
NAME
PCRE - Perl-compatible regular expressions.

SYNOPSIS
#include <pcreposix.h>

int regcomp(regex_t *preg, const char *pattern,
int cflags);

int regexec(regex_t *preg, const char *string,
size_t nmatch, regmatch_t pmatch[], int eflags);
size_t regerror(int errcode, const regex_t *preg,
char *errbuf, size_t errbuf_size);

void regfree(regex_t *preg);

DESCRIPTION
This set of functions provides a POSIX-style API for the PCRE regular expression 8-bit library. See the

pcreapi documentation for a description of PCRE’s native API, which contains much additional

functionality. There is no POSIX-style wrapper for PCRE’s 16-bit and 32-bit library.

The functions described here are just wrapper functions that ultimately call the PCRE native API. Their

prototypes are defined in the pcreposix.h header file, and on Unix systems the library itself is called

pcreposix.a, so can be accessed by adding -lpcreposix to the command for linking an application that

uses them. Because the POSIX functions call the native ones, it is also necessary to add -lpcre.

I have implemented only those POSIX option bits that can be reasonably mapped to PCRE native

options. In addition, the option REG_EXTENDED is defined with the value zero. This has no effect,

but since programs that are written to the POSIX interface often use it, this makes it easier to slot in

PCRE as a replacement library. Other POSIX options are not even defined.

There are also some other options that are not defined by POSIX. These have been added at the request

of users who want to make use of certain PCRE-specific features via the POSIX calling interface.

When PCRE is called via these functions, it is only the API that is POSIX-like in style. The syntax and

semantics of the regular expressions themselves are still those of Perl, subject to the setting of various

PCRE options, as described below. "POSIX-like in style" means that the API approximates to the

POSIX definition; it is not fully POSIX-compatible, and in multi-byte encoding domains it is probably

even less compatible.

PCREPOSIX(3) FreeBSD Library Functions Manual PCREPOSIX(3)

PCRE 8.30 09 January 2012 PCREPOSIX(3)



The header for these functions is supplied as pcreposix.h to avoid any potential clash with other POSIX

libraries. It can, of course, be renamed or aliased as regex.h, which is the "correct" name. It provides

two structure types, regex_t for compiled internal forms, and regmatch_t for returning captured

substrings. It also defines some constants whose names start with "REG_"; these are used for setting

options and identifying error codes.

COMPILING A PATTERN
The function regcomp() is called to compile a pattern into an internal form. The pattern is a C string

terminated by a binary zero, and is passed in the argument pattern. The preg argument is a pointer to a

regex_t structure that is used as a base for storing information about the compiled regular expression.

The argument cflags is either zero, or contains one or more of the bits defined by the following macros:

REG_DOTALL

The PCRE_DOTALL option is set when the regular expression is passed for compilation to the native

function. Note that REG_DOTALL is not part of the POSIX standard.

REG_ICASE

The PCRE_CASELESS option is set when the regular expression is passed for compilation to the

native function.

REG_NEWLINE

The PCRE_MULTILINE option is set when the regular expression is passed for compilation to the

native function. Note that this does not mimic the defined POSIX behaviour for REG_NEWLINE (see

the following section).

REG_NOSUB

The PCRE_NO_AUTO_CAPTURE option is set when the regular expression is passed for compilation

to the native function. In addition, when a pattern that is compiled with this flag is passed to regexec()
for matching, the nmatch and pmatch arguments are ignored, and no captured strings are returned.

REG_UCP

The PCRE_UCP option is set when the regular expression is passed for compilation to the native

function. This causes PCRE to use Unicode properties when matchine \d, \w, etc., instead of just

recognizing ASCII values. Note that REG_UTF8 is not part of the POSIX standard.

PCREPOSIX(3) FreeBSD Library Functions Manual PCREPOSIX(3)

PCRE 8.30 09 January 2012 PCREPOSIX(3)



REG_UNGREEDY

The PCRE_UNGREEDY option is set when the regular expression is passed for compilation to the

native function. Note that REG_UNGREEDY is not part of the POSIX standard.

REG_UTF8

The PCRE_UTF8 option is set when the regular expression is passed for compilation to the native

function. This causes the pattern itself and all data strings used for matching it to be treated as UTF-8

strings. Note that REG_UTF8 is not part of the POSIX standard.

In the absence of these flags, no options are passed to the native function. This means the the regex is

compiled with PCRE default semantics. In particular, the way it handles newline characters in the

subject string is the Perl way, not the POSIX way. Note that setting PCRE_MULTILINE has only

some of the effects specified for REG_NEWLINE. It does not affect the way newlines are matched by .

(they are not) or by a negative class such as [^a] (they are).

