
NAME
PCRE2 - Perl-compatible regular expressions (revised API)

PCRE2 REGULAR EXPRESSION DETAILS
The syntax and semantics of the regular expressions that are supported by PCRE2 are described in

detail below. There is a quick-reference syntax summary in the pcre2syntax page. PCRE2 tries to

match Perl syntax and semantics as closely as it can. PCRE2 also supports some alternative regular

expression syntax (which does not conflict with the Perl syntax) in order to provide some compatibility

with regular expressions in Python, .NET, and Oniguruma.

Perl’s regular expressions are described in its own documentation, and regular expressions in general

are covered in a number of books, some of which have copious examples. Jeffrey Friedl’s "Mastering

Regular Expressions", published by O’Reilly, covers regular expressions in great detail. This

description of PCRE2’s regular expressions is intended as reference material.

This document discusses the regular expression patterns that are supported by PCRE2 when its main

matching function, pcre2_match(), is used. PCRE2 also has an alternative matching function,

pcre2_dfa_match(), which matches using a different algorithm that is not Perl-compatible. Some of the

features discussed below are not available when DFA matching is used. The advantages and

disadvantages of the alternative function, and how it differs from the normal function, are discussed in

the pcre2matching page.

SPECIAL START-OF-PATTERN ITEMS
A number of options that can be passed to pcre2_compile() can also be set by special items at the start

of a pattern. These are not Perl-compatible, but are provided to make these options accessible to pattern

writers who are not able to change the program that processes the pattern. Any number of these items

may appear, but they must all be together right at the start of the pattern string, and the letters must be

in upper case.

UTF support
In the 8-bit and 16-bit PCRE2 libraries, characters may be coded either as single code units, or as

multiple UTF-8 or UTF-16 code units. UTF-32 can be specified for the 32-bit library, in which case it

constrains the character values to valid Unicode code points. To process UTF strings, PCRE2 must be

built to include Unicode support (which is the default). When using UTF strings you must either call

the compiling function with one or both of the PCRE2_UTF or PCRE2_MATCH_INVALID_UTF

options, or the pattern must start with the special sequence (*UTF), which is equivalent to setting the

relevant PCRE2_UTF. How setting a UTF mode affects pattern matching is mentioned in several

places below. There is also a summary of features in the pcre2unicode page.

Some applications that allow their users to supply patterns may wish to restrict them to non-UTF data

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

for security reasons. If the PCRE2_NEVER_UTF option is passed to pcre2_compile(), (*UTF) is not

allowed, and its appearance in a pattern causes an error.

Unicode property support
Another special sequence that may appear at the start of a pattern is (*UCP). This has the same effect

as setting the PCRE2_UCP option: it causes sequences such as \d and \w to use Unicode properties to

determine character types, instead of recognizing only characters with codes less than 256 via a lookup

table. If also causes upper/lower casing operations to use Unicode properties for characters with code

points greater than 127, even when UTF is not set.

Some applications that allow their users to supply patterns may wish to restrict them for security

reasons. If the PCRE2_NEVER_UCP option is passed to pcre2_compile(), (*UCP) is not allowed, and

its appearance in a pattern causes an error.

Locking out empty string matching
Starting a pattern with (*NOTEMPTY) or (*NOTEMPTY_ATSTART) has the same effect as passing

the PCRE2_NOTEMPTY or PCRE2_NOTEMPTY_ATSTART option to whichever matching function

is subsequently called to match the pattern. These options lock out the matching of empty strings,

either entirely, or only at the start of the subject.

Disabling auto-possessification
If a pattern starts with (*NO_AUTO_POSSESS), it has the same effect as setting the

PCRE2_NO_AUTO_POSSESS option. This stops PCRE2 from making quantifiers possessive when

what follows cannot match the repeated item. For example, by default a+b is treated as a++b. For more

details, see the pcre2api documentation.

Disabling start-up optimizations
If a pattern starts with (*NO_START_OPT), it has the same effect as setting the

PCRE2_NO_START_OPTIMIZE option. This disables several optimizations for quickly reaching "no

match" results. For more details, see the pcre2api documentation.

Disabling automatic anchoring
If a pattern starts with (*NO_DOTSTAR_ANCHOR), it has the same effect as setting the

PCRE2_NO_DOTSTAR_ANCHOR option. This disables optimizations that apply to patterns whose

top-level branches all start with .* (match any number of arbitrary characters). For more details, see the

pcre2api documentation.

Disabling JIT compilation
If a pattern that starts with (*NO_JIT) is successfully compiled, an attempt by the application to apply

the JIT optimization by calling pcre2_jit_compile() is ignored.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Setting match resource limits
The pcre2_match() function contains a counter that is incremented every time it goes round its main

loop. The caller of pcre2_match() can set a limit on this counter, which therefore limits the amount of

computing resource used for a match. The maximum depth of nested backtracking can also be limited;

this indirectly restricts the amount of heap memory that is used, but there is also an explicit memory

limit that can be set.

These facilities are provided to catch runaway matches that are provoked by patterns with huge

matching trees. A common example is a pattern with nested unlimited repeats applied to a long string

that does not match. When one of these limits is reached, pcre2_match() gives an error return. The

limits can also be set by items at the start of the pattern of the form

(*LIMIT_HEAP=d)

(*LIMIT_MATCH=d)

(*LIMIT_DEPTH=d)

where d is any number of decimal digits. However, the value of the setting must be less than the value

set (or defaulted) by the caller of pcre2_match() for it to have any effect. In other words, the pattern

writer can lower the limits set by the programmer, but not raise them. If there is more than one setting

of one of these limits, the lower value is used. The heap limit is specified in kibibytes (units of 1024

bytes).

Prior to release 10.30, LIMIT_DEPTH was called LIMIT_RECURSION. This name is still recognized

for backwards compatibility.

The heap limit applies only when the pcre2_match() or pcre2_dfa_match() interpreters are used for

matching. It does not apply to JIT. The match limit is used (but in a different way) when JIT is being

used, or when pcre2_dfa_match() is called, to limit computing resource usage by those matching

functions. The depth limit is ignored by JIT but is relevant for DFA matching, which uses function

recursion for recursions within the pattern and for lookaround assertions and atomic groups. In this

case, the depth limit controls the depth of such recursion.

Newline conventions
PCRE2 supports six different conventions for indicating line breaks in strings: a single CR (carriage

return) character, a single LF (linefeed) character, the two-character sequence CRLF, any of the three

preceding, any Unicode newline sequence, or the NUL character (binary zero). The pcre2api page has

further discussion about newlines, and shows how to set the newline convention when calling

pcre2_compile().

It is also possible to specify a newline convention by starting a pattern string with one of the following

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

sequences:

(*CR) carriage return

(*LF) linefeed

(*CRLF) carriage return, followed by linefeed

(*ANYCRLF) any of the three above

(*ANY) all Unicode newline sequences

(*NUL) the NUL character (binary zero)

These override the default and the options given to the compiling function. For example, on a Unix

system where LF is the default newline sequence, the pattern

(*CR)a.b

changes the convention to CR. That pattern matches "a\nb" because LF is no longer a newline. If more

than one of these settings is present, the last one is used.

The newline convention affects where the circumflex and dollar assertions are true. It also affects the

interpretation of the dot metacharacter when PCRE2_DOTALL is not set, and the behaviour of \N

when not followed by an opening brace. However, it does not affect what the \R escape sequence

matches. By default, this is any Unicode newline sequence, for Perl compatibility. However, this can

be changed; see the next section and the description of \R in the section entitled "Newline sequences"

below. A change of \R setting can be combined with a change of newline convention.

Specifying what \R matches
It is possible to restrict \R to match only CR, LF, or CRLF (instead of the complete set of Unicode line

endings) by setting the option PCRE2_BSR_ANYCRLF at compile time. This effect can also be

achieved by starting a pattern with (*BSR_ANYCRLF). For completeness, (*BSR_UNICODE) is also

recognized, corresponding to PCRE2_BSR_UNICODE.

EBCDIC CHARACTER CODES
PCRE2 can be compiled to run in an environment that uses EBCDIC as its character code instead of

ASCII or Unicode (typically a mainframe system). In the sections below, character code values are

ASCII or Unicode; in an EBCDIC environment these characters may have different code values, and

there are no code points greater than 255.

CHARACTERS AND METACHARACTERS
A regular expression is a pattern that is matched against a subject string from left to right. Most

characters stand for themselves in a pattern, and match the corresponding characters in the subject. As

a trivial example, the pattern

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

The quick brown fox

matches a portion of a subject string that is identical to itself. When caseless matching is specified (the

PCRE2_CASELESS option or (?i) within the pattern), letters are matched independently of case. Note

that there are two ASCII characters, K and S, that, in addition to their lower case ASCII equivalents,

are case-equivalent with Unicode U+212A (Kelvin sign) and U+017F (long S) respectively when either

PCRE2_UTF or PCRE2_UCP is set.

The power of regular expressions comes from the ability to include wild cards, character classes,

alternatives, and repetitions in the pattern. These are encoded in the pattern by the use of

metacharacters, which do not stand for themselves but instead are interpreted in some special way.

There are two different sets of metacharacters: those that are recognized anywhere in the pattern except

within square brackets, and those that are recognized within square brackets. Outside square brackets,

the metacharacters are as follows:

\ general escape character with several uses

^ assert start of string (or line, in multiline mode)

$ assert end of string (or line, in multiline mode)

. match any character except newline (by default)

[start character class definition

| start of alternative branch

(start group or control verb

) end group or control verb

* 0 or more quantifier

+ 1 or more quantifier; also "possessive quantifier"

? 0 or 1 quantifier; also quantifier minimizer

{ start min/max quantifier

Part of a pattern that is in square brackets is called a "character class". In a character class the only

metacharacters are:

\ general escape character

^ negate the class, but only if the first character

- indicates character range

[POSIX character class (if followed by POSIX syntax)

] terminates the character class

If a pattern is compiled with the PCRE2_EXTENDED option, most white space in the pattern, other

than in a character class, and characters between a # outside a character class and the next newline,

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

inclusive, are ignored. An escaping backslash can be used to include a white space or a # character as

part of the pattern. If the PCRE2_EXTENDED_MORE option is set, the same applies, but in addition

unescaped space and horizontal tab characters are ignored inside a character class. Note: only these two

characters are ignored, not the full set of pattern white space characters that are ignored outside a

character class. Option settings can be changed within a pattern; see the section entitled "Internal

Option Setting" below.

The following sections describe the use of each of the metacharacters.

BACKSLASH
The backslash character has several uses. Firstly, if it is followed by a character that is not a digit or a

letter, it takes away any special meaning that character may have. This use of backslash as an escape

character applies both inside and outside character classes.

For example, if you want to match a * character, you must write * in the pattern. This escaping action

applies whether or not the following character would otherwise be interpreted as a metacharacter, so it

is always safe to precede a non-alphanumeric with backslash to specify that it stands for itself. In

particular, if you want to match a backslash, you write \\.

Only ASCII digits and letters have any special meaning after a backslash. All other characters (in

particular, those whose code points are greater than 127) are treated as literals.

If you want to treat all characters in a sequence as literals, you can do so by putting them between \Q

and \E. This is different from Perl in that $ and @ are handled as literals in \Q...\E sequences in

PCRE2, whereas in Perl, $ and @ cause variable interpolation. Also, Perl does "double-quotish

backslash interpolation" on any backslashes between \Q and \E which, its documentation says, "may

lead to confusing results". PCRE2 treats a backslash between \Q and \E just like any other character.

Note the following examples:

Pattern PCRE2 matches Perl matches

\Qabc$xyz\E abc$xyz abc followed by the

contents of $xyz

\Qabc\$xyz\E abc\$xyz abc\$xyz

\Qabc\E\$\Qxyz\E abc$xyz abc$xyz

\QA\B\E A\B A\B

\Q\\E \ \\E

The \Q...\E sequence is recognized both inside and outside character classes. An isolated \E that is not

preceded by \Q is ignored. If \Q is not followed by \E later in the pattern, the literal interpretation

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

continues to the end of the pattern (that is, \E is assumed at the end). If the isolated \Q is inside a

character class, this causes an error, because the character class is not terminated by a closing square

bracket.

Non-printing characters
A second use of backslash provides a way of encoding non-printing characters in patterns in a visible

manner. There is no restriction on the appearance of non-printing characters in a pattern, but when a

pattern is being prepared by text editing, it is often easier to use one of the following escape sequences

instead of the binary character it represents. In an ASCII or Unicode environment, these escapes are as

follows:

\a alarm, that is, the BEL character (hex 07)

\cx "control-x", where x is any printable ASCII character

\e escape (hex 1B)

\f form feed (hex 0C)

\n linefeed (hex 0A)

\r carriage return (hex 0D) (but see below)

\t tab (hex 09)

\0dd character with octal code 0dd

\ddd character with octal code ddd, or backreference

\o{ddd..} character with octal code ddd..

\xhh character with hex code hh

\x{hhh..} character with hex code hhh..

\N{U+hhh..} character with Unicode hex code point hhh..

By default, after \x that is not followed by {, from zero to two hexadecimal digits are read (letters can

be in upper or lower case). Any number of hexadecimal digits may appear between \x{ and }. If a

character other than a hexadecimal digit appears between \x{ and }, or if there is no terminating }, an

error occurs.

Characters whose code points are less than 256 can be defined by either of the two syntaxes for \x or by

an octal sequence. There is no difference in the way they are handled. For example, \xdc is exactly the

same as \x{dc} or \334. However, using the braced versions does make such sequences easier to read.

Support is available for some ECMAScript (aka JavaScript) escape sequences via two compile-time

options. If PCRE2_ALT_BSUX is set, the sequence \x followed by { is not recognized. Only if \x is

followed by two hexadecimal digits is it recognized as a character escape. Otherwise it is interpreted as

a literal "x" character. In this mode, support for code points greater than 256 is provided by \u, which

must be followed by four hexadecimal digits; otherwise it is interpreted as a literal "u" character.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

PCRE2_EXTRA_ALT_BSUX has the same effect as PCRE2_ALT_BSUX and, in addition, \u{hhh..}

is recognized as the character specified by hexadecimal code point. There may be any number of

hexadecimal digits. This syntax is from ECMAScript 6.

The \N{U+hhh..} escape sequence is recognized only when PCRE2 is operating in UTF mode. Perl

also uses \N{name} to specify characters by Unicode name; PCRE2 does not support this. Note that

when \N is not followed by an opening brace (curly bracket) it has an entirely different meaning,

matching any character that is not a newline.

There are some legacy applications where the escape sequence \r is expected to match a newline. If the

PCRE2_EXTRA_ESCAPED_CR_IS_LF option is set, \r in a pattern is converted to \n so that it

matches a LF (linefeed) instead of a CR (carriage return) character.

The precise effect of \cx on ASCII characters is as follows: if x is a lower case letter, it is converted to

upper case. Then bit 6 of the character (hex 40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A

(A is 41, Z is 5A), but \c{ becomes hex 3B ({ is 7B), and \c; becomes hex 7B (; is 3B). If the code unit

following \c has a value less than 32 or greater than 126, a compile-time error occurs.

When PCRE2 is compiled in EBCDIC mode, \N{U+hhh..} is not supported. \a, \e, \f, \n, \r, and \t

generate the appropriate EBCDIC code values. The \c escape is processed as specified for Perl in the

perlebcdic document. The only characters that are allowed after \c are A-Z, a-z, or one of @, [, \,], ^, _,

or ?. Any other character provokes a compile-time error. The sequence \c@ encodes character code 0;

after \c the letters (in either case) encode characters 1-26 (hex 01 to hex 1A); [, \,], ^, and _ encode

characters 27-31 (hex 1B to hex 1F), and \c? becomes either 255 (hex FF) or 95 (hex 5F).

