
NAME
perldebguts - Guts of Perl debugging

DESCRIPTION
This is not perldebug, which tells you how to use the debugger. This manpage describes low-level

details concerning the debugger’s internals, which range from difficult to impossible to understand for

anyone who isn’t incredibly intimate with Perl’s guts. Caveat lector.

Debugger Internals
Perl has special debugging hooks at compile-time and run-time used to create debugging environments.

These hooks are not to be confused with the perl -Dxxx command described in perlrun, which is usable

only if a special Perl is built per the instructions in the INSTALL podpage in the Perl source tree.

For example, whenever you call Perl’s built-in "caller" function from the package "DB", the arguments

that the corresponding stack frame was called with are copied to the @DB::args array. These

mechanisms are enabled by calling Perl with the -d switch. Specifically, the following additional

features are enabled (cf. "$^P" in perlvar):

+o Perl inserts the contents of $ENV{PERL5DB} (or "BEGIN {require ’perl5db.pl’}" if not present)

before the first line of your program.

+o Each array "@{"_<$filename"}" holds the lines of $filename for a file compiled by Perl. The

same is also true for "eval"ed strings that contain subroutines, or which are currently being

executed. The $filename for "eval"ed strings looks like "(eval 34)".

Values in this array are magical in numeric context: they compare equal to zero only if the line is

not breakable.

+o Each hash "%{"_<$filename"}" contains breakpoints and actions keyed by line number.

Individual entries (as opposed to the whole hash) are settable. Perl only cares about Boolean true

here, although the values used by perl5db.pl have the form "$break_condition\0$action".

The same holds for evaluated strings that contain subroutines, or which are currently being

executed. The $filename for "eval"ed strings looks like "(eval 34)".

+o Each scalar "${"_<$filename"}" contains $filename. This is also the case for evaluated strings

that contain subroutines, or which are currently being executed. The $filename for "eval"ed

strings looks like "(eval 34)".

+o After each "require"d file is compiled, but before it is executed,

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

"DB::postponed(*{"_<$filename"})" is called if the subroutine "DB::postponed" exists. Here, the

$filename is the expanded name of the "require"d file, as found in the values of %INC.

+o After each subroutine "subname" is compiled, the existence of $DB::postponed{subname} is

checked. If this key exists, "DB::postponed(subname)" is called if the "DB::postponed"

subroutine also exists.

+o A hash %DB::sub is maintained, whose keys are subroutine names and whose values have the

form "filename:startline-endline". "filename" has the form "(eval 34)" for subroutines defined

inside "eval"s.

+o When the execution of your program reaches a point that can hold a breakpoint, the "DB::DB()"

subroutine is called if any of the variables $DB::trace, $DB::single, or $DB::signal is true. These

variables are not "local"izable. This feature is disabled when executing inside "DB::DB()",

including functions called from it unless "$^D & (1<<30)" is true.

+o When execution of the program reaches a subroutine call, a call to &DB::sub(args) is made

instead, with $DB::sub set to identify the called subroutine. (This doesn’t happen if the calling

subroutine was compiled in the "DB" package.) $DB::sub normally holds the name of the called

subroutine, if it has a name by which it can be looked up. Failing that, $DB::sub will hold a

reference to the called subroutine. Either way, the &DB::sub subroutine can use $DB::sub as a

reference by which to call the called subroutine, which it will normally want to do.

If the call is to an lvalue subroutine, and &DB::lsub is defined &DB::lsub(args) is called instead,

otherwise falling back to &DB::sub(args).

+o When execution of the program uses "goto" to enter a non-XS subroutine and the 0x80 bit is set in

$^P, a call to &DB::goto is made, with $DB::sub set to identify the subroutine being entered. The

call to &DB::goto does not replace the "goto"; the requested subroutine will still be entered once

&DB::goto has returned. $DB::sub normally holds the name of the subroutine being entered, if it

has one. Failing that, $DB::sub will hold a reference to the subroutine being entered. Unlike

when &DB::sub is called, it is not guaranteed that $DB::sub can be used as a reference to operate

on the subroutine being entered.

Note that if &DB::sub needs external data for it to work, no subroutine call is possible without it. As an

example, the standard debugger’s &DB::sub depends on the $DB::deep variable (it defines how many

levels of recursion deep into the debugger you can go before a mandatory break). If $DB::deep is not

defined, subroutine calls are not possible, even though &DB::sub exists.

