
NAME
perlfaq6 - Regular Expressions

VERSION
version 5.20210411

DESCRIPTION
This section is surprisingly small because the rest of the FAQ is littered with answers involving regular

expressions. For example, decoding a URL and checking whether something is a number can be

handled with regular expressions, but those answers are found elsewhere in this document (in perlfaq9:

"How do I decode or create those %-encodings on the web" and perlfaq4: "How do I determine

whether a scalar is a number/whole/integer/float", to be precise).

How can I hope to use regular expressions without creating illegible and unmaintainable code?
Three techniques can make regular expressions maintainable and understandable.

Comments Outside the Regex

Describe what you’re doing and how you’re doing it, using normal Perl comments.

turn the line into the first word, a colon, and the

number of characters on the rest of the line

s/^(\w+)(.*)/ lc($1) . ":" . length($2) /meg;

Comments Inside the Regex

The "/x" modifier causes whitespace to be ignored in a regex pattern (except in a character class

and a few other places), and also allows you to use normal comments there, too. As you can

imagine, whitespace and comments help a lot.

"/x" lets you turn this:

s{<(?:[^>’"]*|".*?"|’.*?’)+>}{}gs;

into this:

s{ < # opening angle bracket

(?: # Non-backreffing grouping paren

[^>’"] * # 0 or more things that are neither > nor ’ nor "

| # or else

".*?" # a section between double quotes (stingy match)

| # or else

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

’.*?’ # a section between single quotes (stingy match)

) + # all occurring one or more times

> # closing angle bracket

}{}gsx; # replace with nothing, i.e. delete

It’s still not quite so clear as prose, but it is very useful for describing the meaning of each part of

the pattern.

Different Delimiters

While we normally think of patterns as being delimited with "/" characters, they can be delimited

by almost any character. perlre describes this. For example, the "s///" above uses braces as

delimiters. Selecting another delimiter can avoid quoting the delimiter within the pattern:

s/\/usr\/local/\/usr\/share/g; # bad delimiter choice

s#/usr/local#/usr/share#g; # better

Using logically paired delimiters can be even more readable:

s{/usr/local/}{/usr/share}g; # better still

I’m having trouble matching over more than one line. What’s wrong?
Either you don’t have more than one line in the string you’re looking at (probably), or else you aren’t

using the correct modifier(s) on your pattern (possibly).

There are many ways to get multiline data into a string. If you want it to happen automatically while

reading input, you’ll want to set $/ (probably to ’’ for paragraphs or "undef" for the whole file) to allow

you to read more than one line at a time.

Read perlre to help you decide which of "/s" and "/m" (or both) you might want to use: "/s" allows dot

to include newline, and "/m" allows caret and dollar to match next to a newline, not just at the end of

the string. You do need to make sure that you’ve actually got a multiline string in there.

For example, this program detects duplicate words, even when they span line breaks (but not paragraph

ones). For this example, we don’t need "/s" because we aren’t using dot in a regular expression that we

want to cross line boundaries. Neither do we need "/m" because we don’t want caret or dollar to match

at any point inside the record next to newlines. But it’s imperative that $/ be set to something other than

the default, or else we won’t actually ever have a multiline record read in.

$/ = ’’; # read in whole paragraph, not just one line

while (<>) {

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

while (/\b([\w’-]+)(\s+\g1)+\b/gi) { # word starts alpha

print "Duplicate $1 at paragraph $.\n";

}

}

Here’s some code that finds sentences that begin with "From " (which would be mangled by many

mailers):

$/ = ’’; # read in whole paragraph, not just one line

while (<>) {

while (/^From /gm) { # /m makes ^ match next to \n

print "leading From in paragraph $.\n";

}

}

Here’s code that finds everything between START and END in a paragraph:

undef $/; # read in whole file, not just one line or paragraph

while (<>) {

while (/START(.*?)END/sgm) { # /s makes . cross line boundaries

print "$1\n";

}

}

How can I pull out lines between two patterns that are themselves on different lines?
You can use Perl’s somewhat exotic ".." operator (documented in perlop):

perl -ne ’print if /START/ .. /END/’ file1 file2 ...

