
NAME
PCRE2 - Perl-compatible regular expressions (revised API)

SYNOPSIS
#include <pcre2posix.h>

int pcre2_regcomp(regex_t *preg, const char *pattern,
int cflags);

int pcre2_regexec(const regex_t *preg, const char *string,
size_t nmatch, regmatch_t pmatch[], int eflags);

size_t pcre2_regerror(int errcode, const regex_t *preg,
char *errbuf, size_t errbuf_size);

void pcre2_regfree(regex_t *preg);

DESCRIPTION
This set of functions provides a POSIX-style API for the PCRE2 regular expression 8-bit library. There

are no POSIX-style wrappers for PCRE2’s 16-bit and 32-bit libraries. See the pcre2api documentation

for a description of PCRE2’s native API, which contains much additional functionality.

The functions described here are wrapper functions that ultimately call the PCRE2 native API. Their

prototypes are defined in the pcre2posix.h header file, and they all have unique names starting with

pcre2_. However, the pcre2posix.h header also contains macro definitions that convert the standard

POSIX names such regcomp() into pcre2_regcomp() etc. This means that a program can use the usual

POSIX names without running the risk of accidentally linking with POSIX functions from a different

library.

On Unix-like systems the PCRE2 POSIX library is called libpcre2-posix, so can be accessed by adding

-lpcre2-posix to the command for linking an application. Because the POSIX functions call the native

ones, it is also necessary to add -lpcre2-8.

Although they were not defined as protypes in pcre2posix.h, releases 10.33 to 10.36 of the library

contained functions with the POSIX names regcomp() etc. These simply passed their arguments to the

PCRE2 functions. These functions were provided for backwards compatibility with earlier versions of

PCRE2, which had only POSIX names. However, this has proved troublesome in situations where a

program links with several libraries, some of which use PCRE2’s POSIX interface while others use the

real POSIX functions. For this reason, the POSIX names have been removed since release 10.37.

PCRE2POSIX(3) FreeBSD Library Functions Manual PCRE2POSIX(3)

PCRE2 10.37 26 April 2021 PCRE2POSIX(3)



Calling the header file pcre2posix.h avoids any conflict with other POSIX libraries. It can, of course,

be renamed or aliased as regex.h, which is the "correct" name, if there is no clash. It provides two

structure types, regex_t for compiled internal forms, and regmatch_t for returning captured substrings.

It also defines some constants whose names start with "REG_"; these are used for setting options and

identifying error codes.

USING THE POSIX FUNCTIONS
Those POSIX option bits that can reasonably be mapped to PCRE2 native options have been

implemented. In addition, the option REG_EXTENDED is defined with the value zero. This has no

effect, but since programs that are written to the POSIX interface often use it, this makes it easier to

slot in PCRE2 as a replacement library. Other POSIX options are not even defined.

There are also some options that are not defined by POSIX. These have been added at the request of

users who want to make use of certain PCRE2-specific features via the POSIX calling interface or to

add BSD or GNU functionality.

When PCRE2 is called via these functions, it is only the API that is POSIX-like in style. The syntax

and semantics of the regular expressions themselves are still those of Perl, subject to the setting of

various PCRE2 options, as described below. "POSIX-like in style" means that the API approximates to

the POSIX definition; it is not fully POSIX-compatible, and in multi-unit encoding domains it is

probably even less compatible.

The descriptions below use the actual names of the functions, but, as described above, the standard

POSIX names (without the pcre2_ prefix) may also be used.

COMPILING A PATTERN
The function pcre2_regcomp() is called to compile a pattern into an internal form. By default, the

pattern is a C string terminated by a binary zero (but see REG_PEND below). The preg argument is a

pointer to a regex_t structure that is used as a base for storing information about the compiled regular

expression. (It is also used for input when REG_PEND is set.)

The argument cflags is either zero, or contains one or more of the bits defined by the following macros:

REG_DOTALL

The PCRE2_DOTALL option is set when the regular expression is passed for compilation to the native

function. Note that REG_DOTALL is not part of the POSIX standard.

REG_ICASE

PCRE2POSIX(3) FreeBSD Library Functions Manual PCRE2POSIX(3)

PCRE2 10.37 26 April 2021 PCRE2POSIX(3)



The PCRE2_CASELESS option is set when the regular expression is passed for compilation to the

native function.

REG_NEWLINE

The PCRE2_MULTILINE option is set when the regular expression is passed for compilation to the

native function. Note that this does not mimic the defined POSIX behaviour for REG_NEWLINE (see

the following section).

