
NAME
PCRE2 - Perl-compatible regular expressions (revised API)

PCRE2 JUST-IN-TIME COMPILER SUPPORT
Just-in-time compiling is a heavyweight optimization that can greatly speed up pattern matching.

However, it comes at the cost of extra processing before the match is performed, so it is of most benefit

when the same pattern is going to be matched many times. This does not necessarily mean many calls

of a matching function; if the pattern is not anchored, matching attempts may take place many times at

various positions in the subject, even for a single call. Therefore, if the subject string is very long, it

may still pay to use JIT even for one-off matches. JIT support is available for all of the 8-bit, 16-bit and

32-bit PCRE2 libraries.

JIT support applies only to the traditional Perl-compatible matching function. It does not apply when

the DFA matching function is being used. The code for this support was written by Zoltan Herczeg.

AVAILABILITY OF JIT SUPPORT
JIT support is an optional feature of PCRE2. The "configure" option --enable-jit (or equivalent CMake

option) must be set when PCRE2 is built if you want to use JIT. The support is limited to the following

hardware platforms:

ARM 32-bit (v5, v7, and Thumb2)

ARM 64-bit

IBM s390x 64 bit

Intel x86 32-bit and 64-bit

MIPS 32-bit and 64-bit

Power PC 32-bit and 64-bit

SPARC 32-bit

If --enable-jit is set on an unsupported platform, compilation fails.

A program can tell if JIT support is available by calling pcre2_config() with the PCRE2_CONFIG_JIT

option. The result is 1 when JIT is available, and 0 otherwise. However, a simple program does not

need to check this in order to use JIT. The API is implemented in a way that falls back to the

interpretive code if JIT is not available. For programs that need the best possible performance, there is

also a "fast path" API that is JIT-specific.

SIMPLE USE OF JIT
To make use of the JIT support in the simplest way, all you have to do is to call pcre2_jit_compile()
after successfully compiling a pattern with pcre2_compile(). This function has two arguments: the first

is the compiled pattern pointer that was returned by pcre2_compile(), and the second is zero or more of

PCRE2JIT(3) FreeBSD Library Functions Manual PCRE2JIT(3)

PCRE2 10.40 30 November 2021 PCRE2JIT(3)



the following option bits: PCRE2_JIT_COMPLETE, PCRE2_JIT_PARTIAL_HARD, or

PCRE2_JIT_PARTIAL_SOFT.

If JIT support is not available, a call to pcre2_jit_compile() does nothing and returns

PCRE2_ERROR_JIT_BADOPTION. Otherwise, the compiled pattern is passed to the JIT compiler,

which turns it into machine code that executes much faster than the normal interpretive code, but yields

exactly the same results. The returned value from pcre2_jit_compile() is zero on success, or a negative

error code.

There is a limit to the size of pattern that JIT supports, imposed by the size of machine stack that it

uses. The exact rules are not documented because they may change at any time, in particular, when

new optimizations are introduced. If a pattern is too big, a call to pcre2_jit_compile() returns

PCRE2_ERROR_NOMEMORY.

PCRE2_JIT_COMPLETE requests the JIT compiler to generate code for complete matches. If you

want to run partial matches using the PCRE2_PARTIAL_HARD or PCRE2_PARTIAL_SOFT options

of pcre2_match(), you should set one or both of the other options as well as, or instead of

PCRE2_JIT_COMPLETE. The JIT compiler generates different optimized code for each of the three

modes (normal, soft partial, hard partial). When pcre2_match() is called, the appropriate code is run if

it is available. Otherwise, the pattern is matched using interpretive code.

You can call pcre2_jit_compile() multiple times for the same compiled pattern. It does nothing if it has

previously compiled code for any of the option bits. For example, you can call it once with

PCRE2_JIT_COMPLETE and (perhaps later, when you find you need partial matching) again with

PCRE2_JIT_COMPLETE and PCRE2_JIT_PARTIAL_HARD. This time it will ignore

PCRE2_JIT_COMPLETE and just compile code for partial matching. If pcre2_jit_compile() is called

with no option bits set, it immediately returns zero. This is an alternative way of testing whether JIT is

available.

At present, it is not possible to free JIT compiled code except when the entire compiled pattern is freed

by calling pcre2_code_free().

In some circumstances you may need to call additional functions. These are described in the section

entitled "Controlling the JIT stack" below.

