
NAME
perldocstyle - A style guide for writing Perl’s documentation

DESCRIPTION
This document is a guide for the authorship and maintenance of the documentation that ships with Perl.

This includes the following:

+o The several dozen manual sections whose filenames begin with ""perl"", such as "perlobj",

"perlre", and "perlintro". (And, yes, "perl".)

+o The documentation for all the modules included with Perl (as listed by "perlmodlib").

+o The hundreds of individually presented reference sections derived from the "perlfunc" file.

This guide will hereafter refer to user-manual section files as man pages, per Unix convention.

Purpose of this guide
This style guide aims to establish standards, procedures, and philosophies applicable to Perl’s core

documentation.

Adherence to these standards will help ensure that any one part of Perl’s manual has a tone and style

consistent with that of any other. As with the rest of the Perl project, the language’s documentation

collection is an open-source project authored over a long period of time by many people. Maintaining

consistency across such a wide swath of work presents a challenge; this guide provides a foundation to

help mitigate this difficulty.

This will help its readers--especially those new to Perl--to feel more welcome and engaged with Perl’s

documentation, and this in turn will help the Perl project itself grow stronger through having a larger,

more diverse, and more confident population of knowledgeable users.

Intended audience
Anyone interested in contributing to Perl’s core documentation should familiarize themselves with the

standards outlined by this guide.

Programmers documenting their own work apart from the Perl project itself may also find this guide

worthwhile, especially if they wish their work to extend the tone and style of Perl’s own manual.

Status of this document
This guide was initially drafted in late 2020, drawing from the documentation style guides of several

open-source technologies contemporary with Perl. This has included Python, Raku, Rust, and the Linux

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

kernel.

The author intends to see this guide used as starting place from which to launch a review of Perl’s

reams of extant documentation, with the expectation that those conducting this review should grow and

modify this guide as needed to account for the requirements and quirks particular to Perl’s

programming manual.

FUNDAMENTALS
Choice of markup: Pod

All of Perl’s core documentation uses Pod ("Plain Old Documentation"), a simple markup language, to

format its source text. Pod is similar in spirit to other contemporary lightweight markup technologies,

such as Markdown and reStructuredText, and has a decades-long shared history with Perl itself.

For a comprehensive reference to Pod syntax, see "perlpod". For the sake of reading this guide,

familiarity with the Pod syntax for section headers ("=head2", et cetera) and for inline text formatting

("C<like this>") should suffice.

Perl programmers also use Pod to document their own scripts, libraries, and modules. This use of Pod

has its own style guide, outlined by "perlpodstyle".

Choice of language: American English
Perl’s core documentation is written in English, with a preference for American spelling of words and

expression of phrases. That means "color" over "colour", "math" versus "maths", "the team has

decided" and not "the team have decided", and so on.

We name one style of English for the sake of consistency across Perl’s documentation, much as a

software project might declare a four-space indentation standard--even when that doesn’t affect how

well the code compiles. Both efforts result in an easier read by avoiding jarring, mid-document changes

in format or style.

Contributors to Perl’s documentation should note that this rule describes the ultimate, published output

of the project, and does not prescribe the dialect used within community contributions. The

documentation team enthusiastically welcomes any English-language contributions, and will actively

assist in Americanizing spelling and style when warranted.

Other languages and translations

Community-authored translations of Perl’s documentation do exist, covering a variety of languages.

While the Perl project appreciates these translation efforts and promotes them when applicable, it does

not officially support or maintain any of them.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

That said, keeping Perl’s documentation clear, simple, and short has a welcome side effect of aiding

any such translation project.

(Note that the Chinese, Japanese, and Korean-language README files included with Perl’s source

distributions provide an exception to this choice of language--but these documents fall outside the

scope of this guide.)

Choice of encoding: UTF-8
Perl’s core documentation files are encoded in UTF-8, and can make use of the full range of characters

this encoding allows.

As such, every core doc file (or the Pod section of every core module) should commence with an

"=encoding utf8" declaration.

Choice of underlying style guide: CMOS
Perl’s documentation uses the Chicago Manual of Style <https://www.chicagomanualofstyle.org>

(CMOS), 17th Edition, as its baseline guide for style and grammar. While the document you are

currently reading endeavors to serve as an adequate stand-alone style guide for the purposes of

documenting Perl, authors should consider CMOS the fallback authority for any pertinent topics not

covered here.

