
NAME
PCRE - Perl-compatible regular expressions

PCRE JUST-IN-TIME COMPILER SUPPORT
Just-in-time compiling is a heavyweight optimization that can greatly speed up pattern matching.

However, it comes at the cost of extra processing before the match is performed. Therefore, it is of

most benefit when the same pattern is going to be matched many times. This does not necessarily mean

many calls of a matching function; if the pattern is not anchored, matching attempts may take place

many times at various positions in the subject, even for a single call. Therefore, if the subject string is

very long, it may still pay to use JIT for one-off matches.

JIT support applies only to the traditional Perl-compatible matching function. It does not apply when

the DFA matching function is being used. The code for this support was written by Zoltan Herczeg.

8-BIT, 16-BIT AND 32-BIT SUPPORT
JIT support is available for all of the 8-bit, 16-bit and 32-bit PCRE libraries. To keep this

documentation simple, only the 8-bit interface is described in what follows. If you are using the 16-bit

library, substitute the 16-bit functions and 16-bit structures (for example, pcre16_jit_stack instead of

pcre_jit_stack). If you are using the 32-bit library, substitute the 32-bit functions and 32-bit structures

(for example, pcre32_jit_stack instead of pcre_jit_stack).

AVAILABILITY OF JIT SUPPORT
JIT support is an optional feature of PCRE. The "configure" option --enable-jit (or equivalent CMake

option) must be set when PCRE is built if you want to use JIT. The support is limited to the following

hardware platforms:

ARM v5, v7, and Thumb2

Intel x86 32-bit and 64-bit

MIPS 32-bit

Power PC 32-bit and 64-bit

SPARC 32-bit (experimental)

If --enable-jit is set on an unsupported platform, compilation fails.

A program that is linked with PCRE 8.20 or later can tell if JIT support is available by calling

pcre_config() with the PCRE_CONFIG_JIT option. The result is 1 when JIT is available, and 0

otherwise. However, a simple program does not need to check this in order to use JIT. The normal API

is implemented in a way that falls back to the interpretive code if JIT is not available. For programs

that need the best possible performance, there is also a "fast path" API that is JIT-specific.

PCREJIT(3) FreeBSD Library Functions Manual PCREJIT(3)

PCRE 8.41 05 July 2017 PCREJIT(3)

If your program may sometimes be linked with versions of PCRE that are older than 8.20, but you want

to use JIT when it is available, you can test the values of PCRE_MAJOR and PCRE_MINOR, or the

existence of a JIT macro such as PCRE_CONFIG_JIT, for compile-time control of your code. Also

beware that the pcre_jit_exec() function was not available at all before 8.32, and may not be available

at all if PCRE isn’t compiled with --enable-jit. See the "JIT FAST PATH API" section below for

details.

SIMPLE USE OF JIT
You have to do two things to make use of the JIT support in the simplest way:

(1) Call pcre_study() with the PCRE_STUDY_JIT_COMPILE option for

each compiled pattern, and pass the resulting pcre_extra block to

pcre_exec().

(2) Use pcre_free_study() to free the pcre_extra block when it is

no longer needed, instead of just freeing it yourself. This ensures that

any JIT data is also freed.

For a program that may be linked with pre-8.20 versions of PCRE, you can insert

#ifndef PCRE_STUDY_JIT_COMPILE

#define PCRE_STUDY_JIT_COMPILE 0

#endif

so that no option is passed to pcre_study(), and then use something like this to free the study data:

#ifdef PCRE_CONFIG_JIT

pcre_free_study(study_ptr);

#else

pcre_free(study_ptr);

#endif

PCRE_STUDY_JIT_COMPILE requests the JIT compiler to generate code for complete matches. If

you want to run partial matches using the PCRE_PARTIAL_HARD or PCRE_PARTIAL_SOFT

options of pcre_exec(), you should set one or both of the following options in addition to, or instead of,

PCRE_STUDY_JIT_COMPILE when you call pcre_study():

PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE

PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE

PCREJIT(3) FreeBSD Library Functions Manual PCREJIT(3)

PCRE 8.41 05 July 2017 PCREJIT(3)

If using pcre_jit_exec() and supporting a pre-8.32 version of PCRE, you can insert:

#if PCRE_MAJOR >= 8 && PCRE_MINOR >= 32

pcre_jit_exec(...);

#else

pcre_exec(...)

#endif

but as described in the "JIT FAST PATH API" section below this assumes version 8.32 and later are

compiled with --enable-jit, which may break.

The JIT compiler generates different optimized code for each of the three modes (normal, soft partial,

hard partial). When pcre_exec() is called, the appropriate code is run if it is available. Otherwise, the

pattern is matched using interpretive code.