There are some pcre2_match() options that are not supported by JIT, and there are also some pattern

items that JIT cannot handle. Details are given below. In both cases, matching automatically falls back

to the interpretive code. If you want to know whether JIT was actually used for a particular match, you

should arrange for a JIT callback function to be set up as described in the section entitled "Controlling

the JIT stack" below, even if you do not need to supply a non-default JIT stack. Such a callback

PCRE2JIT(3) FreeBSD Library Functions Manual PCRE2JIT(3)

PCRE2 10.40 30 November 2021 PCRE2JIT(3)



function is called whenever JIT code is about to be obeyed. If the match-time options are not right for

JIT execution, the callback function is not obeyed.

If the JIT compiler finds an unsupported item, no JIT data is generated. You can find out if JIT

matching is available after compiling a pattern by calling pcre2_pattern_info() with the

PCRE2_INFO_JITSIZE option. A non-zero result means that JIT compilation was successful. A result

of 0 means that JIT support is not available, or the pattern was not processed by pcre2_jit_compile(), or

the JIT compiler was not able to handle the pattern.

MATCHING SUBJECTS CONTAINING INVALID UTF
When a pattern is compiled with the PCRE2_UTF option, subject strings are normally expected to be a

valid sequence of UTF code units. By default, this is checked at the start of matching and an error is

generated if invalid UTF is detected. The PCRE2_NO_UTF_CHECK option can be passed to

pcre2_match() to skip the check (for improved performance) if you are sure that a subject string is

valid. If this option is used with an invalid string, the result is undefined.

However, a way of running matches on strings that may contain invalid UTF sequences is available.

Calling pcre2_compile() with the PCRE2_MATCH_INVALID_UTF option has two effects: it tells the

interpreter in pcre2_match() to support invalid UTF, and, if pcre2_jit_compile() is called, the compiled

JIT code also supports invalid UTF. Details of how this support works, in both the JIT and the

interpretive cases, is given in the pcre2unicode documentation.

There is also an obsolete option for pcre2_jit_compile() called PCRE2_JIT_INVALID_UTF, which

currently exists only for backward compatibility. It is superseded by the pcre2_compile() option

PCRE2_MATCH_INVALID_UTF and should no longer be used. It may be removed in future.

UNSUPPORTED OPTIONS AND PATTERN ITEMS
The pcre2_match() options that are supported for JIT matching are

PCRE2_COPY_MATCHED_SUBJECT, PCRE2_NOTBOL, PCRE2_NOTEOL,

PCRE2_NOTEMPTY, PCRE2_NOTEMPTY_ATSTART, PCRE2_NO_UTF_CHECK,

PCRE2_PARTIAL_HARD, and PCRE2_PARTIAL_SOFT. The PCRE2_ANCHORED and

PCRE2_ENDANCHORED options are not supported at match time.

If the PCRE2_NO_JIT option is passed to pcre2_match() it disables the use of JIT, forcing matching by

the interpreter code.

The only unsupported pattern items are \C (match a single data unit) when running in a UTF mode, and

a callout immediately before an assertion condition in a conditional group.

RETURN VALUES FROM JIT MATCHING

PCRE2JIT(3) FreeBSD Library Functions Manual PCRE2JIT(3)

PCRE2 10.40 30 November 2021 PCRE2JIT(3)



When a pattern is matched using JIT matching, the return values are the same as those given by the

interpretive pcre2_match() code, with the addition of one new error code:

PCRE2_ERROR_JIT_STACKLIMIT. This means that the memory used for the JIT stack was

insufficient. See "Controlling the JIT stack" below for a discussion of JIT stack usage.

The error code PCRE2_ERROR_MATCHLIMIT is returned by the JIT code if searching a very large

pattern tree goes on for too long, as it is in the same circumstance when JIT is not used, but the details

of exactly what is counted are not the same. The PCRE2_ERROR_DEPTHLIMIT error code is never

returned when JIT matching is used.

CONTROLLING THE JIT STACK
When the compiled JIT code runs, it needs a block of memory to use as a stack. By default, it uses

32KiB on the machine stack. However, some large or complicated patterns need more than this. The

error PCRE2_ERROR_JIT_STACKLIMIT is given when there is not enough stack. Three functions

are provided for managing blocks of memory for use as JIT stacks. There is further discussion about

the use of JIT stacks in the section entitled "JIT stack FAQ" below.

The pcre2_jit_stack_create() function creates a JIT stack. Its arguments are a starting size, a maximum

size, and a general context (for memory allocation functions, or NULL for standard memory

allocation). It returns a pointer to an opaque structure of type pcre2_jit_stack, or NULL if there is an

error. The pcre2_jit_stack_free() function is used to free a stack that is no longer needed. If its

argument is NULL, this function returns immediately, without doing anything. (For the technically

minded: the address space is allocated by mmap or VirtualAlloc.) A maximum stack size of 512KiB to

1MiB should be more than enough for any pattern.

