
NAME
PCRE2 - Perl-compatible regular expressions (revised API)

BUILDING PCRE2
PCRE2 is distributed with a configure script that can be used to build the library in Unix-like

environments using the applications known as Autotools. Also in the distribution are files to support

building using CMake instead of configure. The text file README contains general information about

building with Autotools (some of which is repeated below), and also has some comments about

building on various operating systems. There is a lot more information about building PCRE2 without

using Autotools (including information about using CMake and building "by hand") in the text file

called NON-AUTOTOOLS-BUILD. You should consult this file as well as the README file if you

are building in a non-Unix-like environment.

PCRE2 BUILD-TIME OPTIONS
The rest of this document describes the optional features of PCRE2 that can be selected when the

library is compiled. It assumes use of the configure script, where the optional features are selected or

deselected by providing options to configure before running the make command. However, the same

options can be selected in both Unix-like and non-Unix-like environments if you are using CMake
instead of configure to build PCRE2.

If you are not using Autotools or CMake, option selection can be done by editing the config.h file, or

by passing parameter settings to the compiler, as described in NON-AUTOTOOLS-BUILD.

The complete list of options for configure (which includes the standard ones such as the selection of the

installation directory) can be obtained by running

./configure --help

The following sections include descriptions of "on/off" options whose names begin with --enable or

--disable. Because of the way that configure works, --enable and --disable always come in pairs, so the

complementary option always exists as well, but as it specifies the default, it is not described. Options

that specify values have names that start with --with. At the end of a configure run, a summary of the

configuration is output.

BUILDING 8-BIT, 16-BIT AND 32-BIT LIBRARIES
By default, a library called libpcre2-8 is built, containing functions that take string arguments contained

in arrays of bytes, interpreted either as single-byte characters, or UTF-8 strings. You can also build two

other libraries, called libpcre2-16 and libpcre2-32, which process strings that are contained in arrays of

16-bit and 32-bit code units, respectively. These can be interpreted either as single-unit characters or

UTF-16/UTF-32 strings. To build these additional libraries, add one or both of the following to the

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



configure command:

--enable-pcre2-16

--enable-pcre2-32

If you do not want the 8-bit library, add

--disable-pcre2-8

as well. At least one of the three libraries must be built. Note that the POSIX wrapper is for the 8-bit

library only, and that pcre2grep is an 8-bit program. Neither of these are built if you select only the

16-bit or 32-bit libraries.

BUILDING SHARED AND STATIC LIBRARIES
The Autotools PCRE2 building process uses libtool to build both shared and static libraries by default.

You can suppress an unwanted library by adding one of

--disable-shared

--disable-static

to the configure command.

UNICODE AND UTF SUPPORT
By default, PCRE2 is built with support for Unicode and UTF character strings. To build it without

Unicode support, add

--disable-unicode

to the configure command. This setting applies to all three libraries. It is not possible to build one

library with Unicode support and another without in the same configuration.

Of itself, Unicode support does not make PCRE2 treat strings as UTF-8, UTF-16 or UTF-32. To do

that, applications that use the library can set the PCRE2_UTF option when they call pcre2_compile() to

compile a pattern. Alternatively, patterns may be started with (*UTF) unless the application has locked

this out by setting PCRE2_NEVER_UTF.

UTF support allows the libraries to process character code points up to 0x10ffff in the strings that they

handle. Unicode support also gives access to the Unicode properties of characters, using pattern

escapes such as \P, \p, and \X. Only the general category properties such as Lu and Nd, script names,

and some bi-directional properties are supported. Details are given in the pcre2pattern documentation.

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



Pattern escapes such as \d and \w do not by default make use of Unicode properties. The application

can request that they do by setting the PCRE2_UCP option. Unless the application has set

PCRE2_NEVER_UCP, a pattern may also request this by starting with (*UCP).

DISABLING THE USE OF \C
The \C escape sequence, which matches a single code unit, even in a UTF mode, can cause

unpredictable behaviour because it may leave the current matching point in the middle of a multi-code-

unit character. The application can lock it out by setting the PCRE2_NEVER_BACKSLASH_C option

when calling pcre2_compile(). There is also a build-time option

--enable-never-backslash-C

(note the upper case C) which locks out the use of \C entirely.

JUST-IN-TIME COMPILER SUPPORT
Just-in-time (JIT) compiler support is included in the build by specifying

--enable-jit

This support is available only for certain hardware architectures. If this option is set for an unsupported

architecture, a building error occurs. If in doubt, use

--enable-jit=auto

which enables JIT only if the current hardware is supported. You can check if JIT is enabled in the

configuration summary that is output at the end of a configure run. If you are enabling JIT under

SELinux you may also want to add

--enable-jit-sealloc

which enables the use of an execmem allocator in JIT that is compatible with SELinux. This has no

effect if JIT is not enabled. See the pcre2jit documentation for a discussion of JIT usage. When JIT

support is enabled, pcre2grep automatically makes use of it, unless you add

--disable-pcre2grep-jit

to the configure command.