Writing Your Own Debugger

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Environment Variables

The "PERL5DB" environment variable can be used to define a debugger. For example, the minimal

"working" debugger (it actually doesn’t do anything) consists of one line:

sub DB::DB {}

It can easily be defined like this:

$ PERL5DB="sub DB::DB {}" perl -d your-script

Another brief debugger, slightly more useful, can be created with only the line:

sub DB::DB {print ++$i; scalar <STDIN>}

This debugger prints a number which increments for each statement encountered and waits for you to

hit a newline before continuing to the next statement.

The following debugger is actually useful:

{

package DB;

sub DB {}

sub sub {print ++$i, " $sub\n"; &$sub}

}

It prints the sequence number of each subroutine call and the name of the called subroutine. Note that

&DB::sub is being compiled into the package "DB" through the use of the "package" directive.

When it starts, the debugger reads your rc file (./.perldb or ~/.perldb under Unix), which can set

important options. (A subroutine (&afterinit) can be defined here as well; it is executed after the

debugger completes its own initialization.)

After the rc file is read, the debugger reads the PERLDB_OPTS environment variable and uses it to set

debugger options. The contents of this variable are treated as if they were the argument of an "o ..."

debugger command (q.v. in "Configurable Options" in perldebug).

Debugger Internal Variables

In addition to the file and subroutine-related variables mentioned above, the debugger also maintains

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

various magical internal variables.

+o @DB::dbline is an alias for "@{"::_<current_file"}", which holds the lines of the currently-

selected file (compiled by Perl), either explicitly chosen with the debugger’s "f" command, or

implicitly by flow of execution.

Values in this array are magical in numeric context: they compare equal to zero only if the line is

not breakable.

+o %DB::dbline is an alias for "%{"::_<current_file"}", which contains breakpoints and actions

keyed by line number in the currently-selected file, either explicitly chosen with the debugger’s

"f" command, or implicitly by flow of execution.

As previously noted, individual entries (as opposed to the whole hash) are settable. Perl only

cares about Boolean true here, although the values used by perl5db.pl have the form

"$break_condition\0$action".

Debugger Customization Functions

Some functions are provided to simplify customization.

+o See "Configurable Options" in perldebug for a description of options parsed by

"DB::parse_options(string)".

+o "DB::dump_trace(skip[,count])" skips the specified number of frames and returns a list containing

information about the calling frames (all of them, if "count" is missing). Each entry is reference to

a hash with keys "context" (either ".", "$", or "@"), "sub" (subroutine name, or info about "eval"),

"args" ("undef" or a reference to an array), "file", and "line".

+o "DB::print_trace(FH, skip[, count[, short]])" prints formatted info about caller frames. The last

two functions may be convenient as arguments to "<", "<<" commands.

Note that any variables and functions that are not documented in this manpages (or in perldebug) are

considered for internal use only, and as such are subject to change without notice.

Frame Listing Output Examples
The "frame" option can be used to control the output of frame information. For example, contrast this

expression trace:

$ perl -de 42

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Stack dump during die enabled outside of evals.

Loading DB routines from perl5db.pl patch level 0.94

Emacs support available.

Enter h or ’h h’ for help.

main::(-e:1): 0

DB<1> sub foo { 14 }

DB<2> sub bar { 3 }

DB<3> t print foo() * bar()

main::((eval 172):3): print foo() + bar();

main::foo((eval 168):2):

main::bar((eval 170):2):

42

with this one, once the "o"ption "frame=2" has been set:

DB<4> o f=2

frame = ’2’

DB<5> t print foo() * bar()

3: foo() * bar()

entering main::foo

2: sub foo { 14 };

exited main::foo

entering main::bar

2: sub bar { 3 };

exited main::bar

42

By way of demonstration, we present below a laborious listing resulting from setting your

"PERLDB_OPTS" environment variable to the value "f=n N", and running perl -d -V from the

command line. Examples using various values of "n" are shown to give you a feel for the difference

between settings. Long though it may be, this is not a complete listing, but only excerpts.

1.

entering main::BEGIN

entering Config::BEGIN

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Package lib/Exporter.pm.

Package lib/Carp.pm.

Package lib/Config.pm.

entering Config::TIEHASH

entering Exporter::import

entering Exporter::export

entering Config::myconfig

entering Config::FETCH

entering Config::FETCH

entering Config::FETCH

entering Config::FETCH

2.

entering main::BEGIN

entering Config::BEGIN

Package lib/Exporter.pm.