Because CMOS is not a free resource, access to it is not a prerequisite for contributing to Perl’s

documentation; the doc team will help contributors learn about and apply its guidelines as needed.

However, we do encourage anyone interested in significant doc contributions to obtain or at least read

through CMOS. (Copies are likely available through most public libraries, and CMOS-derived

fundamentals can be found online as well.)

Contributing to Perl’s documentation
Perl, like any programming language, is only as good as its documentation. Perl depends upon clear,

friendly, and thorough documentation in order to welcome brand-new users, teach and explain the

language’s various concepts and components, and serve as a lifelong reference for experienced Perl

programmers. As such, the Perl project welcomes and values all community efforts to improve the

language’s documentation.

Perl accepts documentation contributions through the same open-source project pipeline as code

contributions. See "perlhack" for more information.

FORMATTING AND STRUCTURE
This section details specific Pod syntax and style that all core Perl documentation should adhere to, in

the interest of consistency and readability.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

Document structure
Each individual work of core Perl documentation, whether contained within a ".pod" file or in the Pod

section of a standard code module, patterns its structure after a number of long-time Unix man page

conventions. (Hence this guide’s use of "man page" to refer to any one self-contained part of Perl’s

documentation.)

Adhering to these conventions helps Pod formatters present a Perl man page’s content in different

contexts--whether a terminal, the web, or even print. Many of the following requirements originate

with "perlpodstyle", which derives its recommendations in turn from these well-established practices.

Name

After its "=encoding utf8" declaration, a Perl man page must present a level-one header named

"NAME" (literally), followed by a paragraph containing the page’s name and a very brief description.

The first few lines of a notional page named "perlpodexample":

=encoding utf8

=head1 NAME

perlpodexample - An example of formatting a manual page’s title line

Description and synopsis

Most Perl man pages also contain a DESCRIPTION section featuring a summary of, or introduction to,

the document’s content and purpose.

This section should also, one way or another, clearly identify the audience that the page addresses,

especially if it has expectations about the reader’s prior knowledge. For example, a man page that dives

deep into the inner workings of Perl’s regular expression engine should state its assumptions up

front--and quickly redirect readers who are instead looking for a more basic reference or tutorial.

Reference pages, when appropriate, can precede the DESCRIPTION with a SYNOPSIS section that

lists, within one or more code blocks, some very brief examples of the referenced feature’s use. This

section should show a handful of common-case and best-practice examples, rather than an exhaustive

list of every obscure method or alternate syntax available.

Other sections and subsections

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

Pages should conclude, when appropriate, with a SEE ALSO section containing hyperlinks to relevant

sections of Perl’s manual, other Unix man pages, or appropriate web pages. Hyperlink each such cross-

reference via "L<...>".

What other sections to include depends entirely upon the topic at hand. Authors should feel free to

include further "=head1"-level sections, whether other standard ones listed by "perlpodstyle", or ones

specific to the page’s topic; in either case, render these top-level headings in all-capital letters.

You may then include as many subsections beneath them as needed to meet the standards of clarity,

accessibility, and cross-reference affinity suggested elsewhere in this guide.

Author and copyright

In most circumstances, Perl’s stand-alone man pages--those contained within ".pod" files--do not need

to include any copyright or license information about themselves. Their source Pod files are part of

Perl’s own core software repository, and that already covers them under the same copyright and license

terms as Perl itself. You do not need to include additional "LICENSE" or "COPYRIGHT" sections of

your own.

These man pages may optionally credit their primary author, or include a list of significant

contributors, under "AUTHOR" or "CONTRIBUTORS" headings. Note that the presence of authors’

names does not preclude a given page from writing in a voice consistent with the rest of Perl’s

documentation.

Note that these guidelines do not apply to the core software modules that ship with Perl. These have

their own standards for authorship and copyright statements, as found in "perlpodstyle".

Formatting rules
Line length and line wrap

Each line within a Perl man page’s Pod source file should measure 72 characters or fewer in length.

Please break paragraphs up into blocks of short lines, rather than "soft wrapping" paragraphs across

hundreds of characters with no line breaks.

Code blocks

Just like the text around them, all code examples should be as short and readable as possible, displaying

no more complexity than absolutely necessary to illustrate the concept at hand.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

For the sake of consistency within and across Perl’s man pages, all examples must adhere to the code-

layout principles set out by "perlstyle".

Sample code should deviate from these standards only when necessary: during a demonstration of how

Perl disregards whitespace, for example, or to temporarily switch to two-column indentation for an

unavoidably verbose illustration.