Thus, apart from \c?, these escapes generate the same character code values as they do in an ASCII

environment, though the meanings of the values mostly differ. For example, \cG always generates code

value 7, which is BEL in ASCII but DEL in EBCDIC.

The sequence \c? generates DEL (127, hex 7F) in an ASCII environment, but because 127 is not a

control character in EBCDIC, Perl makes it generate the APC character. Unfortunately, there are

several variants of EBCDIC. In most of them the APC character has the value 255 (hex FF), but in the

one Perl calls POSIX-BC its value is 95 (hex 5F). If certain other characters have POSIX-BC values,

PCRE2 makes \c? generate 95; otherwise it generates 255.

After \0 up to two further octal digits are read. If there are fewer than two digits, just those that are

present are used. Thus the sequence \0\x\015 specifies two binary zeros followed by a CR character

(code value 13). Make sure you supply two digits after the initial zero if the pattern character that

follows is itself an octal digit.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

The escape \o must be followed by a sequence of octal digits, enclosed in braces. An error occurs if this

is not the case. This escape is a recent addition to Perl; it provides way of specifying character code

points as octal numbers greater than 0777, and it also allows octal numbers and backreferences to be

unambiguously specified.

For greater clarity and unambiguity, it is best to avoid following \ by a digit greater than zero. Instead,

use \o{} or \x{} to specify numerical character code points, and \g{} to specify backreferences. The

following paragraphs describe the old, ambiguous syntax.

The handling of a backslash followed by a digit other than 0 is complicated, and Perl has changed over

time, causing PCRE2 also to change.

Outside a character class, PCRE2 reads the digit and any following digits as a decimal number. If the

number is less than 10, begins with the digit 8 or 9, or if there are at least that many previous capture

groups in the expression, the entire sequence is taken as a backreference. A description of how this

works is given later, following the discussion of parenthesized groups. Otherwise, up to three octal

digits are read to form a character code.

Inside a character class, PCRE2 handles \8 and \9 as the literal characters "8" and "9", and otherwise

reads up to three octal digits following the backslash, using them to generate a data character. Any

subsequent digits stand for themselves. For example, outside a character class:

\040 is another way of writing an ASCII space

\40 is the same, provided there are fewer than 40

previous capture groups

\7 is always a backreference

\11 might be a backreference, or another way of

writing a tab

\011 is always a tab

\0113 is a tab followed by the character "3"

\113 might be a backreference, otherwise the

character with octal code 113

\377 might be a backreference, otherwise

the value 255 (decimal)

\81 is always a backreference

Note that octal values of 100 or greater that are specified using this syntax must not be introduced by a

leading zero, because no more than three octal digits are ever read.

Constraints on character values

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Characters that are specified using octal or hexadecimal numbers are limited to certain values, as

follows:

8-bit non-UTF mode no greater than 0xff

16-bit non-UTF mode no greater than 0xffff

32-bit non-UTF mode no greater than 0xffffffff

All UTF modes no greater than 0x10ffff and a valid code point

Invalid Unicode code points are all those in the range 0xd800 to 0xdfff (the so-called "surrogate" code

points). The check for these can be disabled by the caller of pcre2_compile() by setting the option

PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES. However, this is possible only in UTF-8 and

UTF-32 modes, because these values are not representable in UTF-16.

Escape sequences in character classes
All the sequences that define a single character value can be used both inside and outside character

classes. In addition, inside a character class, \b is interpreted as the backspace character (hex 08).

When not followed by an opening brace, \N is not allowed in a character class. \B, \R, and \X are not

special inside a character class. Like other unrecognized alphabetic escape sequences, they cause an

error. Outside a character class, these sequences have different meanings.

Unsupported escape sequences
In Perl, the sequences \F, \l, \L, \u, and \U are recognized by its string handler and used to modify the

case of following characters. By default, PCRE2 does not support these escape sequences in patterns.

However, if either of the PCRE2_ALT_BSUX or PCRE2_EXTRA_ALT_BSUX options is set, \U

matches a "U" character, and \u can be used to define a character by code point, as described above.

Absolute and relative backreferences
The sequence \g followed by a signed or unsigned number, optionally enclosed in braces, is an absolute

or relative backreference. A named backreference can be coded as \g{name}. Backreferences are

discussed later, following the discussion of parenthesized groups.

Absolute and relative subroutine calls
For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or a number enclosed

either in angle brackets or single quotes, is an alternative syntax for referencing a capture group as a

subroutine. Details are discussed later. Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax)

are not synonymous. The former is a backreference; the latter is a subroutine call.

Generic character types
Another use of backslash is for specifying generic character types:

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

\d any decimal digit

\D any character that is not a decimal digit

\h any horizontal white space character

\H any character that is not a horizontal white space character

\N any character that is not a newline

\s any white space character

\S any character that is not a white space character

\v any vertical white space character

\V any character that is not a vertical white space character

\w any "word" character

\W any "non-word" character

The \N escape sequence has the same meaning as the "." metacharacter when PCRE2_DOTALL is not

set, but setting PCRE2_DOTALL does not change the meaning of \N. Note that when \N is followed

by an opening brace it has a different meaning. See the section entitled "Non-printing characters" above

for details. Perl also uses \N{name} to specify characters by Unicode name; PCRE2 does not support

this.

Each pair of lower and upper case escape sequences partitions the complete set of characters into two

disjoint sets. Any given character matches one, and only one, of each pair. The sequences can appear

both inside and outside character classes. They each match one character of the appropriate type. If the

current matching point is at the end of the subject string, all of them fail, because there is no character

to match.

The default \s characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32), which are

defined as white space in the "C" locale. This list may vary if locale-specific matching is taking place.

For example, in some locales the "non-breaking space" character (\xA0) is recognized as white space,

and in others the VT character is not.

A "word" character is an underscore or any character that is a letter or digit. By default, the definition

of letters and digits is controlled by PCRE2’s low-valued character tables, and may vary if locale-

specific matching is taking place (see "Locale support" in the pcre2api page). For example, in a French

locale such as "fr_FR" in Unix-like systems, or "french" in Windows, some character codes greater

than 127 are used for accented letters, and these are then matched by \w. The use of locales with

Unicode is discouraged.

By default, characters whose code points are greater than 127 never match \d, \s, or \w, and always

match \D, \S, and \W, although this may be different for characters in the range 128-255 when locale-

specific matching is happening. These escape sequences retain their original meanings from before

Unicode support was available, mainly for efficiency reasons. If the PCRE2_UCP option is set, the

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

behaviour is changed so that Unicode properties are used to determine character types, as follows:

\d any character that matches \p{Nd} (decimal digit)

\s any character that matches \p{Z} or \h or \v

\w any character that matches \p{L} or \p{N}, plus underscore

The upper case escapes match the inverse sets of characters. Note that \d matches only decimal digits,

whereas \w matches any Unicode digit, as well as any Unicode letter, and underscore. Note also that

PCRE2_UCP affects \b, and \B because they are defined in terms of \w and \W. Matching these

sequences is noticeably slower when PCRE2_UCP is set.

The sequences \h, \H, \v, and \V, in contrast to the other sequences, which match only ASCII characters

by default, always match a specific list of code points, whether or not PCRE2_UCP is set. The

horizontal space characters are:

U+0009 Horizontal tab (HT)

U+0020 Space

U+00A0 Non-break space

U+1680 Ogham space mark

U+180E Mongolian vowel separator

U+2000 En quad

U+2001 Em quad

U+2002 En space

U+2003 Em space

U+2004 Three-per-em space

U+2005 Four-per-em space

U+2006 Six-per-em space

U+2007 Figure space

U+2008 Punctuation space

U+2009 Thin space

U+200A Hair space

U+202F Narrow no-break space

U+205F Medium mathematical space

U+3000 Ideographic space

The vertical space characters are:

U+000A Linefeed (LF)

U+000B Vertical tab (VT)

U+000C Form feed (FF)

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

U+000D Carriage return (CR)

U+0085 Next line (NEL)

U+2028 Line separator

U+2029 Paragraph separator

In 8-bit, non-UTF-8 mode, only the characters with code points less than 256 are relevant.

Newline sequences
Outside a character class, by default, the escape sequence \R matches any Unicode newline sequence.

In 8-bit non-UTF-8 mode \R is equivalent to the following:

(?>\r\n|\n|\x0b|\f|\r|\x85)

This is an example of an "atomic group", details of which are given below. This particular group

matches either the two-character sequence CR followed by LF, or one of the single characters LF

(linefeed, U+000A), VT (vertical tab, U+000B), FF (form feed, U+000C), CR (carriage return,

U+000D), or NEL (next line, U+0085). Because this is an atomic group, the two-character sequence is

treated as a single unit that cannot be split.

In other modes, two additional characters whose code points are greater than 255 are added: LS (line

separator, U+2028) and PS (paragraph separator, U+2029). Unicode support is not needed for these

characters to be recognized.

It is possible to restrict \R to match only CR, LF, or CRLF (instead of the complete set of Unicode line

endings) by setting the option PCRE2_BSR_ANYCRLF at compile time. (BSR is an abbreviation for

"backslash R".) This can be made the default when PCRE2 is built; if this is the case, the other

behaviour can be requested via the PCRE2_BSR_UNICODE option. It is also possible to specify these

settings by starting a pattern string with one of the following sequences:

(*BSR_ANYCRLF) CR, LF, or CRLF only

(*BSR_UNICODE) any Unicode newline sequence

These override the default and the options given to the compiling function. Note that these special

settings, which are not Perl-compatible, are recognized only at the very start of a pattern, and that they

must be in upper case. If more than one of them is present, the last one is used. They can be combined

with a change of newline convention; for example, a pattern can start with:

(*ANY)(*BSR_ANYCRLF)

They can also be combined with the (*UTF) or (*UCP) special sequences. Inside a character class, \R

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

is treated as an unrecognized escape sequence, and causes an error.

Unicode character properties
When PCRE2 is built with Unicode support (the default), three additional escape sequences that match

characters with specific properties are available. They can be used in any mode, though in 8-bit and

16-bit non-UTF modes these sequences are of course limited to testing characters whose code points

are less than U+0100 and U+10000, respectively. In 32-bit non-UTF mode, code points greater than

0x10ffff (the Unicode limit) may be encountered. These are all treated as being in the Unknown script

and with an unassigned type.

Matching characters by Unicode property is not fast, because PCRE2 has to do a multistage table

lookup in order to find a character’s property. That is why the traditional escape sequences such as \d

and \w do not use Unicode properties in PCRE2 by default, though you can make them do so by setting

the PCRE2_UCP option or by starting the pattern with (*UCP).

The extra escape sequences that provide property support are:

\p{xx} a character with the xx property

\P{xx} a character without the xx property

\X a Unicode extended grapheme cluster

The property names represented by xx above are not case-sensitive, and in accordance with Unicode’s

"loose matching" rules, spaces, hyphens, and underscores are ignored. There is support for Unicode

script names, Unicode general category properties, "Any", which matches any character (including

newline), Bidi_Class, a number of binary (yes/no) properties, and some special PCRE2 properties

(described below). Certain other Perl properties such as "InMusicalSymbols" are not supported by

PCRE2. Note that \P{Any} does not match any characters, so always causes a match failure.

Script properties for \p and \P
There are three different syntax forms for matching a script. Each Unicode character has a basic script

and, optionally, a list of other scripts ("Script Extensions") with which it is commonly used. Using the

Adlam script as an example, \p{sc:Adlam} matches characters whose basic script is Adlam, whereas

\p{scx:Adlam} matches, in addition, characters that have Adlam in their extensions list. The full names

"script" and "script extensions" for the property types are recognized, and a equals sign is an alternative

to the colon. If a script name is given without a property type, for example, \p{Adlam}, it is treated as

\p{scx:Adlam}. Perl changed to this interpretation at release 5.26 and PCRE2 changed at release 10.40.

Unassigned characters (and in non-UTF 32-bit mode, characters with code points greater than

0x10FFFF) are assigned the "Unknown" script. Others that are not part of an identified script are

lumped together as "Common". The current list of recognized script names and their 4-character

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

abbreviations can be obtained by running this command:

pcre2test -LS

The general category property for \p and \P
Each character has exactly one Unicode general category property, specified by a two-letter

abbreviation. For compatibility with Perl, negation can be specified by including a circumflex between

the opening brace and the property name. For example, \p{^Lu} is the same as \P{Lu}.

If only one letter is specified with \p or \P, it includes all the general category properties that start with

that letter. In this case, in the absence of negation, the curly brackets in the escape sequence are

optional; these two examples have the same effect:

\p{L}

\pL

The following general category property codes are supported:

C Other

Cc Control

Cf Format

Cn Unassigned

Co Private use

Cs Surrogate

L Letter

Ll Lower case letter

Lm Modifier letter

Lo Other letter

Lt Title case letter

Lu Upper case letter

M Mark

Mc Spacing mark

Me Enclosing mark

Mn Non-spacing mark

N Number

Nd Decimal number

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Nl Letter number

No Other number

P Punctuation

Pc Connector punctuation

Pd Dash punctuation

Pe Close punctuation

Pf Final punctuation

Pi Initial punctuation

Po Other punctuation

Ps Open punctuation

S Symbol

Sc Currency symbol

Sk Modifier symbol

Sm Mathematical symbol

So Other symbol

Z Separator

Zl Line separator

Zp Paragraph separator

Zs Space separator

The special property LC, which has the synonym L&, is also supported: it matches a character that has

the Lu, Ll, or Lt property, in other words, a letter that is not classified as a modifier or "other".

The Cs (Surrogate) property applies only to characters whose code points are in the range U+D800 to

U+DFFF. These characters are no different to any other character when PCRE2 is not in UTF mode

(using the 16-bit or 32-bit library). However, they are not valid in Unicode strings and so cannot be

tested by PCRE2 in UTF mode, unless UTF validity checking has been turned off (see the discussion

of PCRE2_NO_UTF_CHECK in the pcre2api page).

The long synonyms for property names that Perl supports (such as \p{Letter}) are not supported by

PCRE2, nor is it permitted to prefix any of these properties with "Is".

No character that is in the Unicode table has the Cn (unassigned) property. Instead, this property is

assumed for any code point that is not in the Unicode table.

Specifying caseless matching does not affect these escape sequences. For example, \p{Lu} always

matches only upper case letters. This is different from the behaviour of current versions of Perl.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Binary (yes/no) properties for \p and \P
Unicode defines a number of binary properties, that is, properties whose only values are true or false.

You can obtain a list of those that are recognized by \p and \P, along with their abbreviations, by

running this command:

pcre2test -LP

The Bidi_Class property for \p and \P
\p{Bidi_Class:<class>} matches a character with the given class

\p{BC:<class>} matches a character with the given class

The recognized classes are:

AL Arabic letter

AN Arabic number

B paragraph separator

BN boundary neutral

CS common separator

EN European number

ES European separator

ET European terminator

FSI first strong isolate

L left-to-right

LRE left-to-right embedding

LRI left-to-right isolate

LRO left-to-right override

NSM non-spacing mark

ON other neutral

PDF pop directional format

PDI pop directional isolate

R right-to-left

RLE right-to-left embedding

RLI right-to-left isolate

RLO right-to-left override

S segment separator

WS which space

An equals sign may be used instead of a colon. The class names are case-insensitive; only the short

names listed above are recognized.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Extended grapheme clusters
The \X escape matches any number of Unicode characters that form an "extended grapheme cluster",

and treats the sequence as an atomic group (see below). Unicode supports various kinds of composite

character by giving each character a grapheme breaking property, and having rules that use these

properties to define the boundaries of extended grapheme clusters. The rules are defined in Unicode

Standard Annex 29, "Unicode Text Segmentation". Unicode 11.0.0 abandoned the use of some

previous properties that had been used for emojis. Instead it introduced various emoji-specific

properties. PCRE2 uses only the Extended Pictographic property.