The pcre2_jit_stack_assign() function specifies which stack JIT code should use. Its arguments are as

follows:

pcre2_match_context *mcontext

pcre2_jit_callback callback

void *data

The first argument is a pointer to a match context. When this is subsequently passed to a matching

function, its information determines which JIT stack is used. If this argument is NULL, the function

returns immediately, without doing anything. There are three cases for the values of the other two

options:

(1) If callback is NULL and data is NULL, an internal 32KiB block

on the machine stack is used. This is the default when a match

context is created.

PCRE2JIT(3) FreeBSD Library Functions Manual PCRE2JIT(3)

PCRE2 10.40 30 November 2021 PCRE2JIT(3)



(2) If callback is NULL and data is not NULL, data must be

a pointer to a valid JIT stack, the result of calling

pcre2_jit_stack_create().

(3) If callback is not NULL, it must point to a function that is

called with data as an argument at the start of matching, in

order to set up a JIT stack. If the return from the callback

function is NULL, the internal 32KiB stack is used; otherwise the

return value must be a valid JIT stack, the result of calling

pcre2_jit_stack_create().

A callback function is obeyed whenever JIT code is about to be run; it is not obeyed when

pcre2_match() is called with options that are incompatible for JIT matching. A callback function can

therefore be used to determine whether a match operation was executed by JIT or by the interpreter.

You may safely use the same JIT stack for more than one pattern (either by assigning directly or by

callback), as long as the patterns are matched sequentially in the same thread. Currently, the only way

to set up non-sequential matches in one thread is to use callouts: if a callout function starts another

match, that match must use a different JIT stack to the one used for currently suspended match(es).

In a multithread application, if you do not specify a JIT stack, or if you assign or pass back NULL from

a callback, that is thread-safe, because each thread has its own machine stack. However, if you assign

or pass back a non-NULL JIT stack, this must be a different stack for each thread so that the

application is thread-safe.

Strictly speaking, even more is allowed. You can assign the same non-NULL stack to a match context

that is used by any number of patterns, as long as they are not used for matching by multiple threads at

the same time. For example, you could use the same stack in all compiled patterns, with a global mutex

in the callback to wait until the stack is available for use. However, this is an inefficient solution, and

not recommended.

This is a suggestion for how a multithreaded program that needs to set up non-default JIT stacks might

operate:

During thread initialization

thread_local_var = pcre2_jit_stack_create(...)

During thread exit

pcre2_jit_stack_free(thread_local_var)

PCRE2JIT(3) FreeBSD Library Functions Manual PCRE2JIT(3)

PCRE2 10.40 30 November 2021 PCRE2JIT(3)



Use a one-line callback function

return thread_local_var

All the functions described in this section do nothing if JIT is not available.

JIT STACK FAQ
(1) Why do we need JIT stacks?

PCRE2 (and JIT) is a recursive, depth-first engine, so it needs a stack where the local data of the

current node is pushed before checking its child nodes. Allocating real machine stack on some

platforms is difficult. For example, the stack chain needs to be updated every time if we extend the

stack on PowerPC. Although it is possible, its updating time overhead decreases performance. So we

do the recursion in memory.

(2) Why don’t we simply allocate blocks of memory with malloc()?

Modern operating systems have a nice feature: they can reserve an address space instead of allocating

memory. We can safely allocate memory pages inside this address space, so the stack could grow

without moving memory data (this is important because of pointers). Thus we can allocate 1MiB

address space, and use only a single memory page (usually 4KiB) if that is enough. However, we can

still grow up to 1MiB anytime if needed.

(3) Who "owns" a JIT stack?

The owner of the stack is the user program, not the JIT studied pattern or anything else. The user

program must ensure that if a stack is being used by pcre2_match(), (that is, it is assigned to a match

context that is passed to the pattern currently running), that stack must not be used by any other threads

(to avoid overwriting the same memory area). The best practice for multithreaded programs is to

allocate a stack for each thread, and return this stack through the JIT callback function.

(4) When should a JIT stack be freed?

You can free a JIT stack at any time, as long as it will not be used by pcre2_match() again. When you

assign the stack to a match context, only a pointer is set. There is no reference counting or any other

magic. You can free compiled patterns, contexts, and stacks in any order, anytime. Just do not call

pcre2_match() with a match context pointing to an already freed stack, as that will cause SEGFAULT.

(Also, do not free a stack currently used by pcre2_match() in another thread). You can also replace the

stack in a context at any time when it is not in use. You should free the previous stack before assigning

a replacement.

PCRE2JIT(3) FreeBSD Library Functions Manual PCRE2JIT(3)

PCRE2 10.40 30 November 2021 PCRE2JIT(3)



(5) Should I allocate/free a stack every time before/after calling pcre2_match()?