You may include comments within example code to further clarify or label the code’s behavior in-line.

You may also use comments as placeholder for code normally present but not relevant to the current

topic, like so:

while (my $line = <$fh>) {

#

(Do something interesting with $line here.)

#

}

Even the simplest code blocks often require the use of example variables and subroutines, whose

names you should choose with care.

Inline code and literals

Within a paragraph of text, use "C<...>" when quoting or referring to any bit of Perl code--even if it is

only one character long.

For instance, when referring within an explanatory paragraph to Perl’s operator for adding two

numbers together, you’d write ""C<+>"".

Function names

Use "C<...>" to render all Perl function names in monospace, whenever they appear in text.

Unless you need to specifically quote a function call with a list of arguments, do not follow a function’s

name in text with a pair of empty parentheses. That is, when referring in general to Perl’s "print"

function, write it as ""print"", not ""print()"".

Function arguments

Represent functions’ expected arguments in all-caps, with no sigils, and using "C<...>" to render them

in monospace. These arguments should have short names making their nature and purpose clear.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

Convention specifies a few ones commonly seen throughout Perl’s documentation:

+o EXPR

The "generic" argument: any scalar value, or a Perl expression that evaluates to one.

+o ARRAY

An array, stored in a named variable.

+o HASH

A hash, stored in a named variable.

+o BLOCK

A curly-braced code block, or a subroutine reference.

+o LIST

Any number of values, stored across any number of variables or expressions, which the function

will "flatten" and treat as a single list. (And because it can contain any number of variables, it

must be the last argument, when present.)

When possible, give scalar arguments names that suggest their purpose among the arguments. See, for

example, "substr"’s documentation, whose listed arguments include "EXPR", "OFFSET", "LENGTH",

and "REPLACEMENT".

Apostrophes, quotes, and dashes

In Pod source, use straight quotes, and not "curly quotes": "Like

this", not Xlike thisX. The same goes for apostrophes: Here’s a

positive example, and hereXs a negative one.

Render em dashes as two hyphens--like this:

Render em dashes as two hyphens--like this.

Leave it up to formatters to reformat and reshape these punctuation marks as best fits their respective

target media.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

Unix programs and C functions

When referring to a Unix program or C function with its own man page (outside of Perl’s

documentation), include its manual section number in parentheses. For example: malloc(3), or

mkdir(1).

If mentioning this program for the first time within a man page or section, make it a cross reference,

e.g. "L<malloc(3)>".

Do not otherwise style this text.

Cross-references and hyperlinks

Make generous use of Pod’s "L<...>" syntax to create hyperlinks to other parts of the current man page,

or to other documents entirely -- whether elsewhere on the reader’s computer, or somewhere on the

internet, via URL.

Use "L<...>" to link to another section of the current man page when mentioning it, and make use of its

page-and-section syntax to link to the most specific section of a separate page within Perl’s

documentation. Generally, the first time you refer to a specific function, program, or concept within a

certain page or section, consider linking to its full documentation.

Hyperlinks do not supersede other formatting required by this guide; Pod allows nested text formats,

and you should use this feature as needed.

Here is an example sentence that mentions Perl’s "say" function, with a link to its documentation

section within the "perlfunc" man page:

In version 5.10, Perl added support for the

L<C<say>|perlfunc/say FILEHANDLE LIST> function.

Note the use of the vertical pipe (""|"") to separate how the link will appear to readers (""C<say>"")

from the full page-and-section specifier that the formatter links to.

Tables and diagrams

Pod does not officially support tables. To best present tabular data, include the table as both HTML and

plain-text representations--the latter as an indented code block. Use "=begin" / "=end" directives to

target these tables at "html" and "text" Pod formatters, respectively. For example:

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

=head2 Table of fruits

=begin text

Name Shape Color

=====================================

Apple Round Red

Banana Long Yellow

Pear Pear-shaped Green

=end text

=begin html

<table>

<tr><th>Name</th><th>Shape</th><th>Color</th></tr>

<tr><td>Apple</td><td>Round</td><td>Red</td></tr>

<tr><td>Banana</td><td>Long</td><td>Yellow</td></tr>

<tr><td>Pear</td><td>Pear-shaped</td><td>Green</td></tr>

</table>

=end html

The same holds true for figures and graphical illustrations. Pod does not natively support inline

graphics, but you can mix HTML "" tags with monospaced text-art representations of those

images’ content.