\X always matches at least one character. Then it decides whether to add additional characters

according to the following rules for ending a cluster:

1. End at the end of the subject string.

2. Do not end between CR and LF; otherwise end after any control character.

3. Do not break Hangul (a Korean script) syllable sequences. Hangul characters are of five types: L, V,

T, LV, and LVT. An L character may be followed by an L, V, LV, or LVT character; an LV or V

character may be followed by a V or T character; an LVT or T character may be followed only by a T

character.

4. Do not end before extending characters or spacing marks or the "zero-width joiner" character.

Characters with the "mark" property always have the "extend" grapheme breaking property.

5. Do not end after prepend characters.

6. Do not break within emoji modifier sequences or emoji zwj sequences. That is, do not break between

characters with the Extended_Pictographic property. Extend and ZWJ characters are allowed between

the characters.

7. Do not break within emoji flag sequences. That is, do not break between regional indicator (RI)

characters if there are an odd number of RI characters before the break point.

8. Otherwise, end the cluster.

PCRE2’s additional properties
As well as the standard Unicode properties described above, PCRE2 supports four more that make it

possible to convert traditional escape sequences such as \w and \s to use Unicode properties. PCRE2

uses these non-standard, non-Perl properties internally when PCRE2_UCP is set. However, they may

also be used explicitly. These properties are:

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Xan Any alphanumeric character

Xps Any POSIX space character

Xsp Any Perl space character

Xwd Any Perl "word" character

Xan matches characters that have either the L (letter) or the N (number) property. Xps matches the

characters tab, linefeed, vertical tab, form feed, or carriage return, and any other character that has the

Z (separator) property. Xsp is the same as Xps; in PCRE1 it used to exclude vertical tab, for Perl

compatibility, but Perl changed. Xwd matches the same characters as Xan, plus underscore.

There is another non-standard property, Xuc, which matches any character that can be represented by a

Universal Character Name in C++ and other programming languages. These are the characters $, @, ‘

(grave accent), and all characters with Unicode code points greater than or equal to U+00A0, except for

the surrogates U+D800 to U+DFFF. Note that most base (ASCII) characters are excluded. (Universal

Character Names are of the form \uHHHH or \UHHHHHHHH where H is a hexadecimal digit. Note

that the Xuc property does not match these sequences but the characters that they represent.)

Resetting the match start
In normal use, the escape sequence \K causes any previously matched characters not to be included in

the final matched sequence that is returned. For example, the pattern:

foo\Kbar

matches "foobar", but reports that it has matched "bar". \K does not interact with anchoring in any way.

The pattern:

^foo\Kbar

matches only when the subject begins with "foobar" (in single line mode), though it again reports the

matched string as "bar". This feature is similar to a lookbehind assertion (described below). However,

in this case, the part of the subject before the real match does not have to be of fixed length, as

lookbehind assertions do. The use of \K does not interfere with the setting of captured substrings. For

example, when the pattern

(foo)\Kbar

matches "foobar", the first substring is still set to "foo".

From version 5.32.0 Perl forbids the use of \K in lookaround assertions. From release 10.38 PCRE2

also forbids this by default. However, the PCRE2_EXTRA_ALLOW_LOOKAROUND_BSK option

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

can be used when calling pcre2_compile() to re-enable the previous behaviour. When this option is set,

\K is acted upon when it occurs inside positive assertions, but is ignored in negative assertions. Note

that when a pattern such as (?=ab\K) matches, the reported start of the match can be greater than the

end of the match. Using \K in a lookbehind assertion at the start of a pattern can also lead to odd

effects. For example, consider this pattern:

(?<=\Kfoo)bar

If the subject is "foobar", a call to pcre2_match() with a starting offset of 3 succeeds and reports the

matching string as "foobar", that is, the start of the reported match is earlier than where the match

started.

Simple assertions
The final use of backslash is for certain simple assertions. An assertion specifies a condition that has to

be met at a particular point in a match, without consuming any characters from the subject string. The

use of groups for more complicated assertions is described below. The backslashed assertions are:

\b matches at a word boundary

\B matches when not at a word boundary

\A matches at the start of the subject

\Z matches at the end of the subject

also matches before a newline at the end of the subject

\z matches only at the end of the subject

\G matches at the first matching position in the subject

Inside a character class, \b has a different meaning; it matches the backspace character. If any other of

these assertions appears in a character class, an "invalid escape sequence" error is generated.

A word boundary is a position in the subject string where the current character and the previous

character do not both match \w or \W (i.e. one matches \w and the other matches \W), or the start or

end of the string if the first or last character matches \w, respectively. When PCRE2 is built with

Unicode support, the meanings of \w and \W can be changed by setting the PCRE2_UCP option. When

this is done, it also affects \b and \B. Neither PCRE2 nor Perl has a separate "start of word" or "end of

word" metasequence. However, whatever follows \b normally determines which it is. For example, the

fragment \ba matches "a" at the start of a word.

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described in the next

section) in that they only ever match at the very start and end of the subject string, whatever options are

set. Thus, they are independent of multiline mode. These three assertions are not affected by the

PCRE2_NOTBOL or PCRE2_NOTEOL options, which affect only the behaviour of the circumflex

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

and dollar metacharacters. However, if the startoffset argument of pcre2_match() is non-zero,

indicating that matching is to start at a point other than the beginning of the subject, \A can never

match. The difference between \Z and \z is that \Z matches before a newline at the end of the string as

well as at the very end, whereas \z matches only at the end.

The \G assertion is true only when the current matching position is at the start point of the matching

process, as specified by the startoffset argument of pcre2_match(). It differs from \A when the value of

startoffset is non-zero. By calling pcre2_match() multiple times with appropriate arguments, you can

mimic Perl’s /g option, and it is in this kind of implementation where \G can be useful.

Note, however, that PCRE2’s implementation of \G, being true at the starting character of the matching

process, is subtly different from Perl’s, which defines it as true at the end of the previous match. In

Perl, these can be different when the previously matched string was empty. Because PCRE2 does just

one match at a time, it cannot reproduce this behaviour.

If all the alternatives of a pattern begin with \G, the expression is anchored to the starting match

position, and the "anchored" flag is set in the compiled regular expression.

CIRCUMFLEX AND DOLLAR
The circumflex and dollar metacharacters are zero-width assertions. That is, they test for a particular

condition being true without consuming any characters from the subject string. These two

metacharacters are concerned with matching the starts and ends of lines. If the newline convention is

set so that only the two-character sequence CRLF is recognized as a newline, isolated CR and LF

characters are treated as ordinary data characters, and are not recognized as newlines.

Outside a character class, in the default matching mode, the circumflex character is an assertion that is

true only if the current matching point is at the start of the subject string. If the startoffset argument of

pcre2_match() is non-zero, or if PCRE2_NOTBOL is set, circumflex can never match if the

PCRE2_MULTILINE option is unset. Inside a character class, circumflex has an entirely different

meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are involved, but it

should be the first thing in each alternative in which it appears if the pattern is ever to match that

branch. If all possible alternatives start with a circumflex, that is, if the pattern is constrained to match

only at the start of the subject, it is said to be an "anchored" pattern. (There are also other constructs

that can cause a pattern to be anchored.)

The dollar character is an assertion that is true only if the current matching point is at the end of the

subject string, or immediately before a newline at the end of the string (by default), unless

PCRE2_NOTEOL is set. Note, however, that it does not actually match the newline. Dollar need not be

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

the last character of the pattern if a number of alternatives are involved, but it should be the last item in

any branch in which it appears. Dollar has no special meaning in a character class.

The meaning of dollar can be changed so that it matches only at the very end of the string, by setting

the PCRE2_DOLLAR_ENDONLY option at compile time. This does not affect the \Z assertion.

The meanings of the circumflex and dollar metacharacters are changed if the PCRE2_MULTILINE

option is set. When this is the case, a dollar character matches before any newlines in the string, as well

as at the very end, and a circumflex matches immediately after internal newlines as well as at the start

of the subject string. It does not match after a newline that ends the string, for compatibility with Perl.

However, this can be changed by setting the PCRE2_ALT_CIRCUMFLEX option.

For example, the pattern /^abc$/ matches the subject string "def\nabc" (where \n represents a newline)

in multiline mode, but not otherwise. Consequently, patterns that are anchored in single line mode

because all branches start with ^ are not anchored in multiline mode, and a match for circumflex is

possible when the startoffset argument of pcre2_match() is non-zero. The

PCRE2_DOLLAR_ENDONLY option is ignored if PCRE2_MULTILINE is set.

When the newline convention (see "Newline conventions" below) recognizes the two-character

sequence CRLF as a newline, this is preferred, even if the single characters CR and LF are also

recognized as newlines. For example, if the newline convention is "any", a multiline mode circumflex

matches before "xyz" in the string "abc\r\nxyz" rather than after CR, even though CR on its own is a

valid newline. (It also matches at the very start of the string, of course.)

Note that the sequences \A, \Z, and \z can be used to match the start and end of the subject in both

modes, and if all branches of a pattern start with \A it is always anchored, whether or not

PCRE2_MULTILINE is set.

FULL STOP (PERIOD, DOT) AND \N
Outside a character class, a dot in the pattern matches any one character in the subject string except (by

default) a character that signifies the end of a line. One or more characters may be specified as line

terminators (see "Newline conventions" above).

Dot never matches a single line-ending character. When the two-character sequence CRLF is the only

line ending, dot does not match CR if it is immediately followed by LF, but otherwise it matches all

characters (including isolated CRs and LFs). When ANYCRLF is selected for line endings, no

occurences of CR of LF match dot. When all Unicode line endings are being recognized, dot does not

match CR or LF or any of the other line ending characters.

The behaviour of dot with regard to newlines can be changed. If the PCRE2_DOTALL option is set, a

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

dot matches any one character, without exception. If the two-character sequence CRLF is present in

the subject string, it takes two dots to match it.

The handling of dot is entirely independent of the handling of circumflex and dollar, the only

relationship being that they both involve newlines. Dot has no special meaning in a character class.

The escape sequence \N when not followed by an opening brace behaves like a dot, except that it is not

affected by the PCRE2_DOTALL option. In other words, it matches any character except one that

signifies the end of a line.

When \N is followed by an opening brace it has a different meaning. See the section entitled "Non-

printing characters" above for details. Perl also uses \N{name} to specify characters by Unicode name;

PCRE2 does not support this.

MATCHING A SINGLE CODE UNIT
Outside a character class, the escape sequence \C matches any one code unit, whether or not a UTF

mode is set. In the 8-bit library, one code unit is one byte; in the 16-bit library it is a 16-bit unit; in the

32-bit library it is a 32-bit unit. Unlike a dot, \C always matches line-ending characters. The feature is

provided in Perl in order to match individual bytes in UTF-8 mode, but it is unclear how it can usefully

be used.

Because \C breaks up characters into individual code units, matching one unit with \C in UTF-8 or

UTF-16 mode means that the rest of the string may start with a malformed UTF character. This has

undefined results, because PCRE2 assumes that it is matching character by character in a valid UTF

string (by default it checks the subject string’s validity at the start of processing unless the

PCRE2_NO_UTF_CHECK or PCRE2_MATCH_INVALID_UTF option is used).

An application can lock out the use of \C by setting the PCRE2_NEVER_BACKSLASH_C option

when compiling a pattern. It is also possible to build PCRE2 with the use of \C permanently disabled.

PCRE2 does not allow \C to appear in lookbehind assertions (described below) in UTF-8 or UTF-16

modes, because this would make it impossible to calculate the length of the lookbehind. Neither the

alternative matching function pcre2_dfa_match() nor the JIT optimizer support \C in these UTF modes.

The former gives a match-time error; the latter fails to optimize and so the match is always run using

the interpreter.

In the 32-bit library, however, \C is always supported (when not explicitly locked out) because it

always matches a single code unit, whether or not UTF-32 is specified.

In general, the \C escape sequence is best avoided. However, one way of using it that avoids the

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

problem of malformed UTF-8 or UTF-16 characters is to use a lookahead to check the length of the

next character, as in this pattern, which could be used with a UTF-8 string (ignore white space and line

breaks):

(?| (?=[\x00-\x7f])(\C) |

(?=[\x80-\x{7ff}])(\C)(\C) |

(?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |

(?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))

In this example, a group that starts with (?| resets the capturing parentheses numbers in each alternative

(see "Duplicate Group Numbers" below). The assertions at the start of each branch check the next

UTF-8 character for values whose encoding uses 1, 2, 3, or 4 bytes, respectively. The character’s

individual bytes are then captured by the appropriate number of \C groups.

SQUARE BRACKETS AND CHARACTER CLASSES
An opening square bracket introduces a character class, terminated by a closing square bracket. A

closing square bracket on its own is not special by default. If a closing square bracket is required as a

member of the class, it should be the first data character in the class (after an initial circumflex, if

present) or escaped with a backslash. This means that, by default, an empty class cannot be defined.

However, if the PCRE2_ALLOW_EMPTY_CLASS option is set, a closing square bracket at the start

does end the (empty) class.

A character class matches a single character in the subject. A matched character must be in the set of

characters defined by the class, unless the first character in the class definition is a circumflex, in which

case the subject character must not be in the set defined by the class. If a circumflex is actually required

as a member of the class, ensure it is not the first character, or escape it with a backslash.

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou] matches any

character that is not a lower case vowel. Note that a circumflex is just a convenient notation for

specifying the characters that are in the class by enumerating those that are not. A class that starts with

a circumflex is not an assertion; it still consumes a character from the subject string, and therefore it

fails if the current pointer is at the end of the string.

Characters in a class may be specified by their code points using \o, \x, or \N{U+hh..} in the usual way.

When caseless matching is set, any letters in a class represent both their upper case and lower case

versions, so for example, a caseless [aeiou] matches "A" as well as "a", and a caseless [^aeiou] does not

match "A", whereas a caseful version would. Note that there are two ASCII characters, K and S, that,

in addition to their lower case ASCII equivalents, are case-equivalent with Unicode U+212A (Kelvin

sign) and U+017F (long S) respectively when either PCRE2_UTF or PCRE2_UCP is set.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Characters that might indicate line breaks are never treated in any special way when matching character

classes, whatever line-ending sequence is in use, and whatever setting of the PCRE2_DOTALL and

PCRE2_MULTILINE options is used. A class such as [^a] always matches one of these characters.

The generic character type escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v, \V, \w, and \W may appear

in a character class, and add the characters that they match to the class. For example, [\dABCDEF]

matches any hexadecimal digit. In UTF modes, the PCRE2_UCP option affects the meanings of \d, \s,

\w and their upper case partners, just as it does when they appear outside a character class, as described

in the section entitled "Generic character types" above. The escape sequence \b has a different meaning

inside a character class; it matches the backspace character. The sequences \B, \R, and \X are not

special inside a character class. Like any other unrecognized escape sequences, they cause an error. The

same is true for \N when not followed by an opening brace.

The minus (hyphen) character can be used to specify a range of characters in a character class. For

example, [d-m] matches any letter between d and m, inclusive. If a minus character is required in a

class, it must be escaped with a backslash or appear in a position where it cannot be interpreted as

indicating a range, typically as the first or last character in the class, or immediately after a range. For

example, [b-d-z] matches letters in the range b to d, a hyphen character, or z.

Perl treats a hyphen as a literal if it appears before or after a POSIX class (see below) or before or after

a character type escape such as as \d or \H. However, unless the hyphen is the last character in the

class, Perl outputs a warning in its warning mode, as this is most likely a user error. As PCRE2 has no

facility for warning, an error is given in these cases.