No, because this is too costly in terms of resources. However, you could implement some clever idea

which release the stack if it is not used in let’s say two minutes. The JIT callback can help to achieve

this without keeping a list of patterns.

(6) OK, the stack is for long term memory allocation. But what happens if a pattern causes stack

overflow with a stack of 1MiB? Is that 1MiB kept until the stack is freed?

Especially on embedded sytems, it might be a good idea to release memory sometimes without freeing

the stack. There is no API for this at the moment. Probably a function call which returns with the

currently allocated memory for any stack and another which allows releasing memory (shrinking the

stack) would be a good idea if someone needs this.

(7) This is too much of a headache. Isn’t there any better solution for JIT stack handling?

No, thanks to Windows. If POSIX threads were used everywhere, we could throw out this complicated

API.

FREEING JIT SPECULATIVE MEMORY
void pcre2_jit_free_unused_memory(pcre2_general_context *gcontext);

The JIT executable allocator does not free all memory when it is possible. It expects new allocations,

and keeps some free memory around to improve allocation speed. However, in low memory conditions,

it might be better to free all possible memory. You can cause this to happen by calling

pcre2_jit_free_unused_memory(). Its argument is a general context, for custom memory management,

or NULL for standard memory management.

EXAMPLE CODE
This is a single-threaded example that specifies a JIT stack without using a callback. A real program

should include error checking after all the function calls.

int rc;

pcre2_code *re;

pcre2_match_data *match_data;

pcre2_match_context *mcontext;

pcre2_jit_stack *jit_stack;

re = pcre2_compile(pattern, PCRE2_ZERO_TERMINATED, 0,

&errornumber, &erroffset, NULL);

PCRE2JIT(3) FreeBSD Library Functions Manual PCRE2JIT(3)

PCRE2 10.40 30 November 2021 PCRE2JIT(3)



rc = pcre2_jit_compile(re, PCRE2_JIT_COMPLETE);

mcontext = pcre2_match_context_create(NULL);

jit_stack = pcre2_jit_stack_create(32*1024, 512*1024, NULL);

pcre2_jit_stack_assign(mcontext, NULL, jit_stack);

match_data = pcre2_match_data_create(re, 10);

rc = pcre2_match(re, subject, length, 0, 0, match_data, mcontext);

/* Process result */

pcre2_code_free(re);

pcre2_match_data_free(match_data);

pcre2_match_context_free(mcontext);

pcre2_jit_stack_free(jit_stack);

JIT FAST PATH API
Because the API described above falls back to interpreted matching when JIT is not available, it is

convenient for programs that are written for general use in many environments. However, calling JIT

via pcre2_match() does have a performance impact. Programs that are written for use where JIT is

known to be available, and which need the best possible performance, can instead use a "fast path" API

to call JIT matching directly instead of calling pcre2_match() (obviously only for patterns that have

been successfully processed by pcre2_jit_compile()).

The fast path function is called pcre2_jit_match(), and it takes exactly the same arguments as

pcre2_match(). However, the subject string must be specified with a length;

PCRE2_ZERO_TERMINATED is not supported. Unsupported option bits (for example,

PCRE2_ANCHORED, PCRE2_ENDANCHORED and PCRE2_COPY_MATCHED_SUBJECT) are

ignored, as is the PCRE2_NO_JIT option. The return values are also the same as for pcre2_match(),
plus PCRE2_ERROR_JIT_BADOPTION if a matching mode (partial or complete) is requested that

was not compiled.

When you call pcre2_match(), as well as testing for invalid options, a number of other sanity checks

are performed on the arguments. For example, if the subject pointer is NULL but the length is non-

zero, an immediate error is given. Also, unless PCRE2_NO_UTF_CHECK is set, a UTF subject string

is tested for validity. In the interests of speed, these checks do not happen on the JIT fast path, and if

invalid data is passed, the result is undefined.

Bypassing the sanity checks and the pcre2_match() wrapping can give speedups of more than 10%.

SEE ALSO
pcre2api(3)

PCRE2JIT(3) FreeBSD Library Functions Manual PCRE2JIT(3)

PCRE2 10.40 30 November 2021 PCRE2JIT(3)



AUTHOR
Philip Hazel (FAQ by Zoltan Herczeg)

University Computing Service

Cambridge, England.

REVISION
Last updated: 30 November 2021

Copyright (c) 1997-2021 University of Cambridge.

PCRE2JIT(3) FreeBSD Library Functions Manual PCRE2JIT(3)

PCRE2 10.40 30 November 2021 PCRE2JIT(3)