If you wanted text and not lines, you would use

perl -0777 -ne ’print "$1\n" while /START(.*?)END/gs’ file1 file2 ...

But if you want nested occurrences of "START" through "END", you’ll run up against the problem

described in the question in this section on matching balanced text.

Here’s another example of using "..":

while (<>) {

my $in_header = 1 .. /^$/;

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

my $in_body = /^$/ .. eof;

now choose between them

} continue {

$. = 0 if eof; # fix $.

}

How do I match XML, HTML, or other nasty, ugly things with a regex?
Do not use regexes. Use a module and forget about the regular expressions. The XML::LibXML,

HTML::TokeParser and HTML::TreeBuilder modules are good starts, although each namespace has

other parsing modules specialized for certain tasks and different ways of doing it. Start at CPAN

Search (<http://metacpan.org/>) and wonder at all the work people have done for you already! :)

I put a regular expression into $/ but it didn’t work. What’s wrong?
$/ has to be a string. You can use these examples if you really need to do this.

If you have File::Stream, this is easy.

use File::Stream;

my $stream = File::Stream->new(

$filehandle,

separator => qr/\s*,\s*/,

);

print "$_\n" while <$stream>;

If you don’t have File::Stream, you have to do a little more work.

You can use the four-argument form of sysread to continually add to a buffer. After you add to the

buffer, you check if you have a complete line (using your regular expression).

local $_ = "";

while(sysread FH, $_, 8192, length) {

while(s/^((?s).*?)your_pattern//) {

my $record = $1;

do stuff here.

}

}

You can do the same thing with foreach and a match using the c flag and the \G anchor, if you do not

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

mind your entire file being in memory at the end.

local $_ = "";

while(sysread FH, $_, 8192, length) {

foreach my $record (m/\G((?s).*?)your_pattern/gc) {

do stuff here.

}

substr($_, 0, pos) = "" if pos;

}

How do I substitute case-insensitively on the LHS while preserving case on the RHS?
Here’s a lovely Perlish solution by Larry Rosler. It exploits properties of bitwise xor on ASCII strings.

$_= "this is a TEsT case";

$old = ’test’;

$new = ’success’;

s{(\Q$old\E)}

{ uc $new | (uc $1 ^ $1) .

(uc(substr $1, -1) ^ substr $1, -1) x

(length($new) - length $1)

}egi;

print;

And here it is as a subroutine, modeled after the above:

sub preserve_case {

my ($old, $new) = @_;

my $mask = uc $old ^ $old;

uc $new | $mask .

substr($mask, -1) x (length($new) - length($old))

}

$string = "this is a TEsT case";

$string =~ s/(test)/preserve_case($1, "success")/egi;

print "$string\n";

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

This prints:

this is a SUcCESS case

As an alternative, to keep the case of the replacement word if it is longer than the original, you can use

this code, by Jeff Pinyan:

sub preserve_case {

my ($from, $to) = @_;

my ($lf, $lt) = map length, @_;

if ($lt < $lf) { $from = substr $from, 0, $lt }

else { $from .= substr $to, $lf }

return uc $to | ($from ^ uc $from);

}

This changes the sentence to "this is a SUcCess case."

Just to show that C programmers can write C in any programming language, if you prefer a more

C-like solution, the following script makes the substitution have the same case, letter by letter, as the

original. (It also happens to run about 240% slower than the Perlish solution runs.) If the substitution

has more characters than the string being substituted, the case of the last character is used for the rest of

the substitution.

Original by Nathan Torkington, massaged by Jeffrey Friedl

#

sub preserve_case

{

my ($old, $new) = @_;

my $state = 0; # 0 = no change; 1 = lc; 2 = uc

my ($i, $oldlen, $newlen, $c) = (0, length($old), length($new));

my $len = $oldlen < $newlen ? $oldlen : $newlen;

for ($i = 0; $i < $len; $i++) {

if ($c = substr($old, $i, 1), $c =~ /[\W\d_]/) {

$state = 0;

} elsif (lc $c eq $c) {

substr($new, $i, 1) = lc(substr($new, $i, 1));

$state = 1;

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

} else {

substr($new, $i, 1) = uc(substr($new, $i, 1));

$state = 2;

}

}

finish up with any remaining new (for when new is longer than old)

if ($newlen > $oldlen) {

if ($state == 1) {

substr($new, $oldlen) = lc(substr($new, $oldlen));

} elsif ($state == 2) {

substr($new, $oldlen) = uc(substr($new, $oldlen));

}

}

return $new;

}

How can I make "\w" match national character sets?
Put "use locale;" in your script. The \w character class is taken from the current locale.

