
NAME
perlintern - autogenerated documentation of purely internal Perl functions

DESCRIPTION
This file is the autogenerated documentation of functions in the Perl interpreter that are documented

using Perl’s internal documentation format but are not marked as part of the Perl API. In other words,

they are not for use in extensions!

It has the same sections as perlapi, though some may be empty.

AV Handling
"av_fetch_simple"

This is a cut-down version of av_fetch that assumes that the array is very straightforward - no

magic, not readonly, and AvREAL - and that "key" is not negative. This function MUST NOT be

used in situations where any of those assumptions may not hold.

Returns the SV at the specified index in the array. The "key" is the index. If lval is true, you are

guaranteed to get a real SV back (in case it wasn’t real before), which you can then modify.

Check that the return value is non-null before dereferencing it to a "SV*".

The rough perl equivalent is $myarray[$key].

SV** av_fetch_simple(AV *av, SSize_t key, I32 lval)

"AvFILLp"

If the array "av" is empty, this returns -1; otherwise it returns the maximum value of the indices of

all the array elements which are currently defined in "av". It does not handle magic, hence the "p"

private indication in its name.

SSize_t AvFILLp(AV* av)

"av_new_alloc"

This implements ""newAV_alloc_x"" in perlapi and ""newAV_alloc_xz"" in perlapi, which are

the public API for this functionality.

Creates a new AV and allocates its SV* array.

This is similar to, but more efficient than doing:

AV *av = newAV();

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

av_extend(av, key);

The size parameter is used to pre-allocate a SV* array large enough to hold at least elements

"0..(size-1)". "size" must be at least 1.

The "zeroflag" parameter controls whether or not the array is NULL initialized.

AV* av_new_alloc(SSize_t size, bool zeroflag)

"av_store_simple"

This is a cut-down version of av_store that assumes that the array is very straightforward - no

magic, not readonly, and AvREAL - and that "key" is not negative. This function MUST NOT be

used in situations where any of those assumptions may not hold.

Stores an SV in an array. The array index is specified as "key". It can be dereferenced to get the

"SV*" that was stored there (= "val")).

Note that the caller is responsible for suitably incrementing the reference count of "val" before the

call.

Approximate Perl equivalent: "splice(@myarray, $key, 1, $val)".

SV** av_store_simple(AV *av, SSize_t key, SV *val)

Callback Functions
"dowantarray"

Implements the deprecated ""GIMME"" in perlapi.

U8 dowantarray()

"leave_scope"

Implements "LEAVE_SCOPE" which you should use instead.

void leave_scope(I32 base)

"pop_scope"

Implements ""LEAVE"" in perlapi

void pop_scope()

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"push_scope"

Implements ""ENTER"" in perlapi

void push_scope()

"save_adelete"

Implements "SAVEADELETE".

void save_adelete(AV *av, SSize_t key)

"save_generic_pvref"

Implements "SAVEGENERICPV".

Like save_pptr(), but also Safefree()s the new value if it is different from the old one. Can be used

to restore a global char* to its prior contents, freeing new value.

void save_generic_pvref(char** str)

"save_generic_svref"

Implements "SAVEGENERICSV".

Like save_sptr(), but also SvREFCNT_dec()s the new value. Can be used to restore a global SV

to its prior contents, freeing new value.

void save_generic_svref(SV** sptr)

"save_hdelete"

Implements "SAVEHDELETE".

void save_hdelete(HV *hv, SV *keysv)

"save_hints"

Implements "SAVEHINTS".

void save_hints()

"save_op"

Implements "SAVEOP".

void save_op()

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"save_padsv_and_mortalize"

Implements "SAVEPADSVANDMORTALIZE".

void save_padsv_and_mortalize(PADOFFSET off)

"save_set_svflags"

Implements "SAVESETSVFLAGS".

Set the SvFLAGS specified by mask to the values in val

void save_set_svflags(SV *sv, U32 mask, U32 val)

"save_shared_pvref"

Implements "SAVESHAREDPV".