NEWLINE RECOGNITION
By default, PCRE2 interprets the linefeed (LF) character as indicating the end of a line. This is the

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



normal newline character on Unix-like systems. You can compile PCRE2 to use carriage return (CR)

instead, by adding

--enable-newline-is-cr

to the configure command. There is also an --enable-newline-is-lf option, which explicitly specifies

linefeed as the newline character.

Alternatively, you can specify that line endings are to be indicated by the two-character sequence

CRLF (CR immediately followed by LF). If you want this, add

--enable-newline-is-crlf

to the configure command. There is a fourth option, specified by

--enable-newline-is-anycrlf

which causes PCRE2 to recognize any of the three sequences CR, LF, or CRLF as indicating a line

ending. A fifth option, specified by

--enable-newline-is-any

causes PCRE2 to recognize any Unicode newline sequence. The Unicode newline sequences are the

three just mentioned, plus the single characters VT (vertical tab, U+000B), FF (form feed, U+000C),

NEL (next line, U+0085), LS (line separator, U+2028), and PS (paragraph separator, U+2029). The

final option is

--enable-newline-is-nul

which causes NUL (binary zero) to be set as the default line-ending character.

Whatever default line ending convention is selected when PCRE2 is built can be overridden by

applications that use the library. At build time it is recommended to use the standard for your operating

system.

WHAT \R MATCHES
By default, the sequence \R in a pattern matches any Unicode newline sequence, independently of what

has been selected as the line ending sequence. If you specify

--enable-bsr-anycrlf

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



the default is changed so that \R matches only CR, LF, or CRLF. Whatever is selected when PCRE2 is

built can be overridden by applications that use the library.

HANDLING VERY LARGE PATTERNS
Within a compiled pattern, offset values are used to point from one part to another (for example, from

an opening parenthesis to an alternation metacharacter). By default, in the 8-bit and 16-bit libraries,

two-byte values are used for these offsets, leading to a maximum size for a compiled pattern of around

64 thousand code units. This is sufficient to handle all but the most gigantic patterns. Nevertheless,

some people do want to process truly enormous patterns, so it is possible to compile PCRE2 to use

three-byte or four-byte offsets by adding a setting such as

--with-link-size=3

to the configure command. The value given must be 2, 3, or 4. For the 16-bit library, a value of 3 is

rounded up to 4. In these libraries, using longer offsets slows down the operation of PCRE2 because it

has to load additional data when handling them. For the 32-bit library the value is always 4 and cannot

be overridden; the value of --with-link-size is ignored.

LIMITING PCRE2 RESOURCE USAGE
The pcre2_match() function increments a counter each time it goes round its main loop. Putting a limit

on this counter controls the amount of computing resource used by a single call to pcre2_match(). The

limit can be changed at run time, as described in the pcre2api documentation. The default is 10 million,

but this can be changed by adding a setting such as

--with-match-limit=500000

to the configure command. This setting also applies to the pcre2_dfa_match() matching function, and

to JIT matching (though the counting is done differently).

The pcre2_match() function uses heap memory to record backtracking points. The more nested

backtracking points there are (that is, the deeper the search tree), the more memory is needed. There is

an upper limit, specified in kibibytes (units of 1024 bytes). This limit can be changed at run time, as

described in the pcre2api documentation. The default limit (in effect unlimited) is 20 million. You can

change this by a setting such as

--with-heap-limit=500

which limits the amount of heap to 500 KiB. This limit applies only to interpretive matching in

pcre2_match() and pcre2_dfa_match(), which may also use the heap for internal workspace when

processing complicated patterns. This limit does not apply when JIT (which has its own memory

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



arrangements) is used.

You can also explicitly limit the depth of nested backtracking in the pcre2_match() interpreter. This

limit defaults to the value that is set for --with-match-limit. You can set a lower default limit by adding,

for example,

--with-match-limit-depth=10000

to the configure command. This value can be overridden at run time. This depth limit indirectly limits

the amount of heap memory that is used, but because the size of each backtracking "frame" depends on

the number of capturing parentheses in a pattern, the amount of heap that is used before the limit is

reached varies from pattern to pattern. This limit was more useful in versions before 10.30, where

function recursion was used for backtracking.

As well as applying to pcre2_match(), the depth limit also controls the depth of recursive function calls

in pcre2_dfa_match(). These are used for lookaround assertions, atomic groups, and recursion within

patterns. The limit does not apply to JIT matching.