Due in part to these limitations, most Perl man pages use neither tables nor diagrams. Like any other

tool in your documentation toolkit, however, you may consider their inclusion when they would

improve an explanation’s clarity without adding to its complexity.

Adding comments
Like any other kind of source code, Pod lets you insert comments visible only to other people reading

the source directly, and ignored by the formatting programs that transform Pod into various human-

friendly output formats (such as HTML or PDF).

To comment Pod text, use the "=for" and "=begin" / "=end" Pod directives, aiming them at a (notional)

formatter called ""comment"". A couple of examples:

=for comment Using "=for comment" like this is good for short,

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

single-paragraph comments.

=begin comment

If you need to comment out more than one paragraph, use a

=begin/=end block, like this.

None of the text or markup in this whole example would be visible to

someone reading the documentation through normal means, so it’s

great for leaving notes, explanations, or suggestions for your

fellow documentation writers.

=end comment

In the tradition of any good open-source project, you should make free but judicious use of comments

to leave in-line "meta-documentation" as needed for other Perl documentation writers (including your

future self).

Perlfunc has special rules
The "perlfunc" man page, an exhaustive reference of every Perl built-in function, has a handful of

formatting rules not seen elsewhere in Perl’s documentation.

Software used during Perl’s build process (Pod::Functions) parses this page according to certain rules,

in order to build separate man pages for each of Perl’s functions, as well as achieve other indexing

effects. As such, contributors to perlfunc must know about and adhere to its particular rules.

Most of the perfunc man page comprises a single list, found under the header "Alphabetical Listing of

Perl Functions". Each function reference is an entry on that list, made of three parts, in order:

1. A list of "=item" lines which each demonstrate, in template format, a way to call this function.

One line should exist for every combination of arguments that the function accepts (including no

arguments at all, if applicable).

If modern best practices prefer certain ways to invoke the function over others, then those ways

should lead the list.

The first item of the list should be immediately followed by one or more "X<...>" terms listing

index-worthy topics; if nothing else, then the name of the function, with no arguments.

2. A "=for" line, directed at "Pod::Functions", containing a one-line description of what the function

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

does. This is written as a phrase, led with an imperative verb, with neither leading capitalization

nor ending punctuation. Examples include "quote a list of words" and "change a filename".

3. The function’s definition and reference material, including all explanatory text and code

examples.

Complex functions that need their text divided into subsections (under the principles of "Apply section-

breaks and examples generously") may do so by using sublists, with "=item" elements as header text.

A fictional function ""myfunc"", which takes a list as an optional argument, might have an entry in

perlfunc shaped like this:

=item myfunc LIST

X<myfunc>

=item myfunc

=for Pod::Functions demonstrate a function’s perlfunc section

[Main part of function definition goes here, with examples]

=over

=item Legacy uses

[Examples of deprecated syntax still worth documenting]

=item Security considerations

[And so on...]

=back

TONE AND STYLE
Apply one of the four documentation modes

Aside from "meta" documentation such as "perlhist" or "perlartistic", each of Perl’s man pages should

conform to one of the four documentation "modes" suggested by The Documentation System by

Daniele Procida <https://documentation.divio.com>. These include tutorials, cookbooks, explainers,

and references--terms that we define in further detail below.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

Each mode of documentation speaks to a different audience--not just people of different backgrounds

and skill levels, but individual readers whose needs from language documentation can shift depending

upon context. For example, a programmer with plenty of time to learn a new concept about Perl can

ease into a tutorial about it, and later expand their knowledge further by studying an explainer. Later,

that same programmer, wading knee-deep in live code and needing only to look up some function’s

exact syntax, will want to reach for a reference page instead.

Perl’s documentation must strive to meet these different situational expectations by limiting each man

page to a single mode. This helps writers ensure they provide readers with the documentation needed or

expected, despite ever-evolving situations.

Tutorial

A tutorial man page focuses on learning, ideally by doing. It presents the reader with small, interesting

examples that allow them to follow along themselves using their own Perl interpreter. The tutorial

inspires comprehension by letting its readers immediately experience (and experiment on) the concept

in question. Examples include "perlxstut", "perlpacktut", and "perlretut".

Tutorial man pages must strive for a welcoming and reassuring tone from their outset; they may very

well be the first things that a newcomer to Perl reads, playing a significant role in whether they choose

to stick around. Even an experienced programmer can benefit from the sense of courage imparted by a

strong tutorial about a more advanced topic. After completing a tutorial, a reader should feel like

they’ve been led from zero knowledge of its topic to having an invigorating spark of basic

understanding, excited to learn more and experiment further.