See perllocale for details.

How can I match a locale-smart version of "/[a-zA-Z]/"?
You can use the POSIX character class syntax "/[[:alpha:]]/" documented in perlre.

No matter which locale you are in, the alphabetic characters are the characters in \w without the digits

and the underscore. As a regex, that looks like "/[^\W\d_]/". Its complement, the non-alphabetics, is

then everything in \W along with the digits and the underscore, or "/[\W\d_]/".

How can I quote a variable to use in a regex?
The Perl parser will expand $variable and @variable references in regular expressions unless the

delimiter is a single quote. Remember, too, that the right-hand side of a "s///" substitution is considered

a double-quoted string (see perlop for more details). Remember also that any regex special characters

will be acted on unless you precede the substitution with \Q. Here’s an example:

$string = "Placido P. Octopus";

$regex = "P.";

$string =~ s/$regex/Polyp/;

$string is now "Polypacido P. Octopus"

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

Because "." is special in regular expressions, and can match any single character, the regex "P." here

has matched the <Pl> in the original string.

To escape the special meaning of ".", we use "\Q":

$string = "Placido P. Octopus";

$regex = "P.";

$string =~ s/\Q$regex/Polyp/;

$string is now "Placido Polyp Octopus"

The use of "\Q" causes the "." in the regex to be treated as a regular character, so that "P." matches a

"P" followed by a dot.

What is "/o" really for?
(contributed by brian d foy)

The "/o" option for regular expressions (documented in perlop and perlreref) tells Perl to compile the

regular expression only once. This is only useful when the pattern contains a variable. Perls 5.6 and

later handle this automatically if the pattern does not change.

Since the match operator "m//", the substitution operator "s///", and the regular expression quoting

operator "qr//" are double-quotish constructs, you can interpolate variables into the pattern. See the

answer to "How can I quote a variable to use in a regex?" for more details.

This example takes a regular expression from the argument list and prints the lines of input that match

it:

my $pattern = shift @ARGV;

while(<>) {

print if m/$pattern/;

}

Versions of Perl prior to 5.6 would recompile the regular expression for each iteration, even if $pattern

had not changed. The "/o" would prevent this by telling Perl to compile the pattern the first time, then

reuse that for subsequent iterations:

my $pattern = shift @ARGV;

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

while(<>) {

print if m/$pattern/o; # useful for Perl < 5.6

}

In versions 5.6 and later, Perl won’t recompile the regular expression if the variable hasn’t changed, so

you probably don’t need the "/o" option. It doesn’t hurt, but it doesn’t help either. If you want any

version of Perl to compile the regular expression only once even if the variable changes (thus, only

using its initial value), you still need the "/o".

You can watch Perl’s regular expression engine at work to verify for yourself if Perl is recompiling a

regular expression. The "use re ’debug’" pragma (comes with Perl 5.005 and later) shows the details.

With Perls before 5.6, you should see "re" reporting that its compiling the regular expression on each

iteration. With Perl 5.6 or later, you should only see "re" report that for the first iteration.

use re ’debug’;

my $regex = ’Perl’;

foreach (qw(Perl Java Ruby Python)) {

print STDERR "-" x 73, "\n";

print STDERR "Trying $_...\n";

print STDERR "\t$_ is good!\n" if m/$regex/;

}

How do I use a regular expression to strip C-style comments from a file?
While this actually can be done, it’s much harder than you’d think. For example, this one-liner

perl -0777 -pe ’s{/*.*?*/}{}gs’ foo.c

will work in many but not all cases. You see, it’s too simple-minded for certain kinds of C programs, in

particular, those with what appear to be comments in quoted strings. For that, you’d need something

like this, created by Jeffrey Friedl and later modified by Fred Curtis.