CREATING CHARACTER TABLES AT BUILD TIME
PCRE2 uses fixed tables for processing characters whose code points are less than 256. By default,

PCRE2 is built with a set of tables that are distributed in the file src/pcre2_chartables.c.dist. These

tables are for ASCII codes only. If you add

--enable-rebuild-chartables

to the configure command, the distributed tables are no longer used. Instead, a program called

pcre2_dftables is compiled and run. This outputs the source for new set of tables, created in the default

locale of your C run-time system. This method of replacing the tables does not work if you are cross

compiling, because pcre2_dftables needs to be run on the local host and therefore not compiled with

the cross compiler.

If you need to create alternative tables when cross compiling, you will have to do so "by hand". There

may also be other reasons for creating tables manually. To cause pcre2_dftables to be built on the local

host, run a normal compiling command, and then run the program with the output file as its argument,

for example:

cc src/pcre2_dftables.c -o pcre2_dftables

./pcre2_dftables src/pcre2_chartables.c

This builds the tables in the default locale of the local host. If you want to specify a locale, you must

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



use the -L option:

LC_ALL=fr_FR ./pcre2_dftables -L src/pcre2_chartables.c

You can also specify -b (with or without -L). This causes the tables to be written in binary instead of as

source code. A set of binary tables can be loaded into memory by an application and passed to

pcre2_compile() in the same way as tables created by calling pcre2_maketables(). The tables are just a

string of bytes, independent of hardware characteristics such as endianness. This means they can be

bundled with an application that runs in different environments, to ensure consistent behaviour.

USING EBCDIC CODE
PCRE2 assumes by default that it will run in an environment where the character code is ASCII or

Unicode, which is a superset of ASCII. This is the case for most computer operating systems. PCRE2

can, however, be compiled to run in an 8-bit EBCDIC environment by adding

--enable-ebcdic --disable-unicode

to the configure command. This setting implies --enable-rebuild-chartables. You should only use it if

you know that you are in an EBCDIC environment (for example, an IBM mainframe operating

system).

It is not possible to support both EBCDIC and UTF-8 codes in the same version of the library.

Consequently, --enable-unicode and --enable-ebcdic are mutually exclusive.

The EBCDIC character that corresponds to an ASCII LF is assumed to have the value 0x15 by default.

However, in some EBCDIC environments, 0x25 is used. In such an environment you should use

--enable-ebcdic-nl25

as well as, or instead of, --enable-ebcdic. The EBCDIC character for CR has the same value as in

ASCII, namely, 0x0d. Whichever of 0x15 and 0x25 is not chosen as LF is made to correspond to the

Unicode NEL character (which, in Unicode, is 0x85).

The options that select newline behaviour, such as --enable-newline-is-cr, and equivalent run-time

options, refer to these character values in an EBCDIC environment.

PCRE2GREP SUPPORT FOR EXTERNAL SCRIPTS
By default pcre2grep supports the use of callouts with string arguments within the patterns it is

matching. There are two kinds: one that generates output using local code, and another that calls an

external program or script. If --disable-pcre2grep-callout-fork is added to the configure command,

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



only the first kind of callout is supported; if --disable-pcre2grep-callout is used, all callouts are

completely ignored. For more details of pcre2grep callouts, see the pcre2grep documentation.

PCRE2GREP OPTIONS FOR COMPRESSED FILE SUPPORT
By default, pcre2grep reads all files as plain text. You can build it so that it recognizes files whose

names end in .gz or .bz2, and reads them with libz or libbz2, respectively, by adding one or both of

--enable-pcre2grep-libz

--enable-pcre2grep-libbz2

to the configure command. These options naturally require that the relevant libraries are installed on

your system. Configuration will fail if they are not.

PCRE2GREP BUFFER SIZE
pcre2grep uses an internal buffer to hold a "window" on the file it is scanning, in order to be able to

output "before" and "after" lines when it finds a match. The default starting size of the buffer is 20KiB.

The buffer itself is three times this size, but because of the way it is used for holding "before" lines, the

longest line that is guaranteed to be processable is the notional buffer size. If a longer line is

encountered, pcre2grep automatically expands the buffer, up to a specified maximum size, whose

default is 1MiB or the starting size, whichever is the larger. You can change the default parameter

values by adding, for example,

--with-pcre2grep-bufsize=51200

--with-pcre2grep-max-bufsize=2097152

to the configure command. The caller of pcre2grep can override these values by using --buffer-size and

--max-buffer-size on the command line.

PCRE2TEST OPTION FOR LIBREADLINE SUPPORT
If you add one of

--enable-pcre2test-libreadline

--enable-pcre2test-libedit

to the configure command, pcre2test is linked with the libreadline orlibedit library, respectively, and

when its input is from a terminal, it reads it using the readline() function. This provides line-editing and

history facilities. Note that libreadline is GPL-licensed, so if you distribute a binary of pcre2test linked

in this way, there may be licensing issues. These can be avoided by linking instead with libedit, which

has a BSD licence.