Tutorials can certainly use real-world examples when that helps make for clear, relatable

demonstrations, so long as they keep the focus on teaching--more practical problem-solving should be

left to the realm of cookbooks (as described below). Tutorials also needn’t concern themselves with

explanations into why or how things work beneath the surface, or explorations of alternate syntaxes

and solutions; these are better handled by explainers and reference pages.

Cookbook

A cookbook man page focuses on results. Just like its name suggests, it presents succinct, step-by-step

solutions to a variety of real-world problems around some topic. A cookbook’s code examples serve

less to enlighten and more to provide quick, paste-ready solutions that the reader can apply

immediately to the situation facing them.

A Perl cookbook demonstrates ways that all the tools and techniques explained elsewhere can work

together in order to achieve practical results. Any explanation deeper than that belongs in explainers

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

and reference pages, instead. (Certainly, a cookbook can cross-reference other man pages in order to

satisfy the curiosity of readers who, with their immediate problems solved, wish to learn more.)

The most prominent cookbook pages that ship with Perl itself are its many FAQ pages, in particular

"perlfaq4" and up, which provide short solutions to practical questions in question-and-answer style.

"perlunicook" shows another example, containing a bevy of practical code snippets for a variety of

internationally minded text manipulations.

(An aside: The Documentation System calls this mode "how-to", but Perl’s history of creative cuisine

prefers the more kitchen-ready term that we employ here.)

Reference

A reference page focuses on description. Austere, uniform, and succinct, reference pages--often

arranged into a whole section of mutually similar subpages--lend themselves well to "random access"

by a reader who knows precisely what knowledge they need, requiring only the minimum amount of

information before returning to the task at hand.

Perl’s own best example of a reference work is "perlfunc", the sprawling man page that details the

operation of every function built into Perl, with each function’s documentation presenting the same

kinds of information in the same order as every other. For an example of a shorter reference on a single

topic, look at "perlreref".

Module documentation--including that of all the modules listed in "perlmodlib"--also counts as

reference. They follow precepts similar to those laid down by the "perlpodstyle" man page, such as

opening with an example-laden "SYNOPSIS" section, or featuring a "METHODS" section that

succinctly lists and defines an object-oriented module’s public interface.

Explainer

Explainer pages focus on discussion. Each explainer dives as deep as needed into some Perl-relevant

topic, taking all the time and space needed to give the reader a thorough understanding of it. Explainers

mean to impart knowledge through study. They don’t assume that the student has a Perl interpreter

fired up and hungry for immediate examples (as with a tutorial), or specific Perl problems that they

need quick answers for (which cookbooks and reference pages can help with).

Outside of its reference pages, most of Perl’s manual belongs to this mode. This includes the majority

of the man pages whose names start with ""perl"". A fine example is "perlsyn", the Perl Syntax page,

which explores the whys and wherefores of Perl’s unique syntax in a wide-ranging discussion laden

with many references to the language’s history, culture, and driving philosophies.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

Perl’s explainer pages give authors a chance to explore Perl’s penchant for TMTOWTDI, illustrating

alternate and even obscure ways to use the language feature under discussion. However, as the

remainder of this guide discusses, the ideal Perl documentation manages to deliver its message clearly

and concisely, and not confuse mere wordiness for completeness.

Further notes on documentation modes

Keep in mind that the purpose of this categorization is not to dictate content--a very thorough explainer

might contain short reference sections of its own, for example, or a reference page about a very

complex function might resemble an explainer in places (e.g. "open"). Rather, it makes sure that the

authors and contributors of any given man page agree on what sort of audience that page addresses.

If a new or otherwise uncategorized man page presents itself as resistant to fitting into only one of the

four modes, consider breaking it up into separate pages. That may mean creating a new ""perl[...]""

man page, or (in the case of module documentation) making new packages underneath that module’s

namespace that serve only to hold additional documentation. For instance, "Example::Module"’s

reference documentation might include a see-also link to "Example::Module::Cookbook".

Perl’s several man pages about Unicode--comprising a short tutorial, a thorough explainer, a cookbook,

and a FAQ--provide a fine example of spreading a complicated topic across several man pages with

different and clearly indicated purposes.