$/ = undef;

$_ = <>;

s#/*[^*]**+([^/*][^*]**+)*/|("(\\.|[^"\\])*"|’(\\.|[^’\\])*’|.[^/"’\\]*)#defined $2 ? $2 : ""#gse;

print;

This could, of course, be more legibly written with the "/x" modifier, adding whitespace and

comments. Here it is expanded, courtesy of Fred Curtis.

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

s{

/* ## Start of /* ... */ comment

[^*]**+ ## Non-* followed by 1-or-more *’s

(

[^/*][^*]**+

)* ## 0-or-more things which don’t start with /

but do end with ’*’

/ ## End of /* ... */ comment

| ## OR various things which aren’t comments:

(

" ## Start of " ... " string

(

\\. ## Escaped char

| ## OR

[^"\\] ## Non "\

)*

" ## End of " ... " string

| ## OR

’ ## Start of ’ ... ’ string

(

\\. ## Escaped char

| ## OR

[^’\\] ## Non ’\

)*

’ ## End of ’ ... ’ string

| ## OR

. ## Anything other char

[^/"’\\]* ## Chars which doesn’t start a comment, string or escape

)

}{defined $2 ? $2 : ""}gxse;

A slight modification also removes

C

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

comments, possibly spanning multiple lines using a continuation character:

s#/*[^*]**+([^/*][^*]**+)*/|//([^\\]|[^\n][\n]?)*?\n|("(\\.|[^"\\])*"|’(\\.|[^’\\])*’|.[^/"’\\]*)#defined $3 ? $3 : ""#gse;

Can I use Perl regular expressions to match balanced text?
(contributed by brian d foy)

Your first try should probably be the Text::Balanced module, which is in the Perl standard library since

Perl 5.8. It has a variety of functions to deal with tricky text. The Regexp::Common module can also

help by providing canned patterns you can use.

As of Perl 5.10, you can match balanced text with regular expressions using recursive patterns. Before

Perl 5.10, you had to resort to various tricks such as using Perl code in "(??{})" sequences.

Here’s an example using a recursive regular expression. The goal is to capture all of the text within

angle brackets, including the text in nested angle brackets. This sample text has two "major" groups: a

group with one level of nesting and a group with two levels of nesting. There are five total groups in

angle brackets:

I have some <brackets in <nested brackets> > and

<another group <nested once <nested twice> > >

and that’s it.

The regular expression to match the balanced text uses two new (to Perl 5.10) regular expression

features. These are covered in perlre and this example is a modified version of one in that

documentation.

First, adding the new possessive "+" to any quantifier finds the longest match and does not backtrack.

That’s important since you want to handle any angle brackets through the recursion, not backtracking.

The group "[^<>]++" finds one or more non-angle brackets without backtracking.

Second, the new "(?PARNO)" refers to the sub-pattern in the particular capture group given by

"PARNO". In the following regex, the first capture group finds (and remembers) the balanced text, and

you need that same pattern within the first buffer to get past the nested text. That’s the recursive part.

The "(?1)" uses the pattern in the outer capture group as an independent part of the regex.

Putting it all together, you have:

#!/usr/local/bin/perl5.10.0

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

my $string =<<"HERE";

I have some <brackets in <nested brackets> > and

<another group <nested once <nested twice> > >

and that’s it.

HERE

my @groups = $string =~ m/

(# start of capture group 1

< # match an opening angle bracket

(?:

[^<>]++ # one or more non angle brackets, non backtracking

|

(?1) # found < or >, so recurse to capture group 1

)*

> # match a closing angle bracket

) # end of capture group 1

/xg;

$" = "\n\t";

print "Found:\n\t@groups\n";

The output shows that Perl found the two major groups:

Found:

<brackets in <nested brackets> >

<another group <nested once <nested twice> > >

With a little extra work, you can get all of the groups in angle brackets even if they are in other angle

brackets too. Each time you get a balanced match, remove its outer delimiter (that’s the one you just

matched so don’t match it again) and add it to a queue of strings to process. Keep doing that until you

get no matches:

#!/usr/local/bin/perl5.10.0

my @queue =<<"HERE";

I have some <brackets in <nested brackets> > and

<another group <nested once <nested twice> > >

and that’s it.