It is not possible to have the literal character "]" as the end character of a range. A pattern such as

[W-]46] is interpreted as a class of two characters ("W" and "-") followed by a literal string "46]", so it

would match "W46]" or "-46]". However, if the "]" is escaped with a backslash it is interpreted as the

end of range, so [W-\]46] is interpreted as a class containing a range followed by two other characters.

The octal or hexadecimal representation of "]" can also be used to end a range.

Ranges normally include all code points between the start and end characters, inclusive. They can also

be used for code points specified numerically, for example [\000-\037]. Ranges can include any

characters that are valid for the current mode. In any UTF mode, the so-called "surrogate" characters

(those whose code points lie between 0xd800 and 0xdfff inclusive) may not be specified explicitly by

default (the PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES option disables this check).

However, ranges such as [\x{d7ff}-\x{e000}], which include the surrogates, are always permitted.

There is a special case in EBCDIC environments for ranges whose end points are both specified as

literal letters in the same case. For compatibility with Perl, EBCDIC code points within the range that

are not letters are omitted. For example, [h-k] matches only four characters, even though the codes for

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

h and k are 0x88 and 0x92, a range of 11 code points. However, if the range is specified numerically,

for example, [\x88-\x92] or [h-\x92], all code points are included.

If a range that includes letters is used when caseless matching is set, it matches the letters in either case.

For example, [W-c] is equivalent to [][\\^_‘wxyzabc], matched caselessly, and in a non-UTF mode, if

character tables for a French locale are in use, [\xc8-\xcb] matches accented E characters in both cases.

A circumflex can conveniently be used with the upper case character types to specify a more restricted

set of characters than the matching lower case type. For example, the class [^\W_] matches any letter

or digit, but not underscore, whereas [\w] includes underscore. A positive character class should be

read as "something OR something OR ..." and a negative class as "NOT something AND NOT

something AND NOT ...".

The only metacharacters that are recognized in character classes are backslash, hyphen (only where it

can be interpreted as specifying a range), circumflex (only at the start), opening square bracket (only

when it can be interpreted as introducing a POSIX class name, or for a special compatibility feature -

see the next two sections), and the terminating closing square bracket. However, escaping other non-

alphanumeric characters does no harm.

POSIX CHARACTER CLASSES
Perl supports the POSIX notation for character classes. This uses names enclosed by [: and :] within the

enclosing square brackets. PCRE2 also supports this notation. For example,

[01[:alpha:]%]

matches "0", "1", any alphabetic character, or "%". The supported class names are:

alnum letters and digits

alpha letters

ascii character codes 0 - 127

blank space or tab only

cntrl control characters

digit decimal digits (same as \d)

graph printing characters, excluding space

lower lower case letters

print printing characters, including space

punct printing characters, excluding letters and digits and space

space white space (the same as \s from PCRE2 8.34)

upper upper case letters

word "word" characters (same as \w)

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

xdigit hexadecimal digits

The default "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32). If

locale-specific matching is taking place, the list of space characters may be different; there may be

fewer or more of them. "Space" and \s match the same set of characters.

The name "word" is a Perl extension, and "blank" is a GNU extension from Perl 5.8. Another Perl

extension is negation, which is indicated by a ^ character after the colon. For example,

[12[:^digit:]]

matches "1", "2", or any non-digit. PCRE2 (and Perl) also recognize the POSIX syntax [.ch.] and

[=ch=] where "ch" is a "collating element", but these are not supported, and an error is given if they are

encountered.

By default, characters with values greater than 127 do not match any of the POSIX character classes,

although this may be different for characters in the range 128-255 when locale-specific matching is

happening. However, if the PCRE2_UCP option is passed to pcre2_compile(), some of the classes are

changed so that Unicode character properties are used. This is achieved by replacing certain POSIX

classes with other sequences, as follows:

[:alnum:] becomes \p{Xan}

[:alpha:] becomes \p{L}

[:blank:] becomes \h

[:cntrl:] becomes \p{Cc}

[:digit:] becomes \p{Nd}

[:lower:] becomes \p{Ll}

[:space:] becomes \p{Xps}

[:upper:] becomes \p{Lu}

[:word:] becomes \p{Xwd}

Negated versions, such as [:^alpha:] use \P instead of \p. Three other POSIX classes are handled

specially in UCP mode:

[:graph:] This matches characters that have glyphs that mark the page when printed. In Unicode

property terms, it matches all characters with the L, M, N, P, S, or Cf properties, except

for:

U+061C Arabic Letter Mark

U+180E Mongolian Vowel Separator

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

U+2066 - U+2069 Various "isolate"s

[:print:] This matches the same characters as [:graph:] plus space characters that are not controls,

that is, characters with the Zs property.

[:punct:] This matches all characters that have the Unicode P (punctuation) property, plus those

characters with code points less than 256 that have the S (Symbol) property.

The other POSIX classes are unchanged, and match only characters with code points less than 256.

COMPATIBILITY FEATURE FOR WORD BOUNDARIES
In the POSIX.2 compliant library that was included in 4.4BSD Unix, the ugly syntax [[:<:]] and [[:>:]]

is used for matching "start of word" and "end of word". PCRE2 treats these items as follows:

[[:<:]] is converted to \b(?=\w)

[[:>:]] is converted to \b(?<=\w)

Only these exact character sequences are recognized. A sequence such as [a[:<:]b] provokes error for

an unrecognized POSIX class name. This support is not compatible with Perl. It is provided to help

migrations from other environments, and is best not used in any new patterns. Note that \b matches at

the start and the end of a word (see "Simple assertions" above), and in a Perl-style pattern the preceding

or following character normally shows which is wanted, without the need for the assertions that are

used above in order to give exactly the POSIX behaviour.

VERTICAL BAR
Vertical bar characters are used to separate alternative patterns. For example, the pattern

gilbert|sullivan

matches either "gilbert" or "sullivan". Any number of alternatives may appear, and an empty alternative

is permitted (matching the empty string). The matching process tries each alternative in turn, from left

to right, and the first one that succeeds is used. If the alternatives are within a group (defined below),

"succeeds" means matching the rest of the main pattern as well as the alternative in the group.

INTERNAL OPTION SETTING
The settings of the PCRE2_CASELESS, PCRE2_MULTILINE, PCRE2_DOTALL,

PCRE2_EXTENDED, PCRE2_EXTENDED_MORE, and PCRE2_NO_AUTO_CAPTURE options

can be changed from within the pattern by a sequence of letters enclosed between "(?" and ")". These

options are Perl-compatible, and are described in detail in the pcre2api documentation. The option

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

letters are:

i for PCRE2_CASELESS

m for PCRE2_MULTILINE

n for PCRE2_NO_AUTO_CAPTURE

s for PCRE2_DOTALL

x for PCRE2_EXTENDED

xx for PCRE2_EXTENDED_MORE

For example, (?im) sets caseless, multiline matching. It is also possible to unset these options by

preceding the relevant letters with a hyphen, for example (?-im). The two "extended" options are not

independent; unsetting either one cancels the effects of both of them.

A combined setting and unsetting such as (?im-sx), which sets PCRE2_CASELESS and

PCRE2_MULTILINE while unsetting PCRE2_DOTALL and PCRE2_EXTENDED, is also permitted.

Only one hyphen may appear in the options string. If a letter appears both before and after the hyphen,

the option is unset. An empty options setting "(?)" is allowed. Needless to say, it has no effect.

If the first character following (? is a circumflex, it causes all of the above options to be unset. Thus,

(?^) is equivalent to (?-imnsx). Letters may follow the circumflex to cause some options to be re-

instated, but a hyphen may not appear.

The PCRE2-specific options PCRE2_DUPNAMES and PCRE2_UNGREEDY can be changed in the

same way as the Perl-compatible options by using the characters J and U respectively. However, these

are not unset by (?^).

When one of these option changes occurs at top level (that is, not inside group parentheses), the change

applies to the remainder of the pattern that follows. An option change within a group (see below for a

description of groups) affects only that part of the group that follows it, so

(a(?i)b)c

matches abc and aBc and no other strings (assuming PCRE2_CASELESS is not used). By this means,

options can be made to have different settings in different parts of the pattern. Any changes made in

one alternative do carry on into subsequent branches within the same group. For example,

(a(?i)b|c)

matches "ab", "aB", "c", and "C", even though when matching "C" the first branch is abandoned before

the option setting. This is because the effects of option settings happen at compile time. There would be

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

some very weird behaviour otherwise.

As a convenient shorthand, if any option settings are required at the start of a non-capturing group (see

the next section), the option letters may appear between the "?" and the ":". Thus the two patterns

(?i:saturday|sunday)

(?:(?i)saturday|sunday)

match exactly the same set of strings.

Note: There are other PCRE2-specific options, applying to the whole pattern, which can be set by the

application when the compiling function is called. In addition, the pattern can contain special leading

sequences such as (*CRLF) to override what the application has set or what has been defaulted.

Details are given in the section entitled "Newline sequences" above. There are also the (*UTF) and

(*UCP) leading sequences that can be used to set UTF and Unicode property modes; they are

equivalent to setting the PCRE2_UTF and PCRE2_UCP options, respectively. However, the

application can set the PCRE2_NEVER_UTF and PCRE2_NEVER_UCP options, which lock out the

use of the (*UTF) and (*UCP) sequences.

GROUPS
Groups are delimited by parentheses (round brackets), which can be nested. Turning part of a pattern

into a group does two things:

1. It localizes a set of alternatives. For example, the pattern

cat(aract|erpillar|)

matches "cataract", "caterpillar", or "cat". Without the parentheses, it would match "cataract", "erpillar"

or an empty string.

2. It creates a "capture group". This means that, when the whole pattern matches, the portion of the

subject string that matched the group is passed back to the caller, separately from the portion that

matched the whole pattern. (This applies only to the traditional matching function; the DFA matching

function does not support capturing.)

Opening parentheses are counted from left to right (starting from 1) to obtain numbers for capture

groups. For example, if the string "the red king" is matched against the pattern

the ((red|white) (king|queen))

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

the captured substrings are "red king", "red", and "king", and are numbered 1, 2, and 3, respectively.

The fact that plain parentheses fulfil two functions is not always helpful. There are often times when

grouping is required without capturing. If an opening parenthesis is followed by a question mark and a

colon, the group does not do any capturing, and is not counted when computing the number of any

subsequent capture groups. For example, if the string "the white queen" is matched against the pattern

the ((?:red|white) (king|queen))

the captured substrings are "white queen" and "queen", and are numbered 1 and 2. The maximum

number of capture groups is 65535.

As a convenient shorthand, if any option settings are required at the start of a non-capturing group, the

option letters may appear between the "?" and the ":". Thus the two patterns

(?i:saturday|sunday)

(?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from left to right, and

options are not reset until the end of the group is reached, an option setting in one branch does affect

subsequent branches, so the above patterns match "SUNDAY" as well as "Saturday".

DUPLICATE GROUP NUMBERS
Perl 5.10 introduced a feature whereby each alternative in a group uses the same numbers for its

capturing parentheses. Such a group starts with (?| and is itself a non-capturing group. For example,

consider this pattern:

(?|(Sat)ur|(Sun))day

Because the two alternatives are inside a (?| group, both sets of capturing parentheses are numbered

one. Thus, when the pattern matches, you can look at captured substring number one, whichever

alternative matched. This construct is useful when you want to capture part, but not all, of one of a

number of alternatives. Inside a (?| group, parentheses are numbered as usual, but the number is reset at

the start of each branch. The numbers of any capturing parentheses that follow the whole group start

after the highest number used in any branch. The following example is taken from the Perl

documentation. The numbers underneath show in which buffer the captured content will be stored.

before ---------------branch-reset----------- after

/ (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x

1 2 2 3 2 3 4

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

A backreference to a capture group uses the most recent value that is set for the group. The following

pattern matches "abcabc" or "defdef":

/(?|(abc)|(def))\1/

In contrast, a subroutine call to a capture group always refers to the first one in the pattern with the

given number. The following pattern matches "abcabc" or "defabc":

/(?|(abc)|(def))(?1)/

A relative reference such as (?-1) is no different: it is just a convenient way of computing an absolute

group number.

If a condition test for a group’s having matched refers to a non-unique number, the test is true if any

group with that number has matched.

An alternative approach to using this "branch reset" feature is to use duplicate named groups, as

described in the next section.

NAMED CAPTURE GROUPS
Identifying capture groups by number is simple, but it can be very hard to keep track of the numbers in

complicated patterns. Furthermore, if an expression is modified, the numbers may change. To help with

this difficulty, PCRE2 supports the naming of capture groups. This feature was not added to Perl until

release 5.10. Python had the feature earlier, and PCRE1 introduced it at release 4.0, using the Python

syntax. PCRE2 supports both the Perl and the Python syntax.

In PCRE2, a capture group can be named in one of three ways: (?<name>...) or (?’name’...) as in Perl,

or (?P<name>...) as in Python. Names may be up to 32 code units long. When PCRE2_UTF is not set,

they may contain only ASCII alphanumeric characters and underscores, but must start with a non-digit.

When PCRE2_UTF is set, the syntax of group names is extended to allow any Unicode letter or

Unicode decimal digit. In other words, group names must match one of these patterns:

^[_A-Za-z][_A-Za-z0-9]*\z when PCRE2_UTF is not set

^[_\p{L}][_\p{L}\p{Nd}]*\z when PCRE2_UTF is set

References to capture groups from other parts of the pattern, such as backreferences, recursion, and

conditions, can all be made by name as well as by number.

Named capture groups are allocated numbers as well as names, exactly as if the names were not

present. In both PCRE2 and Perl, capture groups are primarily identified by numbers; any names are

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

just aliases for these numbers. The PCRE2 API provides function calls for extracting the complete

name-to-number translation table from a compiled pattern, as well as convenience functions for

extracting captured substrings by name.

Warning: When more than one capture group has the same number, as described in the previous

section, a name given to one of them applies to all of them. Perl allows identically numbered groups to

have different names. Consider this pattern, where there are two capture groups, both numbered 1:

(?|(?<AA>aa)|(?<BB>bb))

Perl allows this, with both names AA and BB as aliases of group 1. Thus, after a successful match, both

names yield the same value (either "aa" or "bb").

In an attempt to reduce confusion, PCRE2 does not allow the same group number to be associated with

more than one name. The example above provokes a compile-time error. However, there is still scope

for confusion. Consider this pattern:

(?|(?<AA>aa)|(bb))

Although the second group number 1 is not explicitly named, the name AA is still an alias for any

group 1. Whether the pattern matches "aa" or "bb", a reference by name to group AA yields the

matched string.

By default, a name must be unique within a pattern, except that duplicate names are permitted for

groups with the same number, for example:

(?|(?<AA>aa)|(?<AA>bb))

The duplicate name constraint can be disabled by setting the PCRE2_DUPNAMES option at compile

time, or by the use of (?J) within the pattern, as described in the section entitled "Internal Option

Setting" above.

Duplicate names can be useful for patterns where only one instance of the named capture group can

match. Suppose you want to match the name of a weekday, either as a 3-letter abbreviation or as the

full name, and in both cases you want to extract the abbreviation. This pattern (ignoring the line breaks)

does the job:

(?J)

(?<DN>Mon|Fri|Sun)(?:day)?|

(?<DN>Tue)(?:sday)?|

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

(?<DN>Wed)(?:nesday)?|

(?<DN>Thu)(?:rsday)?|

(?<DN>Sat)(?:urday)?

There are five capture groups, but only one is ever set after a match. The convenience functions for

extracting the data by name returns the substring for the first (and in this example, the only) group of

that name that matched. This saves searching to find which numbered group it was. (An alternative

way of solving this problem is to use a "branch reset" group, as described in the previous section.)