Package lib/Carp.pm.

exited Config::BEGIN

Package lib/Config.pm.

entering Config::TIEHASH

exited Config::TIEHASH

entering Exporter::import

entering Exporter::export

exited Exporter::export

exited Exporter::import

exited main::BEGIN

entering Config::myconfig

entering Config::FETCH

exited Config::FETCH

entering Config::FETCH

exited Config::FETCH

entering Config::FETCH

3.

in $=main::BEGIN() from /dev/null:0

in $=Config::BEGIN() from lib/Config.pm:2

Package lib/Exporter.pm.

Package lib/Carp.pm.

Package lib/Config.pm.

in $=Config::TIEHASH(’Config’) from lib/Config.pm:644

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from li

in @=Config::myconfig() from /dev/null:0

in $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’PERL_VERSION’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’PERL_SUBVERSION’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’osname’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’osvers’) from lib/Config.pm:574

4.

in $=main::BEGIN() from /dev/null:0

in $=Config::BEGIN() from lib/Config.pm:2

Package lib/Exporter.pm.

Package lib/Carp.pm.

out $=Config::BEGIN() from lib/Config.pm:0

Package lib/Config.pm.

in $=Config::TIEHASH(’Config’) from lib/Config.pm:644

out $=Config::TIEHASH(’Config’) from lib/Config.pm:644

in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/

out $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/

out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

out $=main::BEGIN() from /dev/null:0

in @=Config::myconfig() from /dev/null:0

in $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574

out $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574

out $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’PERL_VERSION’) from lib/Config.pm:574

out $=Config::FETCH(ref(Config), ’PERL_VERSION’) from lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’PERL_SUBVERSION’) from lib/Config.pm:574

5.

in $=main::BEGIN() from /dev/null:0

in $=Config::BEGIN() from lib/Config.pm:2

Package lib/Exporter.pm.

Package lib/Carp.pm.

out $=Config::BEGIN() from lib/Config.pm:0

Package lib/Config.pm.

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

in $=Config::TIEHASH(’Config’) from lib/Config.pm:644

out $=Config::TIEHASH(’Config’) from lib/Config.pm:644

in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/E

out $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/E

out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

out $=main::BEGIN() from /dev/null:0

in @=Config::myconfig() from /dev/null:0

in $=Config::FETCH(’Config=HASH(0x1aa444)’, ’package’) from lib/Config.pm:574

out $=Config::FETCH(’Config=HASH(0x1aa444)’, ’package’) from lib/Config.pm:574

in $=Config::FETCH(’Config=HASH(0x1aa444)’, ’baserev’) from lib/Config.pm:574

out $=Config::FETCH(’Config=HASH(0x1aa444)’, ’baserev’) from lib/Config.pm:574

6.

in $=CODE(0x15eca4)() from /dev/null:0

in $=CODE(0x182528)() from lib/Config.pm:2

Package lib/Exporter.pm.

out $=CODE(0x182528)() from lib/Config.pm:0

scalar context return from CODE(0x182528): undef

Package lib/Config.pm.

in $=Config::TIEHASH(’Config’) from lib/Config.pm:628

out $=Config::TIEHASH(’Config’) from lib/Config.pm:628

scalar context return from Config::TIEHASH: empty hash

in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

in $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/Exporter.pm:171

out $=Exporter::export(’Config’, ’main’, ’myconfig’, ’config_vars’) from lib/Exporter.pm:171

scalar context return from Exporter::export: ’’

out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from /dev/null:0

scalar context return from Exporter::import: ’’

In all cases shown above, the line indentation shows the call tree. If bit 2 of "frame" is set, a line is

printed on exit from a subroutine as well. If bit 4 is set, the arguments are printed along with the caller

info. If bit 8 is set, the arguments are printed even if they are tied or references. If bit 16 is set, the

return value is printed, too.

When a package is compiled, a line like this

Package lib/Carp.pm.

is printed with proper indentation.

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Debugging Regular Expressions
There are two ways to enable debugging output for regular expressions.

If your perl is compiled with "-DDEBUGGING", you may use the -Dr flag on the command line, and

"-Drv" for more verbose information.

Otherwise, one can "use re ’debug’", which has effects at both compile time and run time. Since Perl

5.9.5, this pragma is lexically scoped.