Like save_generic_pvref(), but uses PerlMemShared_free() rather than Safefree(). Can be used to

restore a shared global char* to its prior contents, freeing new value.

void save_shared_pvref(char** str)

"save_vptr"

Implements "SAVEVPTR".

void save_vptr(void *ptr)

Casting
There are only public API items currently in Casting

Character case changing
There are only public API items currently in Character case changing

Character classification
There are only public API items currently in Character classification

Compiler and Preprocessor information
There are only public API items currently in Compiler and Preprocessor information

Compiler directives
There are only public API items currently in Compiler directives

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

Compile-time scope hooks
"BhkENTRY"

NOTE: "BhkENTRY" is experimental and may change or be removed without notice.

Return an entry from the BHK structure. "which" is a preprocessor token indicating which entry

to return. If the appropriate flag is not set this will return "NULL". The type of the return value

depends on which entry you ask for.

void * BhkENTRY(BHK *hk, which)

"BhkFLAGS"

NOTE: "BhkFLAGS" is experimental and may change or be removed without notice.

Return the BHK’s flags.

U32 BhkFLAGS(BHK *hk)

"CALL_BLOCK_HOOKS"

NOTE: "CALL_BLOCK_HOOKS" is experimental and may change or be removed without

notice.

Call all the registered block hooks for type "which". "which" is a preprocessing token; the type of

"arg" depends on "which".

void CALL_BLOCK_HOOKS(which, arg)

Concurrency
"CVf_SLABBED"

"CvROOT"

"CvSTART"

Described in perlguts.

"CX_CUR"

Described in perlguts.

CX_CUR()

"CXINC"

Described in perlguts.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"CX_LEAVE_SCOPE"

Described in perlguts.

void CX_LEAVE_SCOPE(PERL_CONTEXT* cx)

"CX_POP"

Described in perlguts.

void CX_POP(PERL_CONTEXT* cx)

"cxstack"

Described in perlguts.

"cxstack_ix"

Described in perlguts.

"CXt_BLOCK"

"CXt_EVAL"

"CXt_FORMAT"

"CXt_GIVEN"

"CXt_LOOP_ARY"

"CXt_LOOP_LAZYIV"

"CXt_LOOP_LAZYSV"

"CXt_LOOP_LIST"

"CXt_LOOP_PLAIN"

"CXt_NULL"

"CXt_SUB"

"CXt_SUBST"

"CXt_WHEN"

Described in perlguts.

"cx_type"

Described in perlguts.

"dounwind"

Described in perlguts.

void dounwind(I32 cxix)

"my_fork"

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

This is for the use of "PerlProc_fork" as a wrapper for the C library fork(2) on some platforms to

hide some platform quirks. It should not be used except through "PerlProc_fork".

Pid_t my_fork()

"PERL_CONTEXT"

Described in perlguts.

COPs and Hint Hashes
There are only public API items currently in COPs and Hint Hashes

Custom Operators
"core_prototype"

This function assigns the prototype of the named core function to "sv", or to a new mortal SV if

"sv" is "NULL". It returns the modified "sv", or "NULL" if the core function has no prototype.

"code" is a code as returned by "keyword()". It must not be equal to 0.

SV * core_prototype(SV *sv, const char *name, const int code,

int * const opnum)

CV Handling
"CvWEAKOUTSIDE"

Each CV has a pointer, "CvOUTSIDE()", to its lexically enclosing CV (if any). Because pointers

to anonymous sub prototypes are stored in "&" pad slots, it is a possible to get a circular reference,

with the parent pointing to the child and vice-versa. To avoid the ensuing memory leak, we do not

increment the reference count of the CV pointed to by "CvOUTSIDE" in the one specific instance

that the parent has a "&" pad slot pointing back to us. In this case, we set the

"CvWEAKOUTSIDE" flag in the child. This allows us to determine under what circumstances

we should decrement the refcount of the parent when freeing the child.