In some circumstances you may need to call additional functions. These are described in the section

entitled "Controlling the JIT stack" below.

If JIT support is not available, PCRE_STUDY_JIT_COMPILE etc. are ignored, and no JIT data is

created. Otherwise, the compiled pattern is passed to the JIT compiler, which turns it into machine code

that executes much faster than the normal interpretive code. When pcre_exec() is passed a pcre_extra
block containing a pointer to JIT code of the appropriate mode (normal or hard/soft partial), it obeys

that code instead of running the interpreter. The result is identical, but the compiled JIT code runs

much faster.

There are some pcre_exec() options that are not supported for JIT execution. There are also some

pattern items that JIT cannot handle. Details are given below. In both cases, execution automatically

falls back to the interpretive code. If you want to know whether JIT was actually used for a particular

match, you should arrange for a JIT callback function to be set up as described in the section entitled

"Controlling the JIT stack" below, even if you do not need to supply a non-default JIT stack. Such a

callback function is called whenever JIT code is about to be obeyed. If the execution options are not

right for JIT execution, the callback function is not obeyed.

If the JIT compiler finds an unsupported item, no JIT data is generated. You can find out if JIT

execution is available after studying a pattern by calling pcre_fullinfo() with the PCRE_INFO_JIT

option. A result of 1 means that JIT compilation was successful. A result of 0 means that JIT support is

not available, or the pattern was not studied with PCRE_STUDY_JIT_COMPILE etc., or the JIT

compiler was not able to handle the pattern.

Once a pattern has been studied, with or without JIT, it can be used as many times as you like for

PCREJIT(3) FreeBSD Library Functions Manual PCREJIT(3)

PCRE 8.41 05 July 2017 PCREJIT(3)

matching different subject strings.

UNSUPPORTED OPTIONS AND PATTERN ITEMS
The only pcre_exec() options that are supported for JIT execution are PCRE_NO_UTF8_CHECK,

PCRE_NO_UTF16_CHECK, PCRE_NO_UTF32_CHECK, PCRE_NOTBOL, PCRE_NOTEOL,

PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART, PCRE_PARTIAL_HARD, and

PCRE_PARTIAL_SOFT.

The only unsupported pattern items are \C (match a single data unit) when running in a UTF mode, and

a callout immediately before an assertion condition in a conditional group.

RETURN VALUES FROM JIT EXECUTION
When a pattern is matched using JIT execution, the return values are the same as those given by the

interpretive pcre_exec() code, with the addition of one new error code:

PCRE_ERROR_JIT_STACKLIMIT. This means that the memory used for the JIT stack was

insufficient. See "Controlling the JIT stack" below for a discussion of JIT stack usage. For

compatibility with the interpretive pcre_exec() code, no more than two-thirds of the ovector argument

is used for passing back captured substrings.

The error code PCRE_ERROR_MATCHLIMIT is returned by the JIT code if searching a very large

pattern tree goes on for too long, as it is in the same circumstance when JIT is not used, but the details

of exactly what is counted are not the same. The PCRE_ERROR_RECURSIONLIMIT error code is

never returned by JIT execution.

SAVING AND RESTORING COMPILED PATTERNS
The code that is generated by the JIT compiler is architecture-specific, and is also position dependent.

For those reasons it cannot be saved (in a file or database) and restored later like the bytecode and other

data of a compiled pattern. Saving and restoring compiled patterns is not something many people do.

More detail about this facility is given in the pcreprecompile documentation. It should be possible to

run pcre_study() on a saved and restored pattern, and thereby recreate the JIT data, but because JIT

compilation uses significant resources, it is probably not worth doing this; you might as well recompile

the original pattern.

CONTROLLING THE JIT STACK
When the compiled JIT code runs, it needs a block of memory to use as a stack. By default, it uses

32K on the machine stack. However, some large or complicated patterns need more than this. The error

PCRE_ERROR_JIT_STACKLIMIT is given when there is not enough stack. Three functions are

provided for managing blocks of memory for use as JIT stacks. There is further discussion about the

use of JIT stacks in the section entitled "JIT stack FAQ" below.

PCREJIT(3) FreeBSD Library Functions Manual PCREJIT(3)

PCRE 8.41 05 July 2017 PCREJIT(3)

The pcre_jit_stack_alloc() function creates a JIT stack. Its arguments are a starting size and a

maximum size, and it returns a pointer to an opaque structure of type pcre_jit_stack, or NULL if there

is an error. The pcre_jit_stack_free() function can be used to free a stack that is no longer needed. (For

the technically minded: the address space is allocated by mmap or VirtualAlloc.)