If you make a backreference to a non-unique named group from elsewhere in the pattern, the groups to

which the name refers are checked in the order in which they appear in the overall pattern. The first one

that is set is used for the reference. For example, this pattern matches both "foofoo" and "barbar" but

not "foobar" or "barfoo":

(?J)(?:(?<n>foo)|(?<n>bar))\k<n>

If you make a subroutine call to a non-unique named group, the one that corresponds to the first

occurrence of the name is used. In the absence of duplicate numbers this is the one with the lowest

number.

If you use a named reference in a condition test (see the section about conditions below), either to

check whether a capture group has matched, or to check for recursion, all groups with the same name

are tested. If the condition is true for any one of them, the overall condition is true. This is the same

behaviour as testing by number. For further details of the interfaces for handling named capture groups,

see the pcre2api documentation.

REPETITION
Repetition is specified by quantifiers, which can follow any of the following items:

a literal data character

the dot metacharacter

the \C escape sequence

the \R escape sequence

the \X escape sequence

an escape such as \d or \pL that matches a single character

a character class

a backreference

a parenthesized group (including lookaround assertions)

a subroutine call (recursive or otherwise)

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

The general repetition quantifier specifies a minimum and maximum number of permitted matches, by

giving the two numbers in curly brackets (braces), separated by a comma. The numbers must be less

than 65536, and the first must be less than or equal to the second. For example,

z{2,4}

matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special character. If the second

number is omitted, but the comma is present, there is no upper limit; if the second number and the

comma are both omitted, the quantifier specifies an exact number of required matches. Thus

[aeiou]{3,}

matches at least 3 successive vowels, but may match many more, whereas

\d{8}

matches exactly 8 digits. An opening curly bracket that appears in a position where a quantifier is not

allowed, or one that does not match the syntax of a quantifier, is taken as a literal character. For

example, {,6} is not a quantifier, but a literal string of four characters.

In UTF modes, quantifiers apply to characters rather than to individual code units. Thus, for example,

\x{100}{2} matches two characters, each of which is represented by a two-byte sequence in a UTF-8

string. Similarly, \X{3} matches three Unicode extended grapheme clusters, each of which may be

several code units long (and they may be of different lengths).

The quantifier {0} is permitted, causing the expression to behave as if the previous item and the

quantifier were not present. This may be useful for capture groups that are referenced as subroutines

from elsewhere in the pattern (but see also the section entitled "Defining capture groups for use by

reference only" below). Except for parenthesized groups, items that have a {0} quantifier are omitted

from the compiled pattern.

For convenience, the three most common quantifiers have single-character abbreviations:

* is equivalent to {0,}

+ is equivalent to {1,}

? is equivalent to {0,1}

It is possible to construct infinite loops by following a group that can match no characters with a

quantifier that has no upper limit, for example:

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

(a?)*

Earlier versions of Perl and PCRE1 used to give an error at compile time for such patterns. However,

because there are cases where this can be useful, such patterns are now accepted, but whenever an

iteration of such a group matches no characters, matching moves on to the next item in the pattern

instead of repeatedly matching an empty string. This does not prevent backtracking into any of the

iterations if a subsequent item fails to match.

By default, quantifiers are "greedy", that is, they match as much as possible (up to the maximum

number of permitted times), without causing the rest of the pattern to fail. The classic example of

where this gives problems is in trying to match comments in C programs. These appear between /* and

*/ and within the comment, individual * and / characters may appear. An attempt to match C comments

by applying the pattern

/*.**/

to the string

/* first comment */ not comment /* second comment */

fails, because it matches the entire string owing to the greediness of the .* item. However, if a

quantifier is followed by a question mark, it ceases to be greedy, and instead matches the minimum

number of times possible, so the pattern

/*.*?*/

does the right thing with the C comments. The meaning of the various quantifiers is not otherwise

changed, just the preferred number of matches. Do not confuse this use of question mark with its use

as a quantifier in its own right. Because it has two uses, it can sometimes appear doubled, as in

\d??\d

which matches one digit by preference, but can match two if that is the only way the rest of the pattern

matches.

If the PCRE2_UNGREEDY option is set (an option that is not available in Perl), the quantifiers are not

greedy by default, but individual ones can be made greedy by following them with a question mark. In

other words, it inverts the default behaviour.

When a parenthesized group is quantified with a minimum repeat count that is greater than 1 or with a

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

limited maximum, more memory is required for the compiled pattern, in proportion to the size of the

minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE2_DOTALL option (equivalent to Perl’s /s) is set, thus

allowing the dot to match newlines, the pattern is implicitly anchored, because whatever follows will

be tried against every character position in the subject string, so there is no point in retrying the overall

match at any position after the first. PCRE2 normally treats such a pattern as though it were preceded

by \A.

In cases where it is known that the subject string contains no newlines, it is worth setting

PCRE2_DOTALL in order to obtain this optimization, or alternatively, using ^ to indicate anchoring

explicitly.

However, there are some cases where the optimization cannot be used. When .* is inside capturing

parentheses that are the subject of a backreference elsewhere in the pattern, a match at the start may fail

where a later one succeeds. Consider, for example:

(.*)abc\1

If the subject is "xyz123abc123" the match point is the fourth character. For this reason, such a pattern

is not implicitly anchored.

Another case where implicit anchoring is not applied is when the leading .* is inside an atomic group.

Once again, a match at the start may fail where a later one succeeds. Consider this pattern:

(?>.*?a)b

It matches "ab" in the subject "aab". The use of the backtracking control verbs (*PRUNE) and (*SKIP)

also disable this optimization, and there is an option, PCRE2_NO_DOTSTAR_ANCHOR, to do so

explicitly.

When a capture group is repeated, the value captured is the substring that matched the final iteration.

For example, after

(tweedle[dume]{3}\s*)+

has matched "tweedledum tweedledee" the value of the captured substring is "tweedledee". However, if

there are nested capture groups, the corresponding captured values may have been set in previous

iterations. For example, after

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

(a|(b))+

matches "aba" the value of the second captured substring is "b".

ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS
With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy") repetition, failure of what

follows normally causes the repeated item to be re-evaluated to see if a different number of repeats

allows the rest of the pattern to match. Sometimes it is useful to prevent this, either to change the nature

of the match, or to cause it fail earlier than it otherwise might, when the author of the pattern knows

there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject line

123456bar

After matching all 6 digits and then failing to match "foo", the normal action of the matcher is to try

again with only 5 digits matching the \d+ item, and then with 4, and so on, before ultimately failing.

"Atomic grouping" (a term taken from Jeffrey Friedl’s book) provides the means for specifying that

once a group has matched, it is not to be re-evaluated in this way.

If we use atomic grouping for the previous example, the matcher gives up immediately on failing to

match "foo" the first time. The notation is a kind of special parenthesis, starting with (?> as in this

example:

(?>\d+)foo

Perl 5.28 introduced an experimental alphabetic form starting with (* which may be easier to

remember:

(*atomic:\d+)foo

This kind of parenthesized group "locks up" the part of the pattern it contains once it has matched, and

a failure further into the pattern is prevented from backtracking into it. Backtracking past it to previous

items, however, works as normal.

An alternative description is that a group of this type matches exactly the string of characters that an

identical standalone pattern would match, if anchored at the current point in the subject string.

Atomic groups are not capture groups. Simple cases such as the above example can be thought of as a

maximizing repeat that must swallow everything it can. So, while both \d+ and \d+? are prepared to

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

adjust the number of digits they match in order to make the rest of the pattern match, (?>\d+) can only

match an entire sequence of digits.

Atomic groups in general can of course contain arbitrarily complicated expressions, and can be nested.

However, when the contents of an atomic group is just a single repeated item, as in the example above,

a simpler notation, called a "possessive quantifier" can be used. This consists of an additional +

character following a quantifier. Using this notation, the previous example can be rewritten as

\d++foo

Note that a possessive quantifier can be used with an entire group, for example:

(abc|xyz){2,3}+

Possessive quantifiers are always greedy; the setting of the PCRE2_UNGREEDY option is ignored.

They are a convenient notation for the simpler forms of atomic group. However, there is no difference

in the meaning of a possessive quantifier and the equivalent atomic group, though there may be a

performance difference; possessive quantifiers should be slightly faster.

The possessive quantifier syntax is an extension to the Perl 5.8 syntax. Jeffrey Friedl originated the

idea (and the name) in the first edition of his book. Mike McCloskey liked it, so implemented it when

he built Sun’s Java package, and PCRE1 copied it from there. It found its way into Perl at release 5.10.

PCRE2 has an optimization that automatically "possessifies" certain simple pattern constructs. For

example, the sequence A+B is treated as A++B because there is no point in backtracking into a

sequence of A’s when B must follow. This feature can be disabled by the

PCRE2_NO_AUTOPOSSESS option, or starting the pattern with (*NO_AUTO_POSSESS).

When a pattern contains an unlimited repeat inside a group that can itself be repeated an unlimited

number of times, the use of an atomic group is the only way to avoid some failing matches taking a

very long time indeed. The pattern

(\D+|<\d+>)*[!?]

matches an unlimited number of substrings that either consist of non-digits, or digits enclosed in <>,

followed by either ! or ?. When it matches, it runs quickly. However, if it is applied to

aa

it takes a long time before reporting failure. This is because the string can be divided between the

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

internal \D+ repeat and the external * repeat in a large number of ways, and all have to be tried. (The

example uses [!?] rather than a single character at the end, because both PCRE2 and Perl have an

optimization that allows for fast failure when a single character is used. They remember the last single

character that is required for a match, and fail early if it is not present in the string.) If the pattern is

changed so that it uses an atomic group, like this:

((?>\D+)|<\d+>)*[!?]

sequences of non-digits cannot be broken, and failure happens quickly.

BACKREFERENCES
Outside a character class, a backslash followed by a digit greater than 0 (and possibly further digits) is

a backreference to a capture group earlier (that is, to its left) in the pattern, provided there have been

that many previous capture groups.

However, if the decimal number following the backslash is less than 8, it is always taken as a

backreference, and causes an error only if there are not that many capture groups in the entire pattern.

In other words, the group that is referenced need not be to the left of the reference for numbers less

than 8. A "forward backreference" of this type can make sense when a repetition is involved and the

group to the right has participated in an earlier iteration.

It is not possible to have a numerical "forward backreference" to a group whose number is 8 or more

using this syntax because a sequence such as \50 is interpreted as a character defined in octal. See the

subsection entitled "Non-printing characters" above for further details of the handling of digits

following a backslash. Other forms of backreferencing do not suffer from this restriction. In particular,

there is no problem when named capture groups are used (see below).

Another way of avoiding the ambiguity inherent in the use of digits following a backslash is to use the

\g escape sequence. This escape must be followed by a signed or unsigned number, optionally enclosed

in braces. These examples are all identical:

(ring), \1

(ring), \g1

(ring), \g{1}

An unsigned number specifies an absolute reference without the ambiguity that is present in the older

syntax. It is also useful when literal digits follow the reference. A signed number is a relative reference.

Consider this example:

(abc(def)ghi)\g{-1}

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

The sequence \g{-1} is a reference to the most recently started capture group before \g, that is, is it

equivalent to \2 in this example. Similarly, \g{-2} would be equivalent to \1. The use of relative

references can be helpful in long patterns, and also in patterns that are created by joining together

fragments that contain references within themselves.

The sequence \g{+1} is a reference to the next capture group. This kind of forward reference can be

useful in patterns that repeat. Perl does not support the use of + in this way.

A backreference matches whatever actually most recently matched the capture group in the current

subject string, rather than anything at all that matches the group (see "Groups as subroutines" below for

a way of doing that). So the pattern

(sens|respons)e and \1ibility

matches "sense and sensibility" and "response and responsibility", but not "sense and responsibility". If

caseful matching is in force at the time of the backreference, the case of letters is relevant. For

example,

((?i)rah)\s+\1

matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original capture group is

matched caselessly.

There are several different ways of writing backreferences to named capture groups. The .NET syntax

\k{name} and the Perl syntax \k<name> or \k’name’ are supported, as is the Python syntax (?P=name).

Perl 5.10’s unified backreference syntax, in which \g can be used for both numeric and named

references, is also supported. We could rewrite the above example in any of the following ways:

(?<p1>(?i)rah)\s+\k<p1>

(?’p1’(?i)rah)\s+\k{p1}

(?P<p1>(?i)rah)\s+(?P=p1)

(?<p1>(?i)rah)\s+\g{p1}

A capture group that is referenced by name may appear in the pattern before or after the reference.

There may be more than one backreference to the same group. If a group has not actually been used in

a particular match, backreferences to it always fail by default. For example, the pattern

(a|(bc))\2

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

always fails if it starts to match "a" rather than "bc". However, if the

PCRE2_MATCH_UNSET_BACKREF option is set at compile time, a backreference to an unset value

matches an empty string.

Because there may be many capture groups in a pattern, all digits following a backslash are taken as

part of a potential backreference number. If the pattern continues with a digit character, some delimiter

must be used to terminate the backreference. If the PCRE2_EXTENDED or

PCRE2_EXTENDED_MORE option is set, this can be white space. Otherwise, the \g{} syntax or an

empty comment (see "Comments" below) can be used.

Recursive backreferences
A backreference that occurs inside the group to which it refers fails when the group is first used, so, for

example, (a\1) never matches. However, such references can be useful inside repeated groups. For

example, the pattern

(a|b\1)+

matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of the group, the

backreference matches the character string corresponding to the previous iteration. In order for this to

work, the pattern must be such that the first iteration does not need to match the backreference. This

can be done using alternation, as in the example above, or by a quantifier with a minimum of zero.

For versions of PCRE2 less than 10.25, backreferences of this type used to cause the group that they

reference to be treated as an atomic group. This restriction no longer applies, and backtracking into

such groups can occur as normal.

ASSERTIONS
An assertion is a test on the characters following or preceding the current matching point that does not

consume any characters. The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are described

above.

More complicated assertions are coded as parenthesized groups. There are two kinds: those that look

ahead of the current position in the subject string, and those that look behind it, and in each case an

assertion may be positive (must match for the assertion to be true) or negative (must not match for the

assertion to be true). An assertion group is matched in the normal way, and if it is true, matching

continues after it, but with the matching position in the subject string reset to what it was before the

assertion was processed.

The Perl-compatible lookaround assertions are atomic. If an assertion is true, but there is a subsequent

matching failure, there is no backtracking into the assertion. However, there are some cases where non-

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

atomic assertions can be useful. PCRE2 has some support for these, described in the section entitled

"Non-atomic assertions" below, but they are not Perl-compatible.

A lookaround assertion may appear as the condition in a conditional group (see below). In this case, the

result of matching the assertion determines which branch of the condition is followed.

Assertion groups are not capture groups. If an assertion contains capture groups within it, these are

counted for the purposes of numbering the capture groups in the whole pattern. Within each branch of

an assertion, locally captured substrings may be referenced in the usual way. For example, a sequence

such as (.)\g{-1} can be used to check that two adjacent characters are the same.

When a branch within an assertion fails to match, any substrings that were captured are discarded (as

happens with any pattern branch that fails to match). A negative assertion is true only when all its

branches fail to match; this means that no captured substrings are ever retained after a successful

negative assertion. When an assertion contains a matching branch, what happens depends on the type

of assertion.

For a positive assertion, internally captured substrings in the successful branch are retained, and

matching continues with the next pattern item after the assertion. For a negative assertion, a matching

branch means that the assertion is not true. If such an assertion is being used as a condition in a

conditional group (see below), captured substrings are retained, because matching continues with the

"no" branch of the condition. For other failing negative assertions, control passes to the previous

backtracking point, thus discarding any captured strings within the assertion.