There is a further complication with non-closure anonymous subs (i.e. those that do not refer to

any lexicals outside that sub). In this case, the anonymous prototype is shared rather than being

cloned. This has the consequence that the parent may be freed while there are still active children,

e.g.,

BEGIN { $a = sub { eval ’$x’ } }

In this case, the BEGIN is freed immediately after execution since there are no active references to

it: the anon sub prototype has "CvWEAKOUTSIDE" set since it’s not a closure, and $a points to

the same CV, so it doesn’t contribute to BEGIN’s refcount either. When $a is executed, the "eval

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

’$x’" causes the chain of "CvOUTSIDE"s to be followed, and the freed BEGIN is accessed.

To avoid this, whenever a CV and its associated pad is freed, any "&" entries in the pad are

explicitly removed from the pad, and if the refcount of the pointed-to anon sub is still positive,

then that child’s "CvOUTSIDE" is set to point to its grandparent. This will only occur in the

single specific case of a non-closure anon prototype having one or more active references (such as

$a above).

One other thing to consider is that a CV may be merely undefined rather than freed, eg "undef

&foo". In this case, its refcount may not have reached zero, but we still delete its pad and its

"CvROOT" etc. Since various children may still have their "CvOUTSIDE" pointing at this

undefined CV, we keep its own "CvOUTSIDE" for the time being, so that the chain of lexical

scopes is unbroken. For example, the following should print 123:

my $x = 123;

sub tmp { sub { eval ’$x’ } }

my $a = tmp();

undef &tmp;

print $a->();

bool CvWEAKOUTSIDE(CV *cv)

"docatch"

Check for the cases 0 or 3 of cur_env.je_ret, only used inside an eval context.

0 is used as continue inside eval,

3 is used for a die caught by an inner eval - continue inner loop

See cop.h: je_mustcatch, when set at any runlevel to TRUE, means eval ops must establish a local

jmpenv to handle exception traps.

OP* docatch(Perl_ppaddr_t firstpp)

Debugging
"_aDEPTH"

Some functions when compiled under DEBUGGING take an extra final argument named "depth",

indicating the C stack depth. This argument is omitted otherwise. This macro expands to either

", depth" under DEBUGGING, or to nothing at all when not under DEBUGGING, reducing the

number of "#ifdef"’s in the code.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

The program is responsible for maintaining the correct value for "depth".

_aDEPTH

"debop"

Implements -Dt perl command line option on OP "o".

I32 debop(const OP* o)

"debprof"

Called to indicate that "o" was executed, for profiling purposes under the "-DP" command line

option.

void debprof(const OP *o)

"debprofdump"

Dumps the contents of the data collected by the "-DP" perl command line option.

void debprofdump()

"free_c_backtrace"

Deallocates a backtrace received from get_c_backtrace.

void free_c_backtrace(Perl_c_backtrace* bt)

"get_c_backtrace"

Collects the backtrace (aka "stacktrace") into a single linear malloced buffer, which the caller

must "Perl_free_c_backtrace()".

Scans the frames back by "depth + skip", then drops the "skip" innermost, returning at most

"depth" frames.

Perl_c_backtrace* get_c_backtrace(int max_depth, int skip)

"_pDEPTH"

This is used in the prototype declarations for functions that take a ""_aDEPTH"" final parameter,

much like "pTHX_" is used in functions that take a thread context initial parameter.

"PL_DBsingle"

When Perl is run in debugging mode, with the -d switch, this SV is a boolean which indicates

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

whether subs are being single-stepped. Single-stepping is automatically turned on after every

step. This is the C variable which corresponds to Perl’s $DB::single variable. See "PL_DBsub".

On threaded perls, each thread has an independent copy of this variable; each initialized at

creation time with the current value of the creating thread’s copy.

SV * PL_DBsingle

"PL_DBsub"

When Perl is run in debugging mode, with the -d switch, this GV contains the SV which holds the

name of the sub being debugged. This is the C variable which corresponds to Perl’s $DB::sub

variable. See "PL_DBsingle".

On threaded perls, each thread has an independent copy of this variable; each initialized at

creation time with the current value of the creating thread’s copy.