JIT uses far less memory for recursion than the interpretive code, and a maximum stack size of 512K to

1M should be more than enough for any pattern.

The pcre_assign_jit_stack() function specifies which stack JIT code should use. Its arguments are as

follows:

pcre_extra *extra

pcre_jit_callback callback

void *data

The extra argument must be the result of studying a pattern with PCRE_STUDY_JIT_COMPILE etc.

There are three cases for the values of the other two options:

(1) If callback is NULL and data is NULL, an internal 32K block

on the machine stack is used.

(2) If callback is NULL and data is not NULL, data must be

a valid JIT stack, the result of calling pcre_jit_stack_alloc().

(3) If callback is not NULL, it must point to a function that is

called with data as an argument at the start of matching, in

order to set up a JIT stack. If the return from the callback

function is NULL, the internal 32K stack is used; otherwise the

return value must be a valid JIT stack, the result of calling

pcre_jit_stack_alloc().

A callback function is obeyed whenever JIT code is about to be run; it is not obeyed when pcre_exec()
is called with options that are incompatible for JIT execution. A callback function can therefore be used

to determine whether a match operation was executed by JIT or by the interpreter.

You may safely use the same JIT stack for more than one pattern (either by assigning directly or by

callback), as long as the patterns are all matched sequentially in the same thread. In a multithread

application, if you do not specify a JIT stack, or if you assign or pass back NULL from a callback, that

is thread-safe, because each thread has its own machine stack. However, if you assign or pass back a

non-NULL JIT stack, this must be a different stack for each thread so that the application is thread-

PCREJIT(3) FreeBSD Library Functions Manual PCREJIT(3)

PCRE 8.41 05 July 2017 PCREJIT(3)

safe.

Strictly speaking, even more is allowed. You can assign the same non-NULL stack to any number of

patterns as long as they are not used for matching by multiple threads at the same time. For example,

you can assign the same stack to all compiled patterns, and use a global mutex in the callback to wait

until the stack is available for use. However, this is an inefficient solution, and not recommended.

This is a suggestion for how a multithreaded program that needs to set up non-default JIT stacks might

operate:

During thread initialization

thread_local_var = pcre_jit_stack_alloc(...)

During thread exit

pcre_jit_stack_free(thread_local_var)

Use a one-line callback function

return thread_local_var

All the functions described in this section do nothing if JIT is not available, and pcre_assign_jit_stack()
does nothing unless the extra argument is non-NULL and points to a pcre_extra block that is the result

of a successful study with PCRE_STUDY_JIT_COMPILE etc.

JIT STACK FAQ
(1) Why do we need JIT stacks?

PCRE (and JIT) is a recursive, depth-first engine, so it needs a stack where the local data of the current

node is pushed before checking its child nodes. Allocating real machine stack on some platforms is

difficult. For example, the stack chain needs to be updated every time if we extend the stack on

PowerPC. Although it is possible, its updating time overhead decreases performance. So we do the

recursion in memory.

(2) Why don’t we simply allocate blocks of memory with malloc()?

Modern operating systems have a nice feature: they can reserve an address space instead of allocating

memory. We can safely allocate memory pages inside this address space, so the stack could grow

without moving memory data (this is important because of pointers). Thus we can allocate 1M address

space, and use only a single memory page (usually 4K) if that is enough. However, we can still grow

up to 1M anytime if needed.

PCREJIT(3) FreeBSD Library Functions Manual PCREJIT(3)

PCRE 8.41 05 July 2017 PCREJIT(3)

(3) Who "owns" a JIT stack?

The owner of the stack is the user program, not the JIT studied pattern or anything else. The user

program must ensure that if a stack is used by pcre_exec(), (that is, it is assigned to the pattern

currently running), that stack must not be used by any other threads (to avoid overwriting the same

memory area). The best practice for multithreaded programs is to allocate a stack for each thread, and

return this stack through the JIT callback function.

(4) When should a JIT stack be freed?

You can free a JIT stack at any time, as long as it will not be used by pcre_exec() again. When you

assign the stack to a pattern, only a pointer is set. There is no reference counting or any other magic.

You can free the patterns and stacks in any order, anytime. Just do not call pcre_exec() with a pattern

pointing to an already freed stack, as that will cause SEGFAULT. (Also, do not free a stack currently

used by pcre_exec() in another thread). You can also replace the stack for a pattern at any time. You

can even free the previous stack before assigning a replacement.

(5) Should I allocate/free a stack every time before/after calling pcre_exec()?