Compile-time Output
The debugging output at compile time looks like this:

Compiling REx ’[bc]d(ef*g)+h[ij]k$’

size 45 Got 364 bytes for offset annotations.

first at 1

rarest char g at 0

rarest char d at 0

1: ANYOF[bc](12)

12: EXACT <d>(14)

14: CURLYX[0] {1,32767}(28)

16: OPEN1(18)

18: EXACT <e>(20)

20: STAR(23)

21: EXACT <f>(0)

23: EXACT <g>(25)

25: CLOSE1(27)

27: WHILEM[1/1](0)

28: NOTHING(29)

29: EXACT <h>(31)

31: ANYOF[ij](42)

42: EXACT <k>(44)

44: EOL(45)

45: END(0)

anchored ’de’ at 1 floating ’gh’ at 3..2147483647 (checking floating)

stclass ’ANYOF[bc]’ minlen 7

Offsets: [45]

1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]

0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]

11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]

0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Omitting $‘ $& $’ support.

The first line shows the pre-compiled form of the regex. The second shows the size of the compiled

form (in arbitrary units, usually 4-byte words) and the total number of bytes allocated for the

offset/length table, usually 4+"size"*8. The next line shows the label id of the first node that does a

match.

The

anchored ’de’ at 1 floating ’gh’ at 3..2147483647 (checking floating)

stclass ’ANYOF[bc]’ minlen 7

line (split into two lines above) contains optimizer information. In the example shown, the optimizer

found that the match should contain a substring "de" at offset 1, plus substring "gh" at some offset

between 3 and infinity. Moreover, when checking for these substrings (to abandon impossible matches

quickly), Perl will check for the substring "gh" before checking for the substring "de". The optimizer

may also use the knowledge that the match starts (at the "first" id) with a character class, and no string

shorter than 7 characters can possibly match.

The fields of interest which may appear in this line are

"anchored" STRING "at" POS

"floating" STRING "at" POS1..POS2

See above.

"matching floating/anchored"

Which substring to check first.

"minlen"

The minimal length of the match.

"stclass" TYPE

Type of first matching node.

"noscan"

Don’t scan for the found substrings.

"isall"

Means that the optimizer information is all that the regular expression contains, and thus one does

not need to enter the regex engine at all.

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

"GPOS"

Set if the pattern contains "\G".

"plus"

Set if the pattern starts with a repeated char (as in "x+y").

"implicit"

Set if the pattern starts with ".*".

"with eval"

Set if the pattern contain eval-groups, such as "(?{ code })" and "(??{ code })".

"anchored(TYPE)"

If the pattern may match only at a handful of places, with "TYPE" being "SBOL", "MBOL", or

"GPOS". See the table below.

If a substring is known to match at end-of-line only, it may be followed by "$", as in "floating ’k’$".

The optimizer-specific information is used to avoid entering (a slow) regex engine on strings that will

not definitely match. If the "isall" flag is set, a call to the regex engine may be avoided even when the

optimizer found an appropriate place for the match.

Above the optimizer section is the list of nodes of the compiled form of the regex. Each line has

format

" "id: TYPE OPTIONAL-INFO (next-id)

Types of Nodes
Here are the current possible types, with short descriptions:

TYPE arg-description [regnode-struct-suffix] [longjump-len] DESCRIPTION

Exit points

END no End of program.

SUCCEED no Return from a subroutine, basically.

Line Start Anchors:

SBOL no Match "" at beginning of line: /^/, /\A/

MBOL no Same, assuming multiline: /^/m

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Line End Anchors:

SEOL no Match "" at end of line: /$/

MEOL no Same, assuming multiline: /$/m

EOS no Match "" at end of string: /\z/

Match Start Anchors:

GPOS no Matches where last m//g left off.

Word Boundary Opcodes:

BOUND no Like BOUNDA for non-utf8, otherwise like

BOUNDU

BOUNDL no Like BOUND/BOUNDU, but \w and \W are

defined by current locale

BOUNDU no Match "" at any boundary of a given type

using /u rules.

BOUNDA no Match "" at any boundary between \w\W or

\W\w, where \w is [_a-zA-Z0-9]

NBOUND no Like NBOUNDA for non-utf8, otherwise like

BOUNDU

NBOUNDL no Like NBOUND/NBOUNDU, but \w and \W are

defined by current locale

NBOUNDU no Match "" at any non-boundary of a given

type using using /u rules.

NBOUNDA no Match "" betweeen any \w\w or \W\W, where

\w is [_a-zA-Z0-9]

[Special] alternatives:

REG_ANY no Match any one character (except newline).