HERE

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

my $regex = qr/

(# start of bracket 1

< # match an opening angle bracket

(?:

[^<>]++ # one or more non angle brackets, non backtracking

|

(?1) # recurse to bracket 1

)*

> # match a closing angle bracket

) # end of bracket 1

/x;

$" = "\n\t";

while(@queue) {

my $string = shift @queue;

my @groups = $string =~ m/$regex/g;

print "Found:\n\t@groups\n\n" if @groups;

unshift @queue, map { s/^<//; s/>$//; $_ } @groups;

}

The output shows all of the groups. The outermost matches show up first and the nested matches show

up later:

Found:

<brackets in <nested brackets> >

<another group <nested once <nested twice> > >

Found:

<nested brackets>

Found:

<nested once <nested twice> >

Found:

<nested twice>

What does it mean that regexes are greedy? How can I get around it?

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

Most people mean that greedy regexes match as much as they can. Technically speaking, it’s actually

the quantifiers ("?", "*", "+", "{}") that are greedy rather than the whole pattern; Perl prefers local

greed and immediate gratification to overall greed. To get non-greedy versions of the same quantifiers,

use ("??", "*?", "+?", "{}?").

An example:

my $s1 = my $s2 = "I am very very cold";

$s1 =~ s/ve.*y //; # I am cold

$s2 =~ s/ve.*?y //; # I am very cold

Notice how the second substitution stopped matching as soon as it encountered "y ". The "*?"

quantifier effectively tells the regular expression engine to find a match as quickly as possible and pass

control on to whatever is next in line, as you would if you were playing hot potato.

How do I process each word on each line?
Use the split function:

while (<>) {

foreach my $word (split) {

do something with $word here

}

}

Note that this isn’t really a word in the English sense; it’s just chunks of consecutive non-whitespace

characters.

To work with only alphanumeric sequences (including underscores), you might consider

while (<>) {

foreach $word (m/(\w+)/g) {

do something with $word here

}

}

How can I print out a word-frequency or line-frequency summary?
To do this, you have to parse out each word in the input stream. We’ll pretend that by word you mean

chunk of alphabetics, hyphens, or apostrophes, rather than the non-whitespace chunk idea of a word

given in the previous question:

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

my (%seen);

while (<>) {

while (/(\b[^\W_\d][\w’-]+\b)/g) { # misses "‘sheep’"

$seen{$1}++;

}

}

while (my ($word, $count) = each %seen) {

print "$count $word\n";

}

If you wanted to do the same thing for lines, you wouldn’t need a regular expression:

my (%seen);

while (<>) {

$seen{$_}++;

}

while (my ($line, $count) = each %seen) {

print "$count $line";

}

If you want these output in a sorted order, see perlfaq4: "How do I sort a hash (optionally by value

instead of key)?".

How can I do approximate matching?
See the module String::Approx available from CPAN.

How do I efficiently match many regular expressions at once?
(contributed by brian d foy)

You want to avoid compiling a regular expression every time you want to match it. In this example,

perl must recompile the regular expression for every iteration of the "foreach" loop since $pattern can

change:

my @patterns = qw(fo+ ba[rz]);

LINE: while(my $line = <>) {

foreach my $pattern (@patterns) {

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

if($line =~ m/\b$pattern\b/i) {

print $line;

next LINE;

}

}

}

The "qr//" operator compiles a regular expression, but doesn’t apply it. When you use the pre-compiled

version of the regex, perl does less work. In this example, I inserted a "map" to turn each pattern into

its pre-compiled form. The rest of the script is the same, but faster:

my @patterns = map { qr/\b$_\b/i } qw(fo+ ba[rz]);

LINE: while(my $line = <>) {

foreach my $pattern (@patterns) {

if($line =~ m/$pattern/) {

print $line;

next LINE;

}

}

}

In some cases, you may be able to make several patterns into a single regular expression. Beware of

situations that require backtracking though. In this example, the regex is only compiled once because

$regex doesn’t change between iterations:

my $regex = join ’|’, qw(fo+ ba[rz]);

while(my $line = <>) {

print if $line =~ m/\b(?:$regex)\b/i;

}

The function "list2re" in Data::Munge on CPAN can also be used to form a single regex that matches a

list of literal strings (not regexes).