REG_NOSPEC

The PCRE2_LITERAL option is set when the regular expression is passed for compilation to the native

function. This disables all meta characters in the pattern, causing it to be treated as a literal string. The

only other options that are allowed with REG_NOSPEC are REG_ICASE, REG_NOSUB,

REG_PEND, and REG_UTF. Note that REG_NOSPEC is not part of the POSIX standard.

REG_NOSUB

When a pattern that is compiled with this flag is passed to pcre2_regexec() for matching, the nmatch

and pmatch arguments are ignored, and no captured strings are returned. Versions of the PCRE library

prior to 10.22 used to set the PCRE2_NO_AUTO_CAPTURE compile option, but this no longer

happens because it disables the use of backreferences.

REG_PEND

If this option is set, the reg_endp field in the preg structure (which has the type const char *) must be

set to point to the character beyond the end of the pattern before calling pcre2_regcomp(). The pattern

itself may now contain binary zeros, which are treated as data characters. Without REG_PEND, a

binary zero terminates the pattern and the re_endp field is ignored. This is a GNU extension to the

POSIX standard and should be used with caution in software intended to be portable to other systems.

REG_UCP

The PCRE2_UCP option is set when the regular expression is passed for compilation to the native

function. This causes PCRE2 to use Unicode properties when matchine \d, \w, etc., instead of just

recognizing ASCII values. Note that REG_UCP is not part of the POSIX standard.

REG_UNGREEDY

The PCRE2_UNGREEDY option is set when the regular expression is passed for compilation to the

PCRE2POSIX(3) FreeBSD Library Functions Manual PCRE2POSIX(3)

PCRE2 10.37 26 April 2021 PCRE2POSIX(3)



native function. Note that REG_UNGREEDY is not part of the POSIX standard.

REG_UTF

The PCRE2_UTF option is set when the regular expression is passed for compilation to the native

function. This causes the pattern itself and all data strings used for matching it to be treated as UTF-8

strings. Note that REG_UTF is not part of the POSIX standard.

In the absence of these flags, no options are passed to the native function. This means the the regex is

compiled with PCRE2 default semantics. In particular, the way it handles newline characters in the

subject string is the Perl way, not the POSIX way. Note that setting PCRE2_MULTILINE has only

some of the effects specified for REG_NEWLINE. It does not affect the way newlines are matched by

the dot metacharacter (they are not) or by a negative class such as [^a] (they are).

The yield of pcre2_regcomp() is zero on success, and non-zero otherwise. The preg structure is filled

in on success, and one other member of the structure (as well as re_endp) is public: re_nsub contains

the number of capturing subpatterns in the regular expression. Various error codes are defined in the

header file.

NOTE: If the yield of pcre2_regcomp() is non-zero, you must not attempt to use the contents of the

preg structure. If, for example, you pass it to pcre2_regexec(), the result is undefined and your program

is likely to crash.

MATCHING NEWLINE CHARACTERS
This area is not simple, because POSIX and Perl take different views of things. It is not possible to get

PCRE2 to obey POSIX semantics, but then PCRE2 was never intended to be a POSIX engine. The

following table lists the different possibilities for matching newline characters in Perl and PCRE2:

Default Change with

. matches newline no PCRE2_DOTALL

newline matches [^a] yes not changeable

$ matches \n at end yes PCRE2_DOLLAR_ENDONLY

$ matches \n in middle no PCRE2_MULTILINE

^ matches \n in middle no PCRE2_MULTILINE

This is the equivalent table for a POSIX-compatible pattern matcher:

Default Change with

PCRE2POSIX(3) FreeBSD Library Functions Manual PCRE2POSIX(3)

PCRE2 10.37 26 April 2021 PCRE2POSIX(3)



. matches newline yes REG_NEWLINE

newline matches [^a] yes REG_NEWLINE

$ matches \n at end no REG_NEWLINE

$ matches \n in middle no REG_NEWLINE

^ matches \n in middle no REG_NEWLINE

This behaviour is not what happens when PCRE2 is called via its POSIX API. By default, PCRE2’s

behaviour is the same as Perl’s, except that there is no equivalent for PCRE2_DOLLAR_ENDONLY

in Perl. In both PCRE2 and Perl, there is no way to stop newline from matching [^a].

