion of Perl compatibility

pcre2convert details of pattern conversion functions

pcre2demo a demonstration C program that uses PCRE2

pcre2grep description of the pcre2grep command (8-bit only)

pcre2jit discussion of just-in-time optimization support

pcre2limits details of size and other limits

pcre2matching discussion of the two matching algorithms

pcre2partial details of the partial matching facility

pcre2pattern syntax and semantics of supported regular

expression patterns

pcre2perform discussion of performance issues

pcre2posix the POSIX-compatible C API for the 8-bit library

pcre2sample discussion of the pcre2demo program

pcre2serialize details of pattern serialization

pcre2syntax quick syntax reference

pcre2test description of the pcre2test command

pcre2unicode discussion of Unicode and UTF support

PCRE2(3) FreeBSD Library Functions Manual PCRE2(3)

PCRE2 10.38 27 August 2021 PCRE2(3)



In the "man" and HTML formats, there is also a short page for each C library function, listing its

arguments and results.

AUTHOR
Philip Hazel

Retired from University Computing Service

Cambridge, England.

Putting an actual email address here is a spam magnet. If you want to email me, use my two names

separated by a dot at gmail.com.

REVISION
Last updated: 27 August 2021

Copyright (c) 1997-2021 University of Cambridge.

PCRE2(3) FreeBSD Library Functions Manual PCRE2(3)

PCRE2 10.38 27 August 2021 PCRE2(3)