For more details on regular expression efficiency, see Mastering Regular Expressions by Jeffrey Friedl.

He explains how the regular expressions engine works and why some patterns are surprisingly

inefficient. Once you understand how perl applies regular expressions, you can tune them for

individual situations.

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

Why don’t word-boundary searches with "\b" work for me?
(contributed by brian d foy)

Ensure that you know what \b really does: it’s the boundary between a word character, \w, and

something that isn’t a word character. That thing that isn’t a word character might be \W, but it can also

be the start or end of the string.

It’s not (not!) the boundary between whitespace and non-whitespace, and it’s not the stuff between

words we use to create sentences.

In regex speak, a word boundary (\b) is a "zero width assertion", meaning that it doesn’t represent a

character in the string, but a condition at a certain position.

For the regular expression, /\bPerl\b/, there has to be a word boundary before the "P" and after the "l".

As long as something other than a word character precedes the "P" and succeeds the "l", the pattern will

match. These strings match /\bPerl\b/.

"Perl" # no word char before "P" or after "l"

"Perl " # same as previous (space is not a word char)

"’Perl’" # the "’" char is not a word char

"Perl’s" # no word char before "P", non-word char after "l"

These strings do not match /\bPerl\b/.

"Perl_" # "_" is a word char!

"Perler" # no word char before "P", but one after "l"

You don’t have to use \b to match words though. You can look for non-word characters surrounded by

word characters. These strings match the pattern /\b’\b/.

"don’t" # the "’" char is surrounded by "n" and "t"

"qep’a’" # the "’" char is surrounded by "p" and "a"

These strings do not match /\b’\b/.

"foo’" # there is no word char after non-word "’"

You can also use the complement of \b, \B, to specify that there should not be a word boundary.

In the pattern /\Bam\B/, there must be a word character before the "a" and after the "m". These patterns

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

match /\Bam\B/:

"llama" # "am" surrounded by word chars

"Samuel" # same

These strings do not match /\Bam\B/

"Sam" # no word boundary before "a", but one after "m"

"I am Sam" # "am" surrounded by non-word chars

Why does using $&, $‘, or $’ slow my program down?
(contributed by Anno Siegel)

Once Perl sees that you need one of these variables anywhere in the program, it provides them on each

and every pattern match. That means that on every pattern match the entire string will be copied, part

of it to $‘, part to $&, and part to $’. Thus the penalty is most severe with long strings and patterns that

match often. Avoid $&, $’, and $‘ if you can, but if you can’t, once you’ve used them at all, use them

at will because you’ve already paid the price. Remember that some algorithms really appreciate them.

As of the 5.005 release, the $& variable is no longer "expensive" the way the other two are.

Since Perl 5.6.1 the special variables @- and @+ can functionally replace $‘, $& and $’. These arrays

contain pointers to the beginning and end of each match (see perlvar for the full story), so they give

you essentially the same information, but without the risk of excessive string copying.

Perl 5.10 added three specials, "${^MATCH}", "${^PREMATCH}", and "${^POSTMATCH}" to do

the same job but without the global performance penalty. Perl 5.10 only sets these variables if you

compile or execute the regular expression with the "/p" modifier.

What good is "\G" in a regular expression?
You use the "\G" anchor to start the next match on the same string where the last match left off. The

regular expression engine cannot skip over any characters to find the next match with this anchor, so

"\G" is similar to the beginning of string anchor, "^". The "\G" anchor is typically used with the "g"

modifier. It uses the value of "pos()" as the position to start the next match. As the match operator

makes successive matches, it updates "pos()" with the position of the next character past the last match

(or the first character of the next match, depending on how you like to look at it). Each string has its

own "pos()" value.

Suppose you want to match all of consecutive pairs of digits in a string like "1122a44" and stop

matching when you encounter non-digits. You want to match 11 and 22 but the letter "a" shows up

between 22 and 44 and you want to stop at "a". Simply matching pairs of digits skips over the "a" and

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

still matches 44.

$_ = "1122a44";

my @pairs = m/(\d\d)/g; # qw(11 22 44)

If you use the "\G" anchor, you force the match after 22 to start with the "a". The regular expression

cannot match there since it does not find a digit, so the next match fails and the match operator returns

the pairs it already found.