Default POSIX newline handling can be obtained by setting PCRE2_DOTALL and

PCRE2_DOLLAR_ENDONLY when calling pcre2_compile() directly, but there is no way to make

PCRE2 behave exactly as for the REG_NEWLINE action. When using the POSIX API, passing

REG_NEWLINE to PCRE2’s pcre2_regcomp() function causes PCRE2_MULTILINE to be passed to

pcre2_compile(), and REG_DOTALL passes PCRE2_DOTALL. There is no way to pass

PCRE2_DOLLAR_ENDONLY.

MATCHING A PATTERN
The function pcre2_regexec() is called to match a compiled pattern preg against a given string, which is

by default terminated by a zero byte (but see REG_STARTEND below), subject to the options in

eflags. These can be:

REG_NOTBOL

The PCRE2_NOTBOL option is set when calling the underlying PCRE2 matching function.

REG_NOTEMPTY

The PCRE2_NOTEMPTY option is set when calling the underlying PCRE2 matching function. Note

that REG_NOTEMPTY is not part of the POSIX standard. However, setting this option can give more

POSIX-like behaviour in some situations.

REG_NOTEOL

The PCRE2_NOTEOL option is set when calling the underlying PCRE2 matching function.

REG_STARTEND

When this option is set, the subject string starts at string + pmatch[0].rm_so and ends at string +

pmatch[0].rm_eo, which should point to the first character beyond the string. There may be binary

PCRE2POSIX(3) FreeBSD Library Functions Manual PCRE2POSIX(3)

PCRE2 10.37 26 April 2021 PCRE2POSIX(3)



zeros within the subject string, and indeed, using REG_STARTEND is the only way to pass a subject

string that contains a binary zero.

Whatever the value of pmatch[0].rm_so, the offsets of the matched string and any captured substrings

are still given relative to the start of string itself. (Before PCRE2 release 10.30 these were given

relative to string + pmatch[0].rm_so, but this differs from other implementations.)

This is a BSD extension, compatible with but not specified by IEEE Standard 1003.2 (POSIX.2), and

should be used with caution in software intended to be portable to other systems. Note that a non-zero

rm_so does not imply REG_NOTBOL; REG_STARTEND affects only the location and length of the

string, not how it is matched. Setting REG_STARTEND and passing pmatch as NULL are mutually

exclusive; the error REG_INVARG is returned.

If the pattern was compiled with the REG_NOSUB flag, no data about any matched strings is returned.

The nmatch and pmatch arguments of pcre2_regexec() are ignored (except possibly as input for

REG_STARTEND).

The value of nmatch may be zero, and the value pmatch may be NULL (unless REG_STARTEND is

set); in both these cases no data about any matched strings is returned.

Otherwise, the portion of the string that was matched, and also any captured substrings, are returned via

the pmatch argument, which points to an array of nmatch structures of type regmatch_t, containing the

members rm_so and rm_eo. These contain the byte offset to the first character of each substring and the

offset to the first character after the end of each substring, respectively. The 0th element of the vector

relates to the entire portion of string that was matched; subsequent elements relate to the capturing

subpatterns of the regular expression. Unused entries in the array have both structure members set to

-1.

A successful match yields a zero return; various error codes are defined in the header file, of which

REG_NOMATCH is the "expected" failure code.

ERROR MESSAGES
The pcre2_regerror() function maps a non-zero errorcode from either pcre2_regcomp() or

pcre2_regexec() to a printable message. If preg is not NULL, the error should have arisen from the use

of that structure. A message terminated by a binary zero is placed in errbuf. If the buffer is too short,

only the first errbuf_size - 1 characters of the error message are used. The yield of the function is the

size of buffer needed to hold the whole message, including the terminating zero. This value is greater

than errbuf_size if the message was truncated.

MEMORY USAGE

PCRE2POSIX(3) FreeBSD Library Functions Manual PCRE2POSIX(3)

PCRE2 10.37 26 April 2021 PCRE2POSIX(3)



Compiling a regular expression causes memory to be allocated and associated with the preg structure.

The function pcre2_regfree() frees all such memory, after which preg may no longer be used as a

compiled expression.

AUTHOR
Philip Hazel

University Computing Service

Cambridge, England.

REVISION
Last updated: 26 April 2021

Copyright (c) 1997-2021 University of Cambridge.

PCRE2POSIX(3) FreeBSD Library Functions Manual PCRE2POSIX(3)

PCRE2 10.37 26 April 2021 PCRE2POSIX(3)