Assume readers’ intelligence, but not their knowledge
Perl has grown a great deal from its humble beginnings as a tool for people already well versed in C

programming and various Unix utilities. Today, a person learning Perl might come from any social or

technological background, with a range of possible motivations stretching far beyond system

administration.

Perl’s core documentation must recognize this by making as few assumptions as possible about the

reader’s prior knowledge. While you should assume that readers of Perl’s documentation are smart,

curious, and eager to learn, you should not confuse this for pre-existing knowledge about any other

technology, or even programming in general--especially in tutorial or introductory material.

Keep Perl’s documentation about Perl

Outside of pages tasked specifically with exploring Perl’s relationship with other programming

languages, the documentation should keep the focus on Perl. Avoid drawing analogies to other

technologies that the reader may not have familiarity with.

For example, when documenting one of Perl’s built-in functions, write as if the reader is now learning

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

about that function for the first time, in any programming language.

Choosing to instead compare it to an equivalent or underlying C function will probably not illuminate

much understanding in a contemporary reader. Worse, this can risk leaving readers unfamiliar with C

feeling locked out from fully understanding of the topic--to say nothing of readers new to computer

programming altogether.

If, however, that function’s ties to its C roots can lead to deeper understanding with practical

applications for a Perl programmer, you may mention that link after its more immediately useful

documentation. Otherwise, omit this information entirely, leaving it for other documentation or

external articles more concerned with examining Perl’s underlying implementation details.

Deploy jargon when needed, but define it as well

Domain-specific jargon has its place, especially within documentation. However, if a man page makes

use of jargon that a typical reader might not already know, then that page should make an effort to

define the term in question early-on--either explicitly, or via cross reference.

For example, Perl loves working with filehandles, and as such that word appears throughout its

documentation. A new Perl programmer arriving at a man page for the first time is quite likely to have

no idea what a "filehandle" is, though. Any Perl man page mentioning filehandles should, at the very

least, hyperlink that term to an explanation elsewhere in Perl’s documentation. If appropriate--for

example, in the lead-in to "open" function’s detailed reference--it can also include a very short in-place

definition of the concept for the reader’s convenience.

Use meaningful variable and symbol names in examples
When quickly sketching out examples, English-speaking programmers have a long tradition of using

short nonsense words as placeholders for variables and other symbols--such as the venerable "foo",

"bar", and "baz". Example code found in a programming language’s official, permanent

documentation, however, can and should make an effort to provide a little more clarity through

specificity.

Whenever possible, code examples should give variables, classes, and other programmer-defined

symbols names that clearly demonstrate their function and their relationship to one another. For

example, if an example requires that one class show an "is-a" relationship with another, consider

naming them something like "Apple" and "Fruit", rather than "Foo" and "Bar". Similarly, sample code

creating an instance of that class would do better to name it $apple, rather than $baz.

Even the simplest examples benefit from clear language using concrete words. Prefer a construct like

"for my $item (@items) { ... }" over "for my $blah (@blah) { ... }".

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

Write in English, but not just for English-speakers
While this style guide does specify American English as the documentation’s language for the sake of

internal consistency, authors should avoid cultural or idiomatic references available only to English-

speaking Americans (or any other specific culture or society). As much as possible, the language

employed by Perl’s core documentation should strive towards cultural universality, if not neutrality.

Regional turns of phrase, examples drawing on popular-culture knowledge, and other rhetorical

techniques of that nature should appear sparingly, if at all.

Authors should feel free to let more freewheeling language flourish in "second-order" documentation

about Perl, like books, blog entries, and magazine articles, published elsewhere and with a narrower

readership in mind. But Perl’s own docs should use language as accessible and welcoming to as wide

an audience as possible.

Omit placeholder text or commentary
Placeholder text does not belong in the documentation that ships with Perl. No section header should be

followed by text reading only "Watch this space", "To be included later", or the like. While Perl’s

source files may shift and alter as much as any other actively maintained technology, each released

iteration of its technology should feel complete and self-contained, with no such future promises or

other loose ends visible.

Take advantage of Perl’s regular release cycle. Instead of cluttering the docs with flags promising more

information later--the presence of which do not help readers at all today--the documentation’s

maintenance team should treat any known documentation absences as an issue to address like any other

in the Perl project. Let Perl’s contributors, testers, and release engineers address that need, and resist

the temptation to insert apologies, which have all the utility in documentation as undeleted debug

messages do in production code.

Apply section-breaks and examples generously
No matter how accessible their tone, the sight of monolithic blocks of text in technical documentation

can present a will-weakening challenge for the reader. Authors can improve this situation through

breaking long passages up into subsections with short, meaningful headers.