$_ = "1122a44";

my @pairs = m/\G(\d\d)/g; # qw(11 22)

You can also use the "\G" anchor in scalar context. You still need the "g" modifier.

$_ = "1122a44";

while(m/\G(\d\d)/g) {

print "Found $1\n";

}

After the match fails at the letter "a", perl resets "pos()" and the next match on the same string starts at

the beginning.

$_ = "1122a44";

while(m/\G(\d\d)/g) {

print "Found $1\n";

}

print "Found $1 after while" if m/(\d\d)/g; # finds "11"

You can disable "pos()" resets on fail with the "c" modifier, documented in perlop and perlreref.

Subsequent matches start where the last successful match ended (the value of "pos()") even if a match

on the same string has failed in the meantime. In this case, the match after the "while()" loop starts at

the "a" (where the last match stopped), and since it does not use any anchor it can skip over the "a" to

find 44.

$_ = "1122a44";

while(m/\G(\d\d)/gc) {

print "Found $1\n";

}

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

print "Found $1 after while" if m/(\d\d)/g; # finds "44"

Typically you use the "\G" anchor with the "c" modifier when you want to try a different match if one

fails, such as in a tokenizer. Jeffrey Friedl offers this example which works in 5.004 or later.

while (<>) {

chomp;

PARSER: {

m/ \G(\d+\b)/gcx && do { print "number: $1\n"; redo; };

m/ \G(\w+)/gcx && do { print "word: $1\n"; redo; };

m/ \G(\s+)/gcx && do { print "space: $1\n"; redo; };

m/ \G([^\w\d]+)/gcx && do { print "other: $1\n"; redo; };

}

}

For each line, the "PARSER" loop first tries to match a series of digits followed by a word boundary.

This match has to start at the place the last match left off (or the beginning of the string on the first

match). Since "m/ \G(\d+\b)/gcx" uses the "c" modifier, if the string does not match that regular

expression, perl does not reset pos() and the next match starts at the same position to try a different

pattern.

Are Perl regexes DFAs or NFAs? Are they POSIX compliant?
While it’s true that Perl’s regular expressions resemble the DFAs (deterministic finite automata) of the

egrep(1) program, they are in fact implemented as NFAs (non-deterministic finite automata) to allow

backtracking and backreferencing. And they aren’t POSIX-style either, because those guarantee worst-

case behavior for all cases. (It seems that some people prefer guarantees of consistency, even when

what’s guaranteed is slowness.) See the book "Mastering Regular Expressions" (from O’Reilly) by

Jeffrey Friedl for all the details you could ever hope to know on these matters (a full citation appears in

perlfaq2).

What’s wrong with using grep in a void context?
The problem is that grep builds a return list, regardless of the context. This means you’re making Perl

go to the trouble of building a list that you then just throw away. If the list is large, you waste both time

and space. If your intent is to iterate over the list, then use a for loop for this purpose.

In perls older than 5.8.1, map suffers from this problem as well. But since 5.8.1, this has been fixed,

and map is context aware - in void context, no lists are constructed.

How can I match strings with multibyte characters?
Starting from Perl 5.6 Perl has had some level of multibyte character support. Perl 5.8 or later is

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

recommended. Supported multibyte character repertoires include Unicode, and legacy encodings

through the Encode module. See perluniintro, perlunicode, and Encode.

If you are stuck with older Perls, you can do Unicode with the Unicode::String module, and character

conversions using the Unicode::Map8 and Unicode::Map modules. If you are using Japanese

encodings, you might try using the jperl 5.005_03.

Finally, the following set of approaches was offered by Jeffrey Friedl, whose article in issue #5 of The

Perl Journal talks about this very matter.

Let’s suppose you have some weird Martian encoding where pairs of ASCII uppercase letters encode

single Martian letters (i.e. the two bytes "CV" make a single Martian letter, as do the two bytes "SG",

"VS", "XX", etc.). Other bytes represent single characters, just like ASCII.

So, the string of Martian "I am CVSGXX!" uses 12 bytes to encode the nine characters ’I’, ’ ’, ’a’, ’m’,

’ ’, ’CV’, ’SG’, ’XX’, ’!’.