Most assertion groups may be repeated; though it makes no sense to assert the same thing several

times, the side effect of capturing in positive assertions may occasionally be useful. However, an

assertion that forms the condition for a conditional group may not be quantified. PCRE2 used to restrict

the repetition of assertions, but from release 10.35 the only restriction is that an unlimited maximum

repetition is changed to be one more than the minimum. For example, {3,} is treated as {3,4}.

Alphabetic assertion names
Traditionally, symbolic sequences such as (?= and (?<= have been used to specify lookaround

assertions. Perl 5.28 introduced some experimental alphabetic alternatives which might be easier to

remember. They all start with (* instead of (? and must be written using lower case letters. PCRE2

supports the following synonyms:

(*positive_lookahead: or (*pla: is the same as (?=

(*negative_lookahead: or (*nla: is the same as (?!

(*positive_lookbehind: or (*plb: is the same as (?<=

(*negative_lookbehind: or (*nlb: is the same as (?<!

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

For example, (*pla:foo) is the same assertion as (?=foo). In the following sections, the various

assertions are described using the original symbolic forms.

Lookahead assertions
Lookahead assertions start with (?= for positive assertions and (?! for negative assertions. For example,

\w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the match, and

foo(?!bar)

matches any occurrence of "foo" that is not followed by "bar". Note that the apparently similar pattern

(?!foo)bar

does not find an occurrence of "bar" that is preceded by something other than "foo"; it finds any

occurrence of "bar" whatsoever, because the assertion (?!foo) is always true when the next three

characters are "bar". A lookbehind assertion is needed to achieve the other effect.

If you want to force a matching failure at some point in a pattern, the most convenient way to do it is

with (?!) because an empty string always matches, so an assertion that requires there not to be an empty

string must always fail. The backtracking control verb (*FAIL) or (*F) is a synonym for (?!).

Lookbehind assertions
Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions. For

example,

(?<!foo)bar

does find an occurrence of "bar" that is not preceded by "foo". The contents of a lookbehind assertion

are restricted such that all the strings it matches must have a fixed length. However, if there are several

top-level alternatives, they do not all have to have the same fixed length. Thus

(?<=bullock|donkey)

is permitted, but

(?<!dogs?|cats?)

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

causes an error at compile time. Branches that match different length strings are permitted only at the

top level of a lookbehind assertion. This is an extension compared with Perl, which requires all

branches to match the same length of string. An assertion such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it is acceptable

to PCRE2 if rewritten to use two top-level branches:

(?<=abc|abde)

In some cases, the escape sequence \K (see above) can be used instead of a lookbehind assertion to get

round the fixed-length restriction.

The implementation of lookbehind assertions is, for each alternative, to temporarily move the current

position back by the fixed length and then try to match. If there are insufficient characters before the

current position, the assertion fails.

In UTF-8 and UTF-16 modes, PCRE2 does not allow the \C escape (which matches a single code unit

even in a UTF mode) to appear in lookbehind assertions, because it makes it impossible to calculate the

length of the lookbehind. The \X and \R escapes, which can match different numbers of code units, are

never permitted in lookbehinds.

"Subroutine" calls (see below) such as (?2) or (?&X) are permitted in lookbehinds, as long as the called

capture group matches a fixed-length string. However, recursion, that is, a "subroutine" call into a

group that is already active, is not supported.

Perl does not support backreferences in lookbehinds. PCRE2 does support them, but only if certain

conditions are met. The PCRE2_MATCH_UNSET_BACKREF option must not be set, there must be

no use of (?| in the pattern (it creates duplicate group numbers), and if the backreference is by name,

the name must be unique. Of course, the referenced group must itself match a fixed length substring.

The following pattern matches words containing at least two characters that begin and end with the

same character:

\b(\w)\w++(?<=\1)

Possessive quantifiers can be used in conjunction with lookbehind assertions to specify efficient

matching of fixed-length strings at the end of subject strings. Consider a simple pattern such as

abcd$

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

when applied to a long string that does not match. Because matching proceeds from left to right,

PCRE2 will look for each "a" in the subject and then see if what follows matches the rest of the pattern.

If the pattern is specified as

^.*abcd$

the initial .* matches the entire string at first, but when this fails (because there is no following "a"), it

backtracks to match all but the last character, then all but the last two characters, and so on. Once again

the search for "a" covers the entire string, from right to left, so we are no better off. However, if the

pattern is written as

^.*+(?<=abcd)

there can be no backtracking for the .*+ item because of the possessive quantifier; it can match only the

entire string. The subsequent lookbehind assertion does a single test on the last four characters. If it

fails, the match fails immediately. For long strings, this approach makes a significant difference to the

processing time.

Using multiple assertions
Several assertions (of any sort) may occur in succession. For example,

(?<=\d{3})(?<!999)foo

matches "foo" preceded by three digits that are not "999". Notice that each of the assertions is applied

independently at the same point in the subject string. First there is a check that the previous three

characters are all digits, and then there is a check that the same three characters are not "999". This

pattern does not match "foo" preceded by six characters, the first of which are digits and the last three

of which are not "999". For example, it doesn’t match "123abcfoo". A pattern to do that is

(?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checking that the first three are digits,

and then the second assertion checks that the preceding three characters are not "999".

Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of "baz" that is preceded by "bar" which in turn is not preceded by "foo", while

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

(?<=\d{3}(?!999)...)foo

is another pattern that matches "foo" preceded by three digits and any three characters that are not

"999".

NON-ATOMIC ASSERTIONS
The traditional Perl-compatible lookaround assertions are atomic. That is, if an assertion is true, but

there is a subsequent matching failure, there is no backtracking into the assertion. However, there are

some cases where non-atomic positive assertions can be useful. PCRE2 provides these using the

following syntax:

(*non_atomic_positive_lookahead: or (*napla: or (?*

(*non_atomic_positive_lookbehind: or (*naplb: or (?<*

Consider the problem of finding the right-most word in a string that also appears earlier in the string,

that is, it must appear at least twice in total. This pattern returns the required result as captured

substring 1:

^(?x)(*napla: .* \b(\w++)) (?> .*? \b\1\b){2}

For a subject such as "word1 word2 word3 word2 word3 word4" the result is "word3". How does it

work? At the start, ^(?x) anchors the pattern and sets the "x" option, which causes white space

(introduced for readability) to be ignored. Inside the assertion, the greedy .* at first consumes the entire

string, but then has to backtrack until the rest of the assertion can match a word, which is captured by

group 1. In other words, when the assertion first succeeds, it captures the right-most word in the string.

The current matching point is then reset to the start of the subject, and the rest of the pattern match

checks for two occurrences of the captured word, using an ungreedy .*? to scan from the left. If this

succeeds, we are done, but if the last word in the string does not occur twice, this part of the pattern

fails. If a traditional atomic lookhead (?= or (*pla: had been used, the assertion could not be re-entered,

and the whole match would fail. The pattern would succeed only if the very last word in the subject

was found twice.

Using a non-atomic lookahead, however, means that when the last word does not occur twice in the

string, the lookahead can backtrack and find the second-last word, and so on, until either the match

succeeds, or all words have been tested.

Two conditions must be met for a non-atomic assertion to be useful: the contents of one or more

capturing groups must change after a backtrack into the assertion, and there must be a backreference to

a changed group later in the pattern. If this is not the case, the rest of the pattern match fails exactly as

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

before because nothing has changed, so using a non-atomic assertion just wastes resources.

There is one exception to backtracking into a non-atomic assertion. If an (*ACCEPT) control verb is

triggered, the assertion succeeds atomically. That is, a subsequent match failure cannot backtrack into

the assertion.

Non-atomic assertions are not supported by the alternative matching function pcre2_dfa_match(). They

are supported by JIT, but only if they do not contain any control verbs such as (*ACCEPT). (This may

change in future). Note that assertions that appear as conditions for conditional groups (see below)

must be atomic.

SCRIPT RUNS
In concept, a script run is a sequence of characters that are all from the same Unicode script such as

Latin or Greek. However, because some scripts are commonly used together, and because some

diacritical and other marks are used with multiple scripts, it is not that simple. There is a full

description of the rules that PCRE2 uses in the section entitled "Script Runs" in the pcre2unicode
documentation.

If part of a pattern is enclosed between (*script_run: or (*sr: and a closing parenthesis, it fails if the

sequence of characters that it matches are not a script run. After a failure, normal backtracking occurs.

Script runs can be used to detect spoofing attacks using characters that look the same, but are from

different scripts. The string "paypal.com" is an infamous example, where the letters could be a mixture

of Latin and Cyrillic. This pattern ensures that the matched characters in a sequence of non-spaces that

follow white space are a script run:

\s+(*sr:\S+)

To be sure that they are all from the Latin script (for example), a lookahead can be used:

\s+(?=\p{Latin})(*sr:\S+)

This works as long as the first character is expected to be a character in that script, and not (for

example) punctuation, which is allowed with any script. If this is not the case, a more creative

lookahead is needed. For example, if digits, underscore, and dots are permitted at the start:

\s+(?=[0-9_.]*\p{Latin})(*sr:\S+)

In many cases, backtracking into a script run pattern fragment is not desirable. The script run can

employ an atomic group to prevent this. Because this is a common requirement, a shorthand notation is

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

provided by (*atomic_script_run: or (*asr:

(*asr:...) is the same as (*sr:(?>...))

Note that the atomic group is inside the script run. Putting it outside would not prevent backtracking

into the script run pattern.

Support for script runs is not available if PCRE2 is compiled without Unicode support. A compile-time

error is given if any of the above constructs is encountered. Script runs are not supported by the

alternate matching function, pcre2_dfa_match() because they use the same mechanism as capturing

parentheses.

Warning: The (*ACCEPT) control verb (see below) should not be used within a script run group,

because it causes an immediate exit from the group, bypassing the script run checking.

CONDITIONAL GROUPS
It is possible to cause the matching process to obey a pattern fragment conditionally or to choose

between two alternative fragments, depending on the result of an assertion, or whether a specific

capture group has already been matched. The two possible forms of conditional group are:

(?(condition)yes-pattern)

(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is used. An

absent no-pattern is equivalent to an empty string (it always matches). If there are more than two

alternatives in the group, a compile-time error occurs. Each of the two alternatives may itself contain

nested groups of any form, including conditional groups; the restriction to two alternatives applies only

at the level of the condition itself. This pattern fragment is an example where the alternatives are

complex:

(?(1) (A|B|C) | (D | (?(2)E|F) | E))

There are five kinds of condition: references to capture groups, references to recursion, two pseudo-

conditions called DEFINE and VERSION, and assertions.

Checking for a used capture group by number
If the text between the parentheses consists of a sequence of digits, the condition is true if a capture

group of that number has previously matched. If there is more than one capture group with the same

number (see the earlier section about duplicate group numbers), the condition is true if any of them

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

have matched. An alternative notation is to precede the digits with a plus or minus sign. In this case,

the group number is relative rather than absolute. The most recently opened capture group can be

referenced by (?(-1), the next most recent by (?(-2), and so on. Inside loops it can also make sense to

refer to subsequent groups. The next capture group can be referenced as (?(+1), and so on. (The value

zero in any of these forms is not used; it provokes a compile-time error.)

Consider the following pattern, which contains non-significant white space to make it more readable

(assume the PCRE2_EXTENDED option) and to divide it into three parts for ease of discussion:

(\()? [^()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that character is present, sets it as the first

captured substring. The second part matches one or more characters that are not parentheses. The third

part is a conditional group that tests whether or not the first capture group matched. If it did, that is, if

subject started with an opening parenthesis, the condition is true, and so the yes-pattern is executed and

a closing parenthesis is required. Otherwise, since no-pattern is not present, the conditional group

matches nothing. In other words, this pattern matches a sequence of non-parentheses, optionally

enclosed in parentheses.

If you were embedding this pattern in a larger one, you could use a relative reference:

...other stuff... (\()? [^()]+ (?(-1) \)) ...

This makes the fragment independent of the parentheses in the larger pattern.

Checking for a used capture group by name
Perl uses the syntax (?(<name>)...) or (?(’name’)...) to test for a used capture group by name. For

compatibility with earlier versions of PCRE1, which had this facility before Perl, the syntax

(?(name)...) is also recognized. Note, however, that undelimited names consisting of the letter R

followed by digits are ambiguous (see the following section). Rewriting the above example to use a

named group gives this:

(?<OPEN> \()? [^()]+ (?(<OPEN>) \))

If the name used in a condition of this kind is a duplicate, the test is applied to all groups of the same

name, and is true if any one of them has matched.

Checking for pattern recursion
"Recursion" in this sense refers to any subroutine-like call from one part of the pattern to another,

whether or not it is actually recursive. See the sections entitled "Recursive patterns" and "Groups as

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

subroutines" below for details of recursion and subroutine calls.

If a condition is the string (R), and there is no capture group with the name R, the condition is true if

matching is currently in a recursion or subroutine call to the whole pattern or any capture group. If

digits follow the letter R, and there is no group with that name, the condition is true if the most recent

call is into a group with the given number, which must exist somewhere in the overall pattern. This is a

contrived example that is equivalent to a+b:

((?(R1)a+|(?1)b))

However, in both cases, if there is a capture group with a matching name, the condition tests for its

being set, as described in the section above, instead of testing for recursion. For example, creating a

group with the name R1 by adding (?<R1>) to the above pattern completely changes its meaning.

If a name preceded by ampersand follows the letter R, for example:

(?(R&name)...)

the condition is true if the most recent recursion is into a group of that name (which must exist within

the pattern).

This condition does not check the entire recursion stack. It tests only the current level. If the name used

in a condition of this kind is a duplicate, the test is applied to all groups of the same name, and is true if

any one of them is the most recent recursion.

At "top level", all these recursion test conditions are false.

Defining capture groups for use by reference only
If the condition is the string (DEFINE), the condition is always false, even if there is a group with the

name DEFINE. In this case, there may be only one alternative in the rest of the conditional group. It is

always skipped if control reaches this point in the pattern; the idea of DEFINE is that it can be used to

define subroutines that can be referenced from elsewhere. (The use of subroutines is described below.)

For example, a pattern to match an IPv4 address such as "192.168.23.245" could be written like this

(ignore white space and line breaks):

(?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d))

\b (?&byte) (\.(?&byte)){3} \b

The first part of the pattern is a DEFINE group inside which another group named "byte" is defined.

This matches an individual component of an IPv4 address (a number less than 256). When matching

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

takes place, this part of the pattern is skipped because DEFINE acts like a false condition. The rest of

the pattern uses references to the named group to match the four dot-separated components of an IPv4

address, insisting on a word boundary at each end.

Checking the PCRE2 version
Programs that link with a PCRE2 library can check the version by calling pcre2_config() with

appropriate arguments. Users of applications that do not have access to the underlying code cannot do

this. A special "condition" called VERSION exists to allow such users to discover which version of

PCRE2 they are dealing with by using this condition to match a string such as "yesno". VERSION

must be followed either by "=" or ">=" and a version number. For example:

(?(VERSION>=10.4)yes|no)

This pattern matches "yes" if the PCRE2 version is greater or equal to 10.4, or "no" otherwise. The

fractional part of the version number may not contain more than two digits.

Assertion conditions
If the condition is not in any of the above formats, it must be a parenthesized assertion. This may be a

positive or negative lookahead or lookbehind assertion. However, it must be a traditional atomic

assertion, not one of the PCRE2-specific non-atomic assertions.

Consider this pattern, again containing non-significant white space, and with the two alternatives on the

second line:

(?(?=[^a-z]*[a-z])

\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive lookahead assertion that matches an optional sequence of non-letters

followed by a letter. In other words, it tests for the presence of at least one letter in the subject. If a

letter is found, the subject is matched against the first alternative; otherwise it is matched against the

second. This pattern matches strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are

letters and dd are digits.

When an assertion that is a condition contains capture groups, any capturing that occurs in a matching

branch is retained afterwards, for both positive and negative assertions, because matching always

continues after the assertion, whether it succeeds or fails. (Compare non-conditional assertions, for

which captures are retained only for positive assertions that succeed.)