SANY no Match any one character.

ANYOF sv Match character in (or not in) this class,

charclass single char match only

ANYOFD sv Like ANYOF, but /d is in effect

charclass

ANYOFL sv Like ANYOF, but /l is in effect

charclass

ANYOFPOSIXL sv Like ANYOFL, but matches [[:posix:]]

charclass_ classes

posixl

ANYOFH sv 1 Like ANYOF, but only has "High" matches,

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

none in the bitmap; the flags field

contains the lowest matchable UTF-8 start

byte

ANYOFHb sv 1 Like ANYOFH, but all matches share the same

UTF-8 start byte, given in the flags field

ANYOFHr sv 1 Like ANYOFH, but the flags field contains

packed bounds for all matchable UTF-8 start

bytes.

ANYOFHs sv 1 Like ANYOFHb, but has a string field that

gives the leading matchable UTF-8 bytes;

flags field is len

ANYOFR packed 1 Matches any character in the range given by

its packed args: upper 12 bits is the max

delta from the base lower 20; the flags

field contains the lowest matchable UTF-8

start byte

ANYOFRb packed 1 Like ANYOFR, but all matches share the same

UTF-8 start byte, given in the flags field

ANYOFM byte 1 Like ANYOF, but matches an invariant byte

as determined by the mask and arg

NANYOFM byte 1 complement of ANYOFM

POSIX Character Classes:

POSIXD none Some [[:class:]] under /d; the FLAGS field

gives which one

POSIXL none Some [[:class:]] under /l; the FLAGS field

gives which one

POSIXU none Some [[:class:]] under /u; the FLAGS field

gives which one

POSIXA none Some [[:class:]] under /a; the FLAGS field

gives which one

NPOSIXD none complement of POSIXD, [[:^class:]]

NPOSIXL none complement of POSIXL, [[:^class:]]

NPOSIXU none complement of POSIXU, [[:^class:]]

NPOSIXA none complement of POSIXA, [[:^class:]]

CLUMP no Match any extended grapheme cluster

sequence

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Alternation

BRANCH The set of branches constituting a single choice are

hooked together with their "next" pointers, since

precedence prevents anything being concatenated to

any individual branch. The "next" pointer of the last

BRANCH in a choice points to the thing following the

whole choice. This is also where the final "next"

pointer of each individual branch points; each branch

starts with the operand node of a BRANCH node.

#

BRANCH node Match this alternative, or the next...

Literals

EXACT str Match this string (flags field is the

length).

In a long string node, the U32 argument is the length, and is

immediately followed by the string.

LEXACT len:str 1 Match this long string (preceded by length;

flags unused).

EXACTL str Like EXACT, but /l is in effect (used so

locale-related warnings can be checked for)

EXACTF str Like EXACT, but match using /id rules;

(string not UTF-8, ASCII folded; non-ASCII

not)

EXACTFL str Like EXACT, but match using /il rules;

(string not likely to be folded)

EXACTFU str Like EXACT, but match using /iu rules;

(string folded)

EXACTFAA str Like EXACT, but match using /iaa rules;

(string folded except MICRO in non-UTF8

patterns; doesn’t contain SHARP S unless

UTF-8; folded length <= unfolded)

EXACTFAA_NO_TRIE str Like EXACTFAA, (string not UTF-8, folded

except: MICRO, SHARP S; folded length <=

unfolded, not currently trie-able)

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

EXACTFUP str Like EXACT, but match using /iu rules;

(string not UTF-8, folded except MICRO:

hence Problematic)

EXACTFLU8 str Like EXACTFU, but use /il, UTF-8, (string

is folded, and everything in it is above

255

EXACT_REQ8 str Like EXACT, but only UTF-8 encoded targets

can match

LEXACT_REQ8 len:str 1 Like LEXACT, but only UTF-8 encoded targets

can match

EXACTFU_REQ8 str Like EXACTFU, but only UTF-8 encoded

targets can match

EXACTFU_S_EDGE str /di rules, but nothing in it precludes /ui,

except begins and/or ends with [Ss];

(string not UTF-8; compile-time only)

New charclass like patterns

LNBREAK none generic newline pattern

Trie Related

Behave the same as A|LIST|OF|WORDS would. The ’..C’ variants

have inline charclass data (ascii only), the ’C’ store it in the

structure.