Since every section-header in Pod also acts as a potential end-point for a cross-reference (made via

Pod’s "L<...>" syntax), putting plenty of subsections in your documentation lets other man pages more

precisely link to a particular topic. This creates hyperlinks directly to the most appropriate section

rather than to the whole page in general, and helps create a more cohesive sense of a rich, consistent,

and interrelated manual for readers.

Among the four documentation modes, sections belong more naturally in tutorials and explainers. The

step-by-step instructions of cookbooks, or the austere definitions of reference pages, usually have no

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

room for them. But authors can always make exceptions for unusually complex concepts that require

further breakdown for clarity’s sake.

Example code, on the other hand, can be a welcome addition to any mode of documentation. Code

blocks help break up a man page visually, reassuring the reader that no matter how deep the textual

explanation gets, they are never far from another practical example showing how it all comes together

using a small, easy-to-read snippet of tested Perl code.

Lead with common cases and best practices
Perl famously gives programmers more than one way to do things. Like any other long-lived

programming language, Perl has also built up a large, community-held notion of best practices,

blessing some ways to do things as better than others, usually for the sake of more maintainable code.

Show the better ways first

Whenever it needs to show the rules for a technique which Perl provides many avenues for, the

documentation should always lead with best practices. And when discussing some part of the Perl

toolkit with many applications, the docs should begin with a demonstration of its application to the

most common cases.

The "open" function, for example, has myriad potential uses within Perl programs, but most of the time

programmers--and especially those new to Perl--turn to this reference because they simply wish to

open a file for reading or writing. For this reason, "open"’s documentation begins there, and only

descends into the function’s more obscure uses after thoroughly documenting and demonstrating how it

works in the common case. Furthermore, while engaging in this demonstration, the "open"

documentation does not burden the reader right away with detailed explanations about calling "open"

via any route other than the best-practice, three-argument style.

Show the lesser ways when needed

Sometimes, thoroughness demands documentation of deprecated techniques. For example, a certain

Perl function might have an alternate syntax now considered outmoded and no longer best-practice, but

which a maintainer of a legacy project might quite reasonably encounter when exploring old code. In

this case, these features deserve documentation, but couched in clarity that modern Perl avoids such

structures, and does not recommend their use in new projects.

Another way to look at this philosophy (and one borrowed from our friends

<https://devguide.python.org/documenting/#affirmative-tone> on Python’s documentation team)

involves writing while sympathizing with a programmer new to Perl, who may feel uncertain about

learning a complex concept. By leading that concept’s main documentation with clear, positive

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

examples, we can immediately give these readers a simple and true picture of how it works in Perl, and

boost their own confidence to start making use of this new knowledge. Certainly we should include

alternate routes and admonitions as reasonably required, but we needn’t emphasize them. Trust the

reader to understand the basics quickly, and to keep reading for a deeper understanding if they feel so

driven.

Document Perl’s present
Perl’s documentation should stay focused on Perl’s present behavior, with a nod to future directions.

Recount the past only when necessary

When some Perl feature changes its behavior, documentation about that feature should change too, and

just as definitively. The docs have no obligation to keep descriptions of past behavior hanging around,

even if attaching clauses like "Prior to version 5.10, [...]".

Since Perl’s core documentation is part of Perl’s source distribution, it enjoys the same benefits of

versioning and version-control as the source code of Perl itself. Take advantage of this, and update the

text boldly when needed. Perl’s history remains safe, even when you delete or replace outdated

information from the current version’s docs.

Perl’s docs can acknowledge or discuss former behavior when warranted, including notes that some

feature appeared in the language as of some specific version number. Authors should consider applying

principles similar to those for deprecated techniques, as described above: make the information present,

but not prominent.

Otherwise, keep the past in the past. A manual uncluttered with outdated instruction stays more

succinct and relevant.

Describe the uncertain future with care

Perl features marked as "experimental"--those that generate warnings when used in code not invoking

the "experimental" pragma--deserve documentation, but only in certain contexts, and even then with

caveats. These features represent possible new directions for Perl, but they have unstable interfaces and

uncertain future presence.

The documentation should take both implications of "experimental" literally. It should not discourage

these features’ use by programmers who wish to try out new features in projects that can risk their

inherent instability; this experimentation can help Perl grow and improve. By the same token, the docs

should downplay these features’ use in just about every other context.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

Introductory or overview material should omit coverage of experimental features altogether.