Now, say you want to search for the single character "/GX/". Perl doesn’t know about Martian, so it’ll

find the two bytes "GX" in the "I am CVSGXX!" string, even though that character isn’t there: it just

looks like it is because "SG" is next to "XX", but there’s no real "GX". This is a big problem.

Here are a few ways, all painful, to deal with it:

Make sure adjacent "martian" bytes are no longer adjacent.

$martian =~ s/([A-Z][A-Z])/ $1 /g;

print "found GX!\n" if $martian =~ /GX/;

Or like this:

my @chars = $martian =~ m/([A-Z][A-Z]|[^A-Z])/g;

above is conceptually similar to: my @chars = $text =~ m/(.)/g;

#

foreach my $char (@chars) {

print "found GX!\n", last if $char eq ’GX’;

}

Or like this:

while ($martian =~ m/\G([A-Z][A-Z]|.)/gs) { # \G probably unneeded

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

if ($1 eq ’GX’) {

print "found GX!\n";

last;

}

}

Here’s another, slightly less painful, way to do it from Benjamin Goldberg, who uses a zero-width

negative look-behind assertion.

print "found GX!\n" if $martian =~ m/

(?<![A-Z])

(?:[A-Z][A-Z])*?

GX

/x;

This succeeds if the "martian" character GX is in the string, and fails otherwise. If you don’t like using

(?<!), a zero-width negative look-behind assertion, you can replace (?<![A-Z]) with (?:^|[^A-Z]).

It does have the drawback of putting the wrong thing in $-[0] and $+[0], but this usually can be worked

around.

How do I match a regular expression that’s in a variable?
(contributed by brian d foy)

We don’t have to hard-code patterns into the match operator (or anything else that works with regular

expressions). We can put the pattern in a variable for later use.

The match operator is a double quote context, so you can interpolate your variable just like a double

quoted string. In this case, you read the regular expression as user input and store it in $regex. Once

you have the pattern in $regex, you use that variable in the match operator.

chomp(my $regex = <STDIN>);

if($string =~ m/$regex/) { ... }

Any regular expression special characters in $regex are still special, and the pattern still has to be valid

or Perl will complain. For instance, in this pattern there is an unpaired parenthesis.

my $regex = "Unmatched (paren";

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

"Two parens to bind them all" =~ m/$regex/;

When Perl compiles the regular expression, it treats the parenthesis as the start of a memory match.

When it doesn’t find the closing parenthesis, it complains:

Unmatched (in regex; marked by <-- HERE in m/Unmatched (<-- HERE paren/ at script line 3.

You can get around this in several ways depending on our situation. First, if you don’t want any of the

characters in the string to be special, you can escape them with "quotemeta" before you use the string.

chomp(my $regex = <STDIN>);

$regex = quotemeta($regex);

if($string =~ m/$regex/) { ... }

You can also do this directly in the match operator using the "\Q" and "\E" sequences. The "\Q" tells

Perl where to start escaping special characters, and the "\E" tells it where to stop (see perlop for more

details).

chomp(my $regex = <STDIN>);

if($string =~ m/\Q$regex\E/) { ... }

Alternately, you can use "qr//", the regular expression quote operator (see perlop for more details). It

quotes and perhaps compiles the pattern, and you can apply regular expression flags to the pattern.

chomp(my $input = <STDIN>);

my $regex = qr/$input/is;

$string =~ m/$regex/ # same as m/$input/is;

You might also want to trap any errors by wrapping an "eval" block around the whole thing.

chomp(my $input = <STDIN>);

eval {

if($string =~ m/\Q$input\E/) { ... }

};

warn $@ if $@;

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

Or...

my $regex = eval { qr/$input/is };

if(defined $regex) {

$string =~ m/$regex/;

}

else {

warn $@;

}

AUTHOR AND COPYRIGHT
Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and other authors as noted. All rights

reserved.

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.

You are permitted and encouraged to use this code in your own programs for fun or for profit as you

see fit. A simple comment in the code giving credit would be courteous but is not required.

PERLFAQ6(1) Perl Programmers Reference Guide PERLFAQ6(1)

perl v5.34.3 2023-11-28 PERLFAQ6(1)