No, because this is too costly in terms of resources. However, you could implement some clever idea

which release the stack if it is not used in let’s say two minutes. The JIT callback can help to achieve

this without keeping a list of the currently JIT studied patterns.

(6) OK, the stack is for long term memory allocation. But what happens if a pattern causes stack

overflow with a stack of 1M? Is that 1M kept until the stack is freed?

Especially on embedded sytems, it might be a good idea to release memory sometimes without freeing

the stack. There is no API for this at the moment. Probably a function call which returns with the

currently allocated memory for any stack and another which allows releasing memory (shrinking the

stack) would be a good idea if someone needs this.

(7) This is too much of a headache. Isn’t there any better solution for JIT stack handling?

No, thanks to Windows. If POSIX threads were used everywhere, we could throw out this complicated

API.

EXAMPLE CODE
This is a single-threaded example that specifies a JIT stack without using a callback.

int rc;

PCREJIT(3) FreeBSD Library Functions Manual PCREJIT(3)

PCRE 8.41 05 July 2017 PCREJIT(3)

int ovector[30];

pcre *re;

pcre_extra *extra;

pcre_jit_stack *jit_stack;

re = pcre_compile(pattern, 0, &error, &erroffset, NULL);

/* Check for errors */

extra = pcre_study(re, PCRE_STUDY_JIT_COMPILE, &error);

jit_stack = pcre_jit_stack_alloc(32*1024, 512*1024);

/* Check for error (NULL) */

pcre_assign_jit_stack(extra, NULL, jit_stack);

rc = pcre_exec(re, extra, subject, length, 0, 0, ovector, 30);

/* Check results */

pcre_free(re);

pcre_free_study(extra);

pcre_jit_stack_free(jit_stack);

JIT FAST PATH API
Because the API described above falls back to interpreted execution when JIT is not available, it is

convenient for programs that are written for general use in many environments. However, calling JIT

via pcre_exec() does have a performance impact. Programs that are written for use where JIT is known

to be available, and which need the best possible performance, can instead use a "fast path" API to call

JIT execution directly instead of calling pcre_exec() (obviously only for patterns that have been

successfully studied by JIT).

The fast path function is called pcre_jit_exec(), and it takes exactly the same arguments as pcre_exec(),
plus one additional argument that must point to a JIT stack. The JIT stack arrangements described

above do not apply. The return values are the same as for pcre_exec().

When you call pcre_exec(), as well as testing for invalid options, a number of other sanity checks are

performed on the arguments. For example, if the subject pointer is NULL, or its length is negative, an

immediate error is given. Also, unless PCRE_NO_UTF[8|16|32] is set, a UTF subject string is tested

for validity. In the interests of speed, these checks do not happen on the JIT fast path, and if invalid

data is passed, the result is undefined.

Bypassing the sanity checks and the pcre_exec() wrapping can give speedups of more than 10%.

Note that the pcre_jit_exec() function is not available in versions of PCRE before 8.32 (released in

November 2012). If you need to support versions that old you must either use the slower pcre_exec(),

PCREJIT(3) FreeBSD Library Functions Manual PCREJIT(3)

PCRE 8.41 05 July 2017 PCREJIT(3)

or switch between the two codepaths by checking the values of PCRE_MAJOR and PCRE_MINOR.

Due to an unfortunate implementation oversight, even in versions 8.32 and later there will be no

pcre_jit_exec() stub function defined when PCRE is compiled with --disable-jit, which is the default,

and there’s no way to detect whether PCRE was compiled with --enable-jit via a macro.

If you need to support versions older than 8.32, or versions that may not build with --enable-jit, you

must either use the slower pcre_exec(), or switch between the two codepaths by checking the values of

PCRE_MAJOR and PCRE_MINOR.

Switching between the two by checking the version assumes that all the versions being targeted are

built with --enable-jit. To also support builds that may use --disable-jit either pcre_exec() must be used,

or a compile-time check for JIT via pcre_config() (which assumes the runtime environment will be the

same), or as the Git project decided to do, simply assume that pcre_jit_exec() is present in 8.32 or later

unless a compile-time flag is provided, see the "grep: un-break building with PCRE >= 8.32 without

--enable-jit" commit in git.git for an example of that.

SEE ALSO
pcreapi(3)

AUTHOR
Philip Hazel (FAQ by Zoltan Herczeg)

University Computing Service

Cambridge CB2 3QH, England.

REVISION
Last updated: 05 July 2017

Copyright (c) 1997-2017 University of Cambridge.

PCREJIT(3) FreeBSD Library Functions Manual PCREJIT(3)

PCRE 8.41 05 July 2017 PCREJIT(3)