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



Setting --enable-pcre2test-libreadline causes the -lreadline option to be added to the pcre2test build. In

many operating environments with a sytem-installed readline library this is sufficient. However, in

some environments (e.g. if an unmodified distribution version of readline is in use), some extra

configuration may be necessary. The INSTALL file for libreadline says this:

"Readline uses the termcap functions, but does not link with

the termcap or curses library itself, allowing applications

which link with readline the to choose an appropriate library."

If your environment has not been set up so that an appropriate library is automatically included, you

may need to add something like

LIBS="-ncurses"

immediately before the configure command.

INCLUDING DEBUGGING CODE
If you add

--enable-debug

to the configure command, additional debugging code is included in the build. This feature is intended

for use by the PCRE2 maintainers.

DEBUGGING WITH VALGRIND SUPPORT
If you add

--enable-valgrind

to the configure command, PCRE2 will use valgrind annotations to mark certain memory regions as

unaddressable. This allows it to detect invalid memory accesses, and is mostly useful for debugging

PCRE2 itself.

CODE COVERAGE REPORTING
If your C compiler is gcc, you can build a version of PCRE2 that can generate a code coverage report

for its test suite. To enable this, you must install lcov version 1.6 or above. Then specify

--enable-coverage

to the configure command and build PCRE2 in the usual way.

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



Note that using ccache (a caching C compiler) is incompatible with code coverage reporting. If you

have configured ccache to run automatically on your system, you must set the environment variable

CCACHE_DISABLE=1

before running make to build PCRE2, so that ccache is not used.

When --enable-coverage is used, the following addition targets are added to the Makefile:

make coverage

This creates a fresh coverage report for the PCRE2 test suite. It is equivalent to running "make

coverage-reset", "make coverage-baseline", "make check", and then "make coverage-report".

make coverage-reset

This zeroes the coverage counters, but does nothing else.

make coverage-baseline

This captures baseline coverage information.

make coverage-report

This creates the coverage report.

make coverage-clean-report

This removes the generated coverage report without cleaning the coverage data itself.

make coverage-clean-data

This removes the captured coverage data without removing the coverage files created at compile time

(*.gcno).

make coverage-clean

This cleans all coverage data including the generated coverage report. For more information about code

coverage, see the gcov and lcov documentation.

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



DISABLING THE Z AND T FORMATTING MODIFIERS
The C99 standard defines formatting modifiers z and t for size_t and ptrdiff_t values, respectively. By

default, PCRE2 uses these modifiers in environments other than old versions of Microsoft Visual

Studio when __STDC_VERSION__ is defined and has a value greater than or equal to 199901L

(indicating support for C99). However, there is at least one environment that claims to be C99 but does

not support these modifiers. If

--disable-percent-zt

is specified, no use is made of the z or t modifiers. Instead of %td or %zu, a suitable format is used

depending in the size of long for the platform.

SUPPORT FOR FUZZERS
There is a special option for use by people who want to run fuzzing tests on PCRE2:

--enable-fuzz-support

At present this applies only to the 8-bit library. If set, it causes an extra library called

libpcre2-fuzzsupport.a to be built, but not installed. This contains a single function called

LLVMFuzzerTestOneInput() whose arguments are a pointer to a string and the length of the string.

When called, this function tries to compile the string as a pattern, and if that succeeds, to match it. This

is done both with no options and with some random options bits that are generated from the string.

Setting --enable-fuzz-support also causes a binary called pcre2fuzzcheck to be created. This is normally

run under valgrind or used when PCRE2 is compiled with address sanitizing enabled. It calls the

fuzzing function and outputs information about what it is doing. The input strings are specified by

arguments: if an argument starts with "=" the rest of it is a literal input string. Otherwise, it is assumed

to be a file name, and the contents of the file are the test string.

OBSOLETE OPTION
In versions of PCRE2 prior to 10.30, there were two ways of handling backtracking in the

pcre2_match() function. The default was to use the system stack, but if

--disable-stack-for-recursion

was set, memory on the heap was used. From release 10.30 onwards this has changed (the stack is no

longer used) and this option now does nothing except give a warning.

SEE ALSO
pcre2api(3), pcre2-config(3).

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)



AUTHOR
Philip Hazel

Retired from University Computing Service

Cambridge, England.

REVISION
Last updated: 27 July 2022

Copyright (c) 1997-2022 University of Cambridge.

PCRE2BUILD(3) FreeBSD Library Functions Manual PCRE2BUILD(3)

PCRE2 10.41 27 July 2022 PCRE2BUILD(3)