TRIE trie 1 Match many EXACT(F[ALU]?)? at once.

flags==type

TRIEC trie Same as TRIE, but with embedded charclass

charclass data

AHOCORASICK trie 1 Aho Corasick stclass. flags==type

AHOCORASICKC trie Same as AHOCORASICK, but with embedded

charclass charclass data

Do nothing types

NOTHING no Match empty string.

A variant of above which delimits a group, thus stops optimizations

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

TAIL no Match empty string. Can jump here from

outside.

Loops

STAR,PLUS ’?’, and complex ’*’ and ’+’, are implemented as

circular BRANCH structures. Simple cases

(one character per match) are implemented with STAR

and PLUS for speed and to minimize recursive plunges.

#

STAR node Match this (simple) thing 0 or more times.

PLUS node Match this (simple) thing 1 or more times.

CURLY sv 2 Match this simple thing {n,m} times.

CURLYN no 2 Capture next-after-this simple thing

CURLYM no 2 Capture this medium-complex thing {n,m}

times.

CURLYX sv 2 Match this complex thing {n,m} times.

This terminator creates a loop structure for CURLYX

WHILEM no Do curly processing and see if rest

matches.

Buffer related

OPEN,CLOSE,GROUPP ...are numbered at compile time.

OPEN num 1 Mark this point in input as start of #n.

CLOSE num 1 Close corresponding OPEN of #n.

SROPEN none Same as OPEN, but for script run

SRCLOSE none Close preceding SROPEN

REF num 1 Match some already matched string

REFF num 1 Match already matched string, using /di

rules.

REFFL num 1 Match already matched string, using /li

rules.

REFFU num 1 Match already matched string, usng /ui.

REFFA num 1 Match already matched string, using /aai

rules.

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Named references. Code in regcomp.c assumes that these all are after

the numbered references

REFN no-sv 1 Match some already matched string

REFFN no-sv 1 Match already matched string, using /di

rules.

REFFLN no-sv 1 Match already matched string, using /li

rules.

REFFUN num 1 Match already matched string, using /ui

rules.

REFFAN num 1 Match already matched string, using /aai

rules.

Support for long RE

LONGJMP off 1 1 Jump far away.

BRANCHJ off 1 1 BRANCH with long offset.

Special Case Regops

IFMATCH off 1 1 Succeeds if the following matches; non-zero

flags "f", next_off "o" means lookbehind

assertion starting "f..(f-o)" characters

before current

UNLESSM off 1 1 Fails if the following matches; non-zero

flags "f", next_off "o" means lookbehind

assertion starting "f..(f-o)" characters

before current

SUSPEND off 1 1 "Independent" sub-RE.

IFTHEN off 1 1 Switch, should be preceded by switcher.

GROUPP num 1 Whether the group matched.

The heavy worker

EVAL evl/flags Execute some Perl code.

2L

Modifiers

MINMOD no Next operator is not greedy.

LOGICAL no Next opcode should set the flag only.

This is not used yet

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

RENUM off 1 1 Group with independently numbered parens.

Regex Subroutines

GOSUB num/ofs 2L recurse to paren arg1 at (signed) ofs arg2

Special conditionals

GROUPPN no-sv 1 Whether the group matched.

INSUBP num 1 Whether we are in a specific recurse.

DEFINEP none 1 Never execute directly.

Backtracking Verbs

ENDLIKE none Used only for the type field of verbs

OPFAIL no-sv 1 Same as (?!), but with verb arg

ACCEPT no-sv/num Accepts the current matched string, with

2L verbar

Verbs With Arguments

VERB no-sv 1 Used only for the type field of verbs

PRUNE no-sv 1 Pattern fails at this startpoint if no-

backtracking through this

MARKPOINT no-sv 1 Push the current location for rollback by

cut.

SKIP no-sv 1 On failure skip forward (to the mark)

before retrying

COMMIT no-sv 1 Pattern fails outright if backtracking

through this

CUTGROUP no-sv 1 On failure go to the next alternation in

the group

Control what to keep in $&.

KEEPS no $& begins here.

SPECIAL REGOPS

This is not really a node, but an optimized away piece of a "long"

node. To simplify debugging output, we mark it as if it were a node

OPTIMIZED off Placeholder for dump.

Special opcode with the property that no opcode in a compiled program

will ever be of this type. Thus it can be used as a flag value that

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

no other opcode has been seen. END is used similarly, in that an END

node cant be optimized. So END implies "unoptimizable" and PSEUDO

mean "not seen anything to optimize yet".