The yield of regcomp() is zero on success, and non-zero otherwise. The preg structure is filled in on

success, and one member of the structure is public: re_nsub contains the number of capturing

subpatterns in the regular expression. Various error codes are defined in the header file.

NOTE: If the yield of regcomp() is non-zero, you must not attempt to use the contents of the preg

structure. If, for example, you pass it to regexec(), the result is undefined and your program is likely to

crash.

MATCHING NEWLINE CHARACTERS
This area is not simple, because POSIX and Perl take different views of things. It is not possible to get

PCRE to obey POSIX semantics, but then PCRE was never intended to be a POSIX engine. The

following table lists the different possibilities for matching newline characters in PCRE:

Default Change with

. matches newline no PCRE_DOTALL

newline matches [^a] yes not changeable

$ matches \n at end yes PCRE_DOLLARENDONLY

$ matches \n in middle no PCRE_MULTILINE

^ matches \n in middle no PCRE_MULTILINE

This is the equivalent table for POSIX:

PCREPOSIX(3) FreeBSD Library Functions Manual PCREPOSIX(3)

PCRE 8.30 09 January 2012 PCREPOSIX(3)



Default Change with

. matches newline yes REG_NEWLINE

newline matches [^a] yes REG_NEWLINE

$ matches \n at end no REG_NEWLINE

$ matches \n in middle no REG_NEWLINE

^ matches \n in middle no REG_NEWLINE

PCRE’s behaviour is the same as Perl’s, except that there is no equivalent for

PCRE_DOLLAR_ENDONLY in Perl. In both PCRE and Perl, there is no way to stop newline from

matching [^a].

The default POSIX newline handling can be obtained by setting PCRE_DOTALL and

PCRE_DOLLAR_ENDONLY, but there is no way to make PCRE behave exactly as for the

REG_NEWLINE action.

MATCHING A PATTERN
The function regexec() is called to match a compiled pattern preg against a given string, which is by

default terminated by a zero byte (but see REG_STARTEND below), subject to the options in eflags.

These can be:

REG_NOTBOL

The PCRE_NOTBOL option is set when calling the underlying PCRE matching function.

REG_NOTEMPTY

The PCRE_NOTEMPTY option is set when calling the underlying PCRE matching function. Note that

REG_NOTEMPTY is not part of the POSIX standard. However, setting this option can give more

POSIX-like behaviour in some situations.

REG_NOTEOL

The PCRE_NOTEOL option is set when calling the underlying PCRE matching function.

REG_STARTEND

The string is considered to start at string + pmatch[0].rm_so and to have a terminating NUL located at

string + pmatch[0].rm_eo (there need not actually be a NUL at that location), regardless of the value of

nmatch. This is a BSD extension, compatible with but not specified by IEEE Standard 1003.2

PCREPOSIX(3) FreeBSD Library Functions Manual PCREPOSIX(3)

PCRE 8.30 09 January 2012 PCREPOSIX(3)



(POSIX.2), and should be used with caution in software intended to be portable to other systems. Note

that a non-zero rm_so does not imply REG_NOTBOL; REG_STARTEND affects only the location of

the string, not how it is matched.

If the pattern was compiled with the REG_NOSUB flag, no data about any matched strings is returned.

The nmatch and pmatch arguments of regexec() are ignored.

If the value of nmatch is zero, or if the value pmatch is NULL, no data about any matched strings is

returned.

Otherwise,the portion of the string that was matched, and also any captured substrings, are returned via

the pmatch argument, which points to an array of nmatch structures of type regmatch_t, containing the

members rm_so and rm_eo. These contain the offset to the first character of each substring and the

offset to the first character after the end of each substring, respectively. The 0th element of the vector

relates to the entire portion of string that was matched; subsequent elements relate to the capturing

subpatterns of the regular expression. Unused entries in the array have both structure members set to

-1.

A successful match yields a zero return; various error codes are defined in the header file, of which

REG_NOMATCH is the "expected" failure code.

ERROR MESSAGES
The regerror() function maps a non-zero errorcode from either regcomp() or regexec() to a printable

message. If preg is not NULL, the error should have arisen from the use of that structure. A message

terminated by a binary zero is placed in errbuf. The length of the message, including the zero, is limited

to errbuf_size. The yield of the function is the size of buffer needed to hold the whole message.

MEMORY USAGE
Compiling a regular expression causes memory to be allocated and associated with the preg structure.

The function regfree() frees all such memory, after which preg may no longer be used as a compiled

expression.

AUTHOR
Philip Hazel

University Computing Service

Cambridge CB2 3QH, England.

REVISION
Last updated: 09 January 2012

Copyright (c) 1997-2012 University of Cambridge.

PCREPOSIX(3) FreeBSD Library Functions Manual PCREPOSIX(3)

PCRE 8.30 09 January 2012 PCREPOSIX(3)