COMMENTS
There are two ways of including comments in patterns that are processed by PCRE2. In both cases, the

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

start of the comment must not be in a character class, nor in the middle of any other sequence of related

characters such as (?: or a group name or number. The characters that make up a comment play no part

in the pattern matching.

The sequence (?# marks the start of a comment that continues up to the next closing parenthesis.

Nested parentheses are not permitted. If the PCRE2_EXTENDED or PCRE2_EXTENDED_MORE

option is set, an unescaped # character also introduces a comment, which in this case continues to

immediately after the next newline character or character sequence in the pattern. Which characters are

interpreted as newlines is controlled by an option passed to the compiling function or by a special

sequence at the start of the pattern, as described in the section entitled "Newline conventions" above.

Note that the end of this type of comment is a literal newline sequence in the pattern; escape sequences

that happen to represent a newline do not count. For example, consider this pattern when

PCRE2_EXTENDED is set, and the default newline convention (a single linefeed character) is in

force:

abc #comment \n still comment

On encountering the # character, pcre2_compile() skips along, looking for a newline in the pattern. The

sequence \n is still literal at this stage, so it does not terminate the comment. Only an actual character

with the code value 0x0a (the default newline) does so.

RECURSIVE PATTERNS
Consider the problem of matching a string in parentheses, allowing for unlimited nested parentheses.

Without the use of recursion, the best that can be done is to use a pattern that matches up to some fixed

depth of nesting. It is not possible to handle an arbitrary nesting depth.

For some time, Perl has provided a facility that allows regular expressions to recurse (amongst other

things). It does this by interpolating Perl code in the expression at run time, and the code can refer to

the expression itself. A Perl pattern using code interpolation to solve the parentheses problem can be

created like this:

$re = qr{\((?: (?>[^()]+) | (?p{$re}))* \)}x;

The (?p{...}) item interpolates Perl code at run time, and in this case refers recursively to the pattern in

which it appears.

Obviously, PCRE2 cannot support the interpolation of Perl code. Instead, it supports special syntax for

recursion of the entire pattern, and also for individual capture group recursion. After its introduction in

PCRE1 and Python, this kind of recursion was subsequently introduced into Perl at release 5.10.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

A special item that consists of (? followed by a number greater than zero and a closing parenthesis is a

recursive subroutine call of the capture group of the given number, provided that it occurs inside that

group. (If not, it is a non-recursive subroutine call, which is described in the next section.) The special

item (?R) or (?0) is a recursive call of the entire regular expression.

This PCRE2 pattern solves the nested parentheses problem (assume the PCRE2_EXTENDED option is

set so that white space is ignored):

\(([^()]++ | (?R))* \)

First it matches an opening parenthesis. Then it matches any number of substrings which can either be

a sequence of non-parentheses, or a recursive match of the pattern itself (that is, a correctly

parenthesized substring). Finally there is a closing parenthesis. Note the use of a possessive quantifier

to avoid backtracking into sequences of non-parentheses.

If this were part of a larger pattern, you would not want to recurse the entire pattern, so instead you

could use this:

(\(([^()]++ | (?1))* \))

We have put the pattern into parentheses, and caused the recursion to refer to them instead of the whole

pattern.

In a larger pattern, keeping track of parenthesis numbers can be tricky. This is made easier by the use

of relative references. Instead of (?1) in the pattern above you can write (?-2) to refer to the second

most recently opened parentheses preceding the recursion. In other words, a negative number counts

capturing parentheses leftwards from the point at which it is encountered.

Be aware however, that if duplicate capture group numbers are in use, relative references refer to the

earliest group with the appropriate number. Consider, for example:

(?|(a)|(b)) (c) (?-2)

The first two capture groups (a) and (b) are both numbered 1, and group (c) is number 2. When the

reference (?-2) is encountered, the second most recently opened parentheses has the number 1, but it is

the first such group (the (a) group) to which the recursion refers. This would be the same if an absolute

reference (?1) was used. In other words, relative references are just a shorthand for computing a group

number.

It is also possible to refer to subsequent capture groups, by writing references such as (?+2). However,

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

these cannot be recursive because the reference is not inside the parentheses that are referenced. They

are always non-recursive subroutine calls, as described in the next section.

An alternative approach is to use named parentheses. The Perl syntax for this is (?&name); PCRE1’s

earlier syntax (?P>name) is also supported. We could rewrite the above example as follows:

(?<pn> \(([^()]++ | (?&pn))* \))

If there is more than one group with the same name, the earliest one is used.

The example pattern that we have been looking at contains nested unlimited repeats, and so the use of a

possessive quantifier for matching strings of non-parentheses is important when applying the pattern to

strings that do not match. For example, when this pattern is applied to

(aaa()

it yields "no match" quickly. However, if a possessive quantifier is not used, the match runs for a very

long time indeed because there are so many different ways the + and * repeats can carve up the subject,

and all have to be tested before failure can be reported.

At the end of a match, the values of capturing parentheses are those from the outermost level. If you

want to obtain intermediate values, a callout function can be used (see below and the pcre2callout
documentation). If the pattern above is matched against

(ab(cd)ef)

the value for the inner capturing parentheses (numbered 2) is "ef", which is the last value taken on at

the top level. If a capture group is not matched at the top level, its final captured value is unset, even if

it was (temporarily) set at a deeper level during the matching process.

Do not confuse the (?R) item with the condition (R), which tests for recursion. Consider this pattern,

which matches text in angle brackets, allowing for arbitrary nesting. Only digits are allowed in nested

brackets (that is, when recursing), whereas any characters are permitted at the outer level.

< (?: (?(R) \d++ | [^<>]*+) | (?R)) * >

In this pattern, (?(R) is the start of a conditional group, with two different alternatives for the recursive

and non-recursive cases. The (?R) item is the actual recursive call.

Differences in recursion processing between PCRE2 and Perl

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Some former differences between PCRE2 and Perl no longer exist.

Before release 10.30, recursion processing in PCRE2 differed from Perl in that a recursive subroutine

call was always treated as an atomic group. That is, once it had matched some of the subject string, it

was never re-entered, even if it contained untried alternatives and there was a subsequent matching

failure. (Historical note: PCRE implemented recursion before Perl did.)

Starting with release 10.30, recursive subroutine calls are no longer treated as atomic. That is, they can

be re-entered to try unused alternatives if there is a matching failure later in the pattern. This is now

compatible with the way Perl works. If you want a subroutine call to be atomic, you must explicitly

enclose it in an atomic group.

Supporting backtracking into recursions simplifies certain types of recursive pattern. For example, this

pattern matches palindromic strings:

^((.)(?1)\2|.?)$

The second branch in the group matches a single central character in the palindrome when there are an

odd number of characters, or nothing when there are an even number of characters, but in order to work

it has to be able to try the second case when the rest of the pattern match fails. If you want to match

typical palindromic phrases, the pattern has to ignore all non-word characters, which can be done like

this:

^\W*+((.)\W*+(?1)\W*+\2|\W*+.?)\W*+$

If run with the PCRE2_CASELESS option, this pattern matches phrases such as "A man, a plan, a

canal: Panama!". Note the use of the possessive quantifier *+ to avoid backtracking into sequences of

non-word characters. Without this, PCRE2 takes a great deal longer (ten times or more) to match

typical phrases, and Perl takes so long that you think it has gone into a loop.

Another way in which PCRE2 and Perl used to differ in their recursion processing is in the handling of

captured values. Formerly in Perl, when a group was called recursively or as a subroutine (see the next

section), it had no access to any values that were captured outside the recursion, whereas in PCRE2

these values can be referenced. Consider this pattern:

^(.)(\1|a(?2))

This pattern matches "bab". The first capturing parentheses match "b", then in the second group, when

the backreference \1 fails to match "b", the second alternative matches "a" and then recurses. In the

recursion, \1 does now match "b" and so the whole match succeeds. This match used to fail in Perl, but

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

in later versions (I tried 5.024) it now works.

GROUPS AS SUBROUTINES
If the syntax for a recursive group call (either by number or by name) is used outside the parentheses to

which it refers, it operates a bit like a subroutine in a programming language. More accurately, PCRE2

treats the referenced group as an independent subpattern which it tries to match at the current matching

position. The called group may be defined before or after the reference. A numbered reference can be

absolute or relative, as in these examples:

(...(absolute)...)...(?2)...

(...(relative)...)...(?-1)...

(...(?+1)...(relative)...

An earlier example pointed out that the pattern

(sens|respons)e and \1ibility

matches "sense and sensibility" and "response and responsibility", but not "sense and responsibility". If

instead the pattern

(sens|respons)e and (?1)ibility

is used, it does match "sense and responsibility" as well as the other two strings. Another example is

given in the discussion of DEFINE above.

Like recursions, subroutine calls used to be treated as atomic, but this changed at PCRE2 release 10.30,

so backtracking into subroutine calls can now occur. However, any capturing parentheses that are set

during the subroutine call revert to their previous values afterwards.

Processing options such as case-independence are fixed when a group is defined, so if it is used as a

subroutine, such options cannot be changed for different calls. For example, consider this pattern:

(abc)(?i:(?-1))

It matches "abcabc". It does not match "abcABC" because the change of processing option does not

affect the called group.

The behaviour of backtracking control verbs in groups when called as subroutines is described in the

section entitled "Backtracking verbs in subroutines" below.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

ONIGURUMA SUBROUTINE SYNTAX
For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or a number enclosed

either in angle brackets or single quotes, is an alternative syntax for calling a group as a subroutine,

possibly recursively. Here are two of the examples used above, rewritten using this syntax:

(?<pn> \(((?>[^()]+) | \g<pn>)* \))

(sens|respons)e and \g’1’ibility

PCRE2 supports an extension to Oniguruma: if a number is preceded by a plus or a minus sign it is

taken as a relative reference. For example:

(abc)(?i:\g<-1>)

Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not synonymous. The former is a

backreference; the latter is a subroutine call.

CALLOUTS
Perl has a feature whereby using the sequence (?{...}) causes arbitrary Perl code to be obeyed in the

middle of matching a regular expression. This makes it possible, amongst other things, to extract

different substrings that match the same pair of parentheses when there is a repetition.

PCRE2 provides a similar feature, but of course it cannot obey arbitrary Perl code. The feature is called

"callout". The caller of PCRE2 provides an external function by putting its entry point in a match

context using the function pcre2_set_callout(), and then passing that context to pcre2_match() or

pcre2_dfa_match(). If no match context is passed, or if the callout entry point is set to NULL, callouts

are disabled.

Within a regular expression, (?C<arg>) indicates a point at which the external function is to be called.

There are two kinds of callout: those with a numerical argument and those with a string argument. (?C)

on its own with no argument is treated as (?C0). A numerical argument allows the application to

distinguish between different callouts. String arguments were added for release 10.20 to make it

possible for script languages that use PCRE2 to embed short scripts within patterns in a similar way to

Perl.

During matching, when PCRE2 reaches a callout point, the external function is called. It is provided

with the number or string argument of the callout, the position in the pattern, and one item of data that

is also set in the match block. The callout function may cause matching to proceed, to backtrack, or to

fail.

By default, PCRE2 implements a number of optimizations at matching time, and one side-effect is that

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

sometimes callouts are skipped. If you need all possible callouts to happen, you need to set options that

disable the relevant optimizations. More details, including a complete description of the programming

interface to the callout function, are given in the pcre2callout documentation.

Callouts with numerical arguments
If you just want to have a means of identifying different callout points, put a number less than 256 after

the letter C. For example, this pattern has two callout points:

(?C1)abc(?C2)def

If the PCRE2_AUTO_CALLOUT flag is passed to pcre2_compile(), numerical callouts are

automatically installed before each item in the pattern. They are all numbered 255. If there is a

conditional group in the pattern whose condition is an assertion, an additional callout is inserted just

before the condition. An explicit callout may also be set at this position, as in this example:

(?(?C9)(?=a)abc|def)

Note that this applies only to assertion conditions, not to other types of condition.

Callouts with string arguments
A delimited string may be used instead of a number as a callout argument. The starting delimiter must

be one of ‘ ’ " ^ % # $ { and the ending delimiter is the same as the start, except for {, where the ending

delimiter is }. If the ending delimiter is needed within the string, it must be doubled. For example:

(?C’ab ’’c’’ d’)xyz(?C{any text})pqr

The doubling is removed before the string is passed to the callout function.

BACKTRACKING CONTROL
There are a number of special "Backtracking Control Verbs" (to use Perl’s terminology) that modify

the behaviour of backtracking during matching. They are generally of the form (*VERB) or

(*VERB:NAME). Some verbs take either form, and may behave differently depending on whether or

not a name argument is present. The names are not required to be unique within the pattern.

By default, for compatibility with Perl, a name is any sequence of characters that does not include a

closing parenthesis. The name is not processed in any way, and it is not possible to include a closing

parenthesis in the name. This can be changed by setting the PCRE2_ALT_VERBNAMES option, but

the result is no longer Perl-compatible.

When PCRE2_ALT_VERBNAMES is set, backslash processing is applied to verb names and only an

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

unescaped closing parenthesis terminates the name. However, the only backslash items that are

permitted are \Q, \E, and sequences such as \x{100} that define character code points. Character type

escapes such as \d are faulted.

A closing parenthesis can be included in a name either as \) or between \Q and \E. In addition to

backslash processing, if the PCRE2_EXTENDED or PCRE2_EXTENDED_MORE option is also set,

unescaped whitespace in verb names is skipped, and #-comments are recognized, exactly as in the rest

of the pattern. PCRE2_EXTENDED and PCRE2_EXTENDED_MORE do not affect verb names

unless PCRE2_ALT_VERBNAMES is also set.

The maximum length of a name is 255 in the 8-bit library and 65535 in the 16-bit and 32-bit libraries.

If the name is empty, that is, if the closing parenthesis immediately follows the colon, the effect is as if

the colon were not there. Any number of these verbs may occur in a pattern. Except for (*ACCEPT),

they may not be quantified.

Since these verbs are specifically related to backtracking, most of them can be used only when the

pattern is to be matched using the traditional matching function, because that uses a backtracking

algorithm. With the exception of (*FAIL), which behaves like a failing negative assertion, the

backtracking control verbs cause an error if encountered by the DFA matching function.

The behaviour of these verbs in repeated groups, assertions, and in capture groups called as subroutines

(whether or not recursively) is documented below.

Optimizations that affect backtracking verbs
PCRE2 contains some optimizations that are used to speed up matching by running some checks at the

start of each match attempt. For example, it may know the minimum length of matching subject, or that

a particular character must be present. When one of these optimizations bypasses the running of a

match, any included backtracking verbs will not, of course, be processed. You can suppress the start-

of-match optimizations by setting the PCRE2_NO_START_OPTIMIZE option when calling

pcre2_compile(), or by starting the pattern with (*NO_START_OPT). There is more discussion of this

option in the section entitled "Compiling a pattern" in the pcre2api documentation.

Experiments with Perl suggest that it too has similar optimizations, and like PCRE2, turning them off

can change the result of a match.

Verbs that act immediately
The following verbs act as soon as they are encountered.

(*ACCEPT) or (*ACCEPT:NAME)

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

This verb causes the match to end successfully, skipping the remainder of the pattern. However, when

it is inside a capture group that is called as a subroutine, only that group is ended successfully.

Matching then continues at the outer level. If (*ACCEPT) in triggered in a positive assertion, the

assertion succeeds; in a negative assertion, the assertion fails.

If (*ACCEPT) is inside capturing parentheses, the data so far is captured. For example:

A((?:A|B(*ACCEPT)|C)D)

This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is captured by the outer

parentheses.