PSEUDO off Pseudo opcode for internal use.

REGEX_SET depth p Regex set, temporary node used in pre-

optimization compilation

Following the optimizer information is a dump of the offset/length table, here split across several lines:

Offsets: [45]

1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]

0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]

11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]

0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]

The first line here indicates that the offset/length table contains 45 entries. Each entry is a pair of

integers, denoted by "offset[length]". Entries are numbered starting with 1, so entry #1 here is "1[4]"

and entry #12 is "5[1]". "1[4]" indicates that the node labeled "1:" (the "1: ANYOF[bc]") begins at

character position 1 in the pre-compiled form of the regex, and has a length of 4 characters. "5[1]" in

position 12 indicates that the node labeled "12:" (the "12: EXACT <d>") begins at character position 5

in the pre-compiled form of the regex, and has a length of 1 character. "12[1]" in position 14 indicates

that the node labeled "14:" (the "14: CURLYX[0] {1,32767}") begins at character position 12 in the

pre-compiled form of the regex, and has a length of 1 character---that is, it corresponds to the "+"

symbol in the precompiled regex.

"0[0]" items indicate that there is no corresponding node.

Run-time Output
First of all, when doing a match, one may get no run-time output even if debugging is enabled. This

means that the regex engine was never entered and that all of the job was therefore done by the

optimizer.

If the regex engine was entered, the output may look like this:

Matching ’[bc]d(ef*g)+h[ij]k$’ against ’abcdefg__gh__’

Setting an EVAL scope, savestack=3

2 <ab> <cdefg__gh_> | 1: ANYOF

3 <abc> <defg__gh_> | 11: EXACT <d>

4 <abcd> <efg__gh_> | 13: CURLYX {1,32767}

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

4 <abcd> <efg__gh_> | 26: WHILEM

0 out of 1..32767 cc=effff31c

4 <abcd> <efg__gh_> | 15: OPEN1

4 <abcd> <efg__gh_> | 17: EXACT <e>

5 <abcde> <fg__gh_> | 19: STAR

EXACT <f> can match 1 times out of 32767...

Setting an EVAL scope, savestack=3

6 <bcdef> <g__gh__> | 22: EXACT <g>

7 <bcdefg> <__gh__> | 24: CLOSE1

7 <bcdefg> <__gh__> | 26: WHILEM

1 out of 1..32767 cc=effff31c

Setting an EVAL scope, savestack=12

7 <bcdefg> <__gh__> | 15: OPEN1

7 <bcdefg> <__gh__> | 17: EXACT <e>

restoring \1 to 4(4)..7

failed, try continuation...

7 <bcdefg> <__gh__> | 27: NOTHING

7 <bcdefg> <__gh__> | 28: EXACT <h>

failed...

failed...

The most significant information in the output is about the particular node of the compiled regex that is

currently being tested against the target string. The format of these lines is

" "STRING-OFFSET <PRE-STRING> <POST-STRING> |ID: TYPE

The TYPE info is indented with respect to the backtracking level. Other incidental information appears

interspersed within.

Debugging Perl Memory Usage
Perl is a profligate wastrel when it comes to memory use. There is a saying that to estimate memory

usage of Perl, assume a reasonable algorithm for memory allocation, multiply that estimate by 10, and

while you still may miss the mark, at least you won’t be quite so astonished. This is not absolutely

true, but may provide a good grasp of what happens.

Assume that an integer cannot take less than 20 bytes of memory, a float cannot take less than 24 bytes,

a string cannot take less than 32 bytes (all these examples assume 32-bit architectures, the result are

quite a bit worse on 64-bit architectures). If a variable is accessed in two of three different ways

(which require an integer, a float, or a string), the memory footprint may increase yet another 20 bytes.

A sloppy malloc(3) implementation can inflate these numbers dramatically.

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

On the opposite end of the scale, a declaration like

sub foo;

may take up to 500 bytes of memory, depending on which release of Perl you’re running.

Anecdotal estimates of source-to-compiled code bloat suggest an eightfold increase. This means that

the compiled form of reasonable (normally commented, properly indented etc.) code will take about

eight times more space in memory than the code took on disk.

The -DL command-line switch is obsolete since circa Perl 5.6.0 (it was available only if Perl was built

with "-DDEBUGGING"). The switch was used to track Perl’s memory allocations and possible

memory leaks. These days the use of malloc debugging tools like Purify or valgrind is suggested

instead. See also "PERL_MEM_LOG" in perlhacktips.