More thorough reference materials or explanatory articles can include experimental features, but needs

to clearly mark them as such, and not treat them with the same prominence as Perl’s stable features.

Using unstable features seldom coincides with best practices, and documentation that puts best

practices first should reflect this.

The documentation speaks with one voice
Even though it comes from many hands and minds, criss-crossing through the many years of Perl’s

lifetime, the language’s documentation should speak with a single, consistent voice. With few

exceptions, the docs should avoid explicit first-person-singular statements, or similar self-reference to

any individual’s contributor’s philosophies or experiences.

Perl did begin life as a deeply personal expression by a single individual, and this famously carried

through the first revisions of its documentation as well. Today, Perl’s community understands that the

language’s continued development and support comes from many people working in concert, rather

than any one person’s vision or effort. Its documentation should not pretend otherwise.

The documentation should, however, carry forward the best tradition that Larry Wall set forth in the

language’s earliest days: Write both economically and with a humble, subtle wit, resulting in a

technical manual that mixes concision with a friendly approachability. It avoids the dryness that one

might expect from technical documentation, while not leaning so hard into overt comedy as to distract

and confuse from the nonetheless-technical topics at hand.

Like the best written works, Perl’s documentation has a soul. Get familiar with it as a reader to

internalize its voice, and then find your own way to express it in your own contributions. Writing

clearly, succinctly, and with knowledge of your audience’s expectations will get you most of the way

there, in the meantime.

Every line in the docs--whether English sentence or Perl statement--should serve the purpose of

bringing understanding to the reader. Should a sentence exist mainly to make a wry joke that doesn’t

further the reader’s knowledge of Perl, set it aside, and consider recasting it into a personal blog post or

other article instead.

Write with a light heart, and a miserly hand.

INDEX OF PREFERRED TERMS
As noted above, this guide "inherits" all the preferred terms listed in the Chicago Manual of Style, 17th

edition, and adds the following terms of particular interest to Perl documentation.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

built-in function

Not "builtin".

Darwin

See macOS.

macOS

Use this term for Apple’s operating system instead of "Mac OS X" or variants thereof.

This term is also preferable to "Darwin", unless one needs to refer to macOS’s Unix layer

specifically.

man page

One unit of Unix-style documentation. Not "manpage". Preferable to "manual page".

Perl; perl

The name of the programming language is Perl, with a leading capital "P", and the remainder in

lowercase. (Never "PERL".)

The interpreter program that reads and executes Perl code is named ""perl"", in lowercase and in

monospace (as with any other command name).

Generally, unless you are specifically writing about the command-line "perl" program (as, for

example, "perlrun" does), use "Perl" instead.

Perl 5

Documentation need not follow Perl’s name with a "5", or any other number, except during

discussions of Perl’s history, future plans, or explicit comparisons between major Perl versions.

Before 2019, specifying "Perl 5" was sometimes needed to distinguish the language from Perl 6.

With the latter’s renaming to "Raku", this practice became unnecessary.

Perl 6

See Raku.

Perl 5 Porters, the; porters, the; p5p

The full name of the team responsible for Perl’s ongoing maintenance and development is "the

Perl 5 Porters", and this sobriquet should be spelled out in the first mention within any one

document. It may thereafter call the team "the porters" or "p5p".

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

Not "Perl5 Porters".

program

The most general descriptor for a stand-alone work made out of executable Perl code.

Synonymous with, and preferable to, "script".

Raku

Perl’s "sister language", whose homepage is <https://raku.org>.

Previously known as "Perl 6". In 2019, its design team renamed the language to better reflect its

identity as a project independent from Perl. As such, Perl’s documentation should always refer to

this language as "Raku" and not "Perl 6".

script

See program.

semicolon

Perl code’s frequently overlooked punctuation mark. Not "semi-colon".

Unix

Not "UNIX", "*nix", or "Un*x". Applicable to both the original operating system from the 1970s

as well as all its conceptual descendants. You may simply write "Unix" and not "a Unix-like

operating system" when referring to a Unix-like operating system.

SEE ALSO
+o perlpod

+o perlpodstyle

AUTHOR
This guide was initially drafted by Jason McIntosh (jmac@jmac.org), under a grant from The Perl

Foundation.

PERLDOCSTYLE(1) Perl Programmers Reference Guide PERLDOCSTYLE(1)

perl v5.34.3 2023-11-28 PERLDOCSTYLE(1)