(*ACCEPT) is the only backtracking verb that is allowed to be quantified because an ungreedy

quantification with a minimum of zero acts only when a backtrack happens. Consider, for example,

(A(*ACCEPT)??B)C

where A, B, and C may be complex expressions. After matching "A", the matcher processes "BC"; if

that fails, causing a backtrack, (*ACCEPT) is triggered and the match succeeds. In both cases, all but C

is captured. Whereas (*COMMIT) (see below) means "fail on backtrack", a repeated (*ACCEPT) of

this type means "succeed on backtrack".

Warning: (*ACCEPT) should not be used within a script run group, because it causes an immediate

exit from the group, bypassing the script run checking.

(*FAIL) or (*FAIL:NAME)

This verb causes a matching failure, forcing backtracking to occur. It may be abbreviated to (*F). It is

equivalent to (?!) but easier to read. The Perl documentation notes that it is probably useful only when

combined with (?{}) or (??{}). Those are, of course, Perl features that are not present in PCRE2. The

nearest equivalent is the callout feature, as for example in this pattern:

a+(?C)(*FAIL)

A match with the string "aaaa" always fails, but the callout is taken before each backtrack happens (in

this example, 10 times).

(*ACCEPT:NAME) and (*FAIL:NAME) behave the same as (*MARK:NAME)(*ACCEPT) and

(*MARK:NAME)(*FAIL), respectively, that is, a (*MARK) is recorded just before the verb acts.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

Recording which path was taken
There is one verb whose main purpose is to track how a match was arrived at, though it also has a

secondary use in conjunction with advancing the match starting point (see (*SKIP) below).

(*MARK:NAME) or (*:NAME)

A name is always required with this verb. For all the other backtracking control verbs, a NAME

argument is optional.

When a match succeeds, the name of the last-encountered mark name on the matching path is passed

back to the caller as described in the section entitled "Other information about the match" in the

pcre2api documentation. This applies to all instances of (*MARK) and other verbs, including those

inside assertions and atomic groups. However, there are differences in those cases when (*MARK) is

used in conjunction with (*SKIP) as described below.

The mark name that was last encountered on the matching path is passed back. A verb without a

NAME argument is ignored for this purpose. Here is an example of pcre2test output, where the "mark"

modifier requests the retrieval and outputting of (*MARK) data:

re> /X(*MARK:A)Y|X(*MARK:B)Z/mark

data> XY

0: XY

MK: A

XZ

0: XZ

MK: B

The (*MARK) name is tagged with "MK:" in this output, and in this example it indicates which of the

two alternatives matched. This is a more efficient way of obtaining this information than putting each

alternative in its own capturing parentheses.

If a verb with a name is encountered in a positive assertion that is true, the name is recorded and passed

back if it is the last-encountered. This does not happen for negative assertions or failing positive

assertions.

After a partial match or a failed match, the last encountered name in the entire match process is

returned. For example:

re> /X(*MARK:A)Y|X(*MARK:B)Z/mark

data> XP

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

No match, mark = B

Note that in this unanchored example the mark is retained from the match attempt that started at the

letter "X" in the subject. Subsequent match attempts starting at "P" and then with an empty string do

not get as far as the (*MARK) item, but nevertheless do not reset it.

If you are interested in (*MARK) values after failed matches, you should probably set the

PCRE2_NO_START_OPTIMIZE option (see above) to ensure that the match is always attempted.

Verbs that act after backtracking
The following verbs do nothing when they are encountered. Matching continues with what follows, but

if there is a subsequent match failure, causing a backtrack to the verb, a failure is forced. That is,

backtracking cannot pass to the left of the verb. However, when one of these verbs appears inside an

atomic group or in a lookaround assertion that is true, its effect is confined to that group, because once

the group has been matched, there is never any backtracking into it. Backtracking from beyond an

assertion or an atomic group ignores the entire group, and seeks a preceding backtracking point.

These verbs differ in exactly what kind of failure occurs when backtracking reaches them. The

behaviour described below is what happens when the verb is not in a subroutine or an assertion.

Subsequent sections cover these special cases.

(*COMMIT) or (*COMMIT:NAME)

This verb causes the whole match to fail outright if there is a later matching failure that causes

backtracking to reach it. Even if the pattern is unanchored, no further attempts to find a match by

advancing the starting point take place. If (*COMMIT) is the only backtracking verb that is

encountered, once it has been passed pcre2_match() is committed to finding a match at the current

starting point, or not at all. For example:

a+(*COMMIT)b

This matches "xxaab" but not "aacaab". It can be thought of as a kind of dynamic anchor, or "I’ve

started, so I must finish."

The behaviour of (*COMMIT:NAME) is not the same as (*MARK:NAME)(*COMMIT). It is like

(*MARK:NAME) in that the name is remembered for passing back to the caller. However,

(*SKIP:NAME) searches only for names that are set with (*MARK), ignoring those set by any of the

other backtracking verbs.

If there is more than one backtracking verb in a pattern, a different one that follows (*COMMIT) may

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

be triggered first, so merely passing (*COMMIT) during a match does not always guarantee that a

match must be at this starting point.

Note that (*COMMIT) at the start of a pattern is not the same as an anchor, unless PCRE2’s start-of-

match optimizations are turned off, as shown in this output from pcre2test:

re> /(*COMMIT)abc/

data> xyzabc

0: abc

data>

re> /(*COMMIT)abc/no_start_optimize

data> xyzabc

No match

For the first pattern, PCRE2 knows that any match must start with "a", so the optimization skips along

the subject to "a" before applying the pattern to the first set of data. The match attempt then succeeds.

The second pattern disables the optimization that skips along to the first character. The pattern is now

applied starting at "x", and so the (*COMMIT) causes the match to fail without trying any other

starting points.

(*PRUNE) or (*PRUNE:NAME)

This verb causes the match to fail at the current starting position in the subject if there is a later

matching failure that causes backtracking to reach it. If the pattern is unanchored, the normal

"bumpalong" advance to the next starting character then happens. Backtracking can occur as usual to

the left of (*PRUNE), before it is reached, or when matching to the right of (*PRUNE), but if there is

no match to the right, backtracking cannot cross (*PRUNE). In simple cases, the use of (*PRUNE) is

just an alternative to an atomic group or possessive quantifier, but there are some uses of (*PRUNE)

that cannot be expressed in any other way. In an anchored pattern (*PRUNE) has the same effect as

(*COMMIT).

The behaviour of (*PRUNE:NAME) is not the same as (*MARK:NAME)(*PRUNE). It is like

(*MARK:NAME) in that the name is remembered for passing back to the caller. However,

(*SKIP:NAME) searches only for names set with (*MARK), ignoring those set by other backtracking

verbs.

(*SKIP)

This verb, when given without a name, is like (*PRUNE), except that if the pattern is unanchored, the

"bumpalong" advance is not to the next character, but to the position in the subject where (*SKIP) was

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

encountered. (*SKIP) signifies that whatever text was matched leading up to it cannot be part of a

successful match if there is a later mismatch. Consider:

a+(*SKIP)b

If the subject is "aaaac...", after the first match attempt fails (starting at the first character in the string),

the starting point skips on to start the next attempt at "c". Note that a possessive quantifier does not

have the same effect as this example; although it would suppress backtracking during the first match

attempt, the second attempt would start at the second character instead of skipping on to "c".

If (*SKIP) is used to specify a new starting position that is the same as the starting position of the

current match, or (by being inside a lookbehind) earlier, the position specified by (*SKIP) is ignored,

and instead the normal "bumpalong" occurs.

(*SKIP:NAME)

When (*SKIP) has an associated name, its behaviour is modified. When such a (*SKIP) is triggered,

the previous path through the pattern is searched for the most recent (*MARK) that has the same name.

If one is found, the "bumpalong" advance is to the subject position that corresponds to that (*MARK)

instead of to where (*SKIP) was encountered. If no (*MARK) with a matching name is found, the

(*SKIP) is ignored.

The search for a (*MARK) name uses the normal backtracking mechanism, which means that it does

not see (*MARK) settings that are inside atomic groups or assertions, because they are never re-entered

by backtracking. Compare the following pcre2test examples:

re> /a(?>(*MARK:X))(*SKIP:X)(*F)|(.)/

data: abc

0: a

1: a

data:

re> /a(?:(*MARK:X))(*SKIP:X)(*F)|(.)/

data: abc

0: b

1: b

In the first example, the (*MARK) setting is in an atomic group, so it is not seen when (*SKIP:X)

triggers, causing the (*SKIP) to be ignored. This allows the second branch of the pattern to be tried at

the first character position. In the second example, the (*MARK) setting is not in an atomic group.

This allows (*SKIP:X) to find the (*MARK) when it backtracks, and this causes a new matching

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

attempt to start at the second character. This time, the (*MARK) is never seen because "a" does not

match "b", so the matcher immediately jumps to the second branch of the pattern.

Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It ignores names that are

set by other backtracking verbs.

(*THEN) or (*THEN:NAME)

This verb causes a skip to the next innermost alternative when backtracking reaches it. That is, it

cancels any further backtracking within the current alternative. Its name comes from the observation

that it can be used for a pattern-based if-then-else block:

(COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ) ...

If the COND1 pattern matches, FOO is tried (and possibly further items after the end of the group if

FOO succeeds); on failure, the matcher skips to the second alternative and tries COND2, without

backtracking into COND1. If that succeeds and BAR fails, COND3 is tried. If subsequently BAZ fails,

there are no more alternatives, so there is a backtrack to whatever came before the entire group. If

(*THEN) is not inside an alternation, it acts like (*PRUNE).

The behaviour of (*THEN:NAME) is not the same as (*MARK:NAME)(*THEN). It is like

(*MARK:NAME) in that the name is remembered for passing back to the caller. However,

(*SKIP:NAME) searches only for names set with (*MARK), ignoring those set by other backtracking

verbs.

A group that does not contain a | character is just a part of the enclosing alternative; it is not a nested

alternation with only one alternative. The effect of (*THEN) extends beyond such a group to the

enclosing alternative. Consider this pattern, where A, B, etc. are complex pattern fragments that do not

contain any | characters at this level:

A (B(*THEN)C) | D

If A and B are matched, but there is a failure in C, matching does not backtrack into A; instead it

moves to the next alternative, that is, D. However, if the group containing (*THEN) is given an

alternative, it behaves differently:

A (B(*THEN)C | (*FAIL)) | D

The effect of (*THEN) is now confined to the inner group. After a failure in C, matching moves to

(*FAIL), which causes the whole group to fail because there are no more alternatives to try. In this

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

case, matching does backtrack into A.

Note that a conditional group is not considered as having two alternatives, because only one is ever

used. In other words, the | character in a conditional group has a different meaning. Ignoring white

space, consider:

^.*? (?(?=a) a | b(*THEN)c)

If the subject is "ba", this pattern does not match. Because .*? is ungreedy, it initially matches zero

characters. The condition (?=a) then fails, the character "b" is matched, but "c" is not. At this point,

matching does not backtrack to .*? as might perhaps be expected from the presence of the | character.

The conditional group is part of the single alternative that comprises the whole pattern, and so the

match fails. (If there was a backtrack into .*?, allowing it to match "b", the match would succeed.)

The verbs just described provide four different "strengths" of control when subsequent matching fails.

(*THEN) is the weakest, carrying on the match at the next alternative. (*PRUNE) comes next, failing

the match at the current starting position, but allowing an advance to the next character (for an

unanchored pattern). (*SKIP) is similar, except that the advance may be more than one character.

(*COMMIT) is the strongest, causing the entire match to fail.

More than one backtracking verb
If more than one backtracking verb is present in a pattern, the one that is backtracked onto first acts.

For example, consider this pattern, where A, B, etc. are complex pattern fragments:

(A(*COMMIT)B(*THEN)C|ABD)

If A matches but B fails, the backtrack to (*COMMIT) causes the entire match to fail. However, if A

and B match, but C fails, the backtrack to (*THEN) causes the next alternative (ABD) to be tried. This

behaviour is consistent, but is not always the same as Perl’s. It means that if two or more backtracking

verbs appear in succession, all the the last of them has no effect. Consider this example:

...(*COMMIT)(*PRUNE)...

If there is a matching failure to the right, backtracking onto (*PRUNE) causes it to be triggered, and its

action is taken. There can never be a backtrack onto (*COMMIT).

Backtracking verbs in repeated groups
PCRE2 sometimes differs from Perl in its handling of backtracking verbs in repeated groups. For

example, consider:

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

/(a(*COMMIT)b)+ac/

If the subject is "abac", Perl matches unless its optimizations are disabled, but PCRE2 always fails

because the (*COMMIT) in the second repeat of the group acts.

Backtracking verbs in assertions
(*FAIL) in any assertion has its normal effect: it forces an immediate backtrack. The behaviour of the

other backtracking verbs depends on whether or not the assertion is standalone or acting as the

condition in a conditional group.

(*ACCEPT) in a standalone positive assertion causes the assertion to succeed without any further

processing; captured strings and a mark name (if set) are retained. In a standalone negative assertion,

(*ACCEPT) causes the assertion to fail without any further processing; captured substrings and any

mark name are discarded.

If the assertion is a condition, (*ACCEPT) causes the condition to be true for a positive assertion and

false for a negative one; captured substrings are retained in both cases.

The remaining verbs act only when a later failure causes a backtrack to reach them. This means that,

for the Perl-compatible assertions, their effect is confined to the assertion, because Perl lookaround

assertions are atomic. A backtrack that occurs after such an assertion is complete does not jump back

into the assertion. Note in particular that a (*MARK) name that is set in an assertion is not "seen" by an

instance of (*SKIP:NAME) later in the pattern.

PCRE2 now supports non-atomic positive assertions, as described in the section entitled "Non-atomic

assertions" above. These assertions must be standalone (not used as conditions). They are not Perl-

compatible. For these assertions, a later backtrack does jump back into the assertion, and therefore

verbs such as (*COMMIT) can be triggered by backtracks from later in the pattern.

The effect of (*THEN) is not allowed to escape beyond an assertion. If there are no more branches to

try, (*THEN) causes a positive assertion to be false, and a negative assertion to be true.

The other backtracking verbs are not treated specially if they appear in a standalone positive assertion.

In a conditional positive assertion, backtracking (from within the assertion) into (*COMMIT), (*SKIP),

or (*PRUNE) causes the condition to be false. However, for both standalone and conditional negative

assertions, backtracking into (*COMMIT), (*SKIP), or (*PRUNE) causes the assertion to be true,

without considering any further alternative branches.

Backtracking verbs in subroutines
These behaviours occur whether or not the group is called recursively.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

(*ACCEPT) in a group called as a subroutine causes the subroutine match to succeed without any

further processing. Matching then continues after the subroutine call. Perl documents this behaviour.

Perl’s treatment of the other verbs in subroutines is different in some cases.

(*FAIL) in a group called as a subroutine has its normal effect: it forces an immediate backtrack.

(*COMMIT), (*SKIP), and (*PRUNE) cause the subroutine match to fail when triggered by being

backtracked to in a group called as a subroutine. There is then a backtrack at the outer level.

(*THEN), when triggered, skips to the next alternative in the innermost enclosing group that has

alternatives (its normal behaviour). However, if there is no such group within the subroutine’s group,

the subroutine match fails and there is a backtrack at the outer level.

SEE ALSO
pcre2api(3), pcre2callout(3), pcre2matching(3), pcre2syntax(3), pcre2(3).

AUTHOR
Philip Hazel

Retired from University Computing Service

Cambridge, England.

REVISION
Last updated: 12 January 2022

Copyright (c) 1997-2022 University of Cambridge.

PCRE2PATTERN(3) FreeBSD Library Functions Manual PCRE2PATTERN(3)

PCRE2 10.40 12 January 2022 PCRE2PATTERN(3)