One way to find out how much memory is being used by Perl data structures is to install the

Devel::Size module from CPAN: it gives you the minimum number of bytes required to store a

particular data structure. Please be mindful of the difference between the size() and total_size().

If Perl has been compiled using Perl’s malloc you can analyze Perl memory usage by setting

$ENV{PERL_DEBUG_MSTATS}.

Using $ENV{PERL_DEBUG_MSTATS}
If your perl is using Perl’s malloc() and was compiled with the necessary switches (this is the default),

then it will print memory usage statistics after compiling your code when

"$ENV{PERL_DEBUG_MSTATS} > 1", and before termination of the program when

"$ENV{PERL_DEBUG_MSTATS} >= 1". The report format is similar to the following example:

$ PERL_DEBUG_MSTATS=2 perl -e "require Carp"

Memory allocation statistics after compilation: (buckets 4(4)..8188(8192)

14216 free: 130 117 28 7 9 0 2 2 1 0 0

437 61 36 0 5

60924 used: 125 137 161 55 7 8 6 16 2 0 1

74 109 304 84 20

Total sbrk(): 77824/21:119. Odd ends: pad+heads+chain+tail: 0+636+0+2048.

Memory allocation statistics after execution: (buckets 4(4)..8188(8192)

30888 free: 245 78 85 13 6 2 1 3 2 0 1

315 162 39 42 11

175816 used: 265 176 1112 111 26 22 11 27 2 1 1

196 178 1066 798 39

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Total sbrk(): 215040/47:145. Odd ends: pad+heads+chain+tail: 0+2192+0+6144.

It is possible to ask for such a statistic at arbitrary points in your execution using the mstat() function

out of the standard Devel::Peek module.

Here is some explanation of that format:

"buckets SMALLEST(APPROX)..GREATEST(APPROX)"

Perl’s malloc() uses bucketed allocations. Every request is rounded up to the closest bucket size

available, and a bucket is taken from the pool of buckets of that size.

The line above describes the limits of buckets currently in use. Each bucket has two sizes:

memory footprint and the maximal size of user data that can fit into this bucket. Suppose in the

above example that the smallest bucket were size 4. The biggest bucket would have usable size

8188, and the memory footprint would be 8192.

In a Perl built for debugging, some buckets may have negative usable size. This means that these

buckets cannot (and will not) be used. For larger buckets, the memory footprint may be one page

greater than a power of 2. If so, the corresponding power of two is printed in the "APPROX" field

above.

Free/Used

The 1 or 2 rows of numbers following that correspond to the number of buckets of each size

between "SMALLEST" and "GREATEST". In the first row, the sizes (memory footprints) of

buckets are powers of two--or possibly one page greater. In the second row, if present, the

memory footprints of the buckets are between the memory footprints of two buckets "above".

For example, suppose under the previous example, the memory footprints were

free: 8 16 32 64 128 256 512 1024 2048 4096 8192

4 12 24 48 80

With a non-"DEBUGGING" perl, the buckets starting from 128 have a 4-byte overhead, and thus

an 8192-long bucket may take up to 8188-byte allocations.

"Total sbrk(): SBRKed/SBRKs:CONTINUOUS"

The first two fields give the total amount of memory perl sbrk(2)ed (ess-broken? :-) and number

of sbrk(2)s used. The third number is what perl thinks about continuity of returned chunks. So

long as this number is positive, malloc() will assume that it is probable that sbrk(2) will provide

continuous memory.

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

Memory allocated by external libraries is not counted.

"pad: 0"

The amount of sbrk(2)ed memory needed to keep buckets aligned.

"heads: 2192"

Although memory overhead of bigger buckets is kept inside the bucket, for smaller buckets, it is

kept in separate areas. This field gives the total size of these areas.

"chain: 0"

malloc() may want to subdivide a bigger bucket into smaller buckets. If only a part of the

deceased bucket is left unsubdivided, the rest is kept as an element of a linked list. This field

gives the total size of these chunks.

"tail: 6144"

To minimize the number of sbrk(2)s, malloc() asks for more memory. This field gives the size of

the yet unused part, which is sbrk(2)ed, but never touched.

SEE ALSO
perldebug, perl5db.pl, perlguts, perlrun, re, and Devel::DProf.

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

perl v5.34.3 2023-11-28 PERLDEBGUTS(1)