GV * PL_DBsub

"PL_DBtrace"

Trace variable used when Perl is run in debugging mode, with the -d switch. This is the C

variable which corresponds to Perl’s $DB::trace variable. See "PL_DBsingle".

On threaded perls, each thread has an independent copy of this variable; each initialized at

creation time with the current value of the creating thread’s copy.

SV * PL_DBtrace

"runops_debug"

Described in perlguts.

int runops_debug()

"runops_standard"

Described in perlguts.

int runops_standard()

Display functions
"sv_peek"

Implements "SvPEEK"

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

char* sv_peek(SV* sv)

Embedding, Threads, and Interpreter Cloning
"cv_dump"

dump the contents of a CV

void cv_dump(const CV *cv, const char *title)

"cv_forget_slab"

When a CV has a reference count on its slab ("CvSLABBED"), it is responsible for making sure it

is freed. (Hence, no two CVs should ever have a reference count on the same slab.) The CV only

needs to reference the slab during compilation. Once it is compiled and "CvROOT" attached, it

has finished its job, so it can forget the slab.

void cv_forget_slab(CV *cv)

"do_dump_pad"

Dump the contents of a padlist

void do_dump_pad(I32 level, PerlIO *file, PADLIST *padlist,

int full)

"get_context"

Implements ""PERL_GET_CONTEXT"" in perlapi, which you should use instead.

void* get_context()

"pad_alloc_name"

Allocates a place in the currently-compiling pad (via "pad_alloc" in perlapi) and then stores a

name for that entry. "name" is adopted and becomes the name entry; it must already contain the

name string. "typestash" and "ourstash" and the "padadd_STATE" flag get added to "name".

None of the other processing of "pad_add_name_pvn" in perlapi is done. Returns the offset of the

allocated pad slot.

PADOFFSET pad_alloc_name(PADNAME *name, U32 flags, HV *typestash,

HV *ourstash)

"pad_block_start"

Update the pad compilation state variables on entry to a new block.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

void pad_block_start(int full)

"pad_check_dup"

Check for duplicate declarations: report any of:

* a ’my’ in the current scope with the same name;

* an ’our’ (anywhere in the pad) with the same name and the

same stash as ’ourstash’

"is_our" indicates that the name to check is an "our" declaration.

void pad_check_dup(PADNAME *name, U32 flags, const HV *ourstash)

"pad_findlex"

Find a named lexical anywhere in a chain of nested pads. Add fake entries in the inner pads if it’s

found in an outer one.

Returns the offset in the bottom pad of the lex or the fake lex. "cv" is the CV in which to start the

search, and seq is the current "cop_seq" to match against. If "warn" is true, print appropriate

warnings. The "out_"* vars return values, and so are pointers to where the returned values should

be stored. "out_capture", if non-null, requests that the innermost instance of the lexical is

captured; "out_name" is set to the innermost matched pad name or fake pad name; "out_flags"

returns the flags normally associated with the "PARENT_FAKELEX_FLAGS" field of a fake pad

name.

Note that "pad_findlex()" is recursive; it recurses up the chain of CVs, then comes back down,

adding fake entries as it goes. It has to be this way because fake names in anon prototypes have to

store in "xpadn_low" the index into the parent pad.

PADOFFSET pad_findlex(const char *namepv, STRLEN namelen,

U32 flags, const CV* cv, U32 seq, int warn,

SV** out_capture, PADNAME** out_name,

int *out_flags)

"pad_fixup_inner_anons"

For any anon CVs in the pad, change "CvOUTSIDE" of that CV from "old_cv" to "new_cv" if

necessary. Needed when a newly-compiled CV has to be moved to a pre-existing CV struct.

void pad_fixup_inner_anons(PADLIST *padlist, CV *old_cv,

CV *new_cv)

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"pad_free"

Free the SV at offset po in the current pad.

void pad_free(PADOFFSET po)

"pad_leavemy"

Cleanup at end of scope during compilation: set the max seq number for lexicals in this scope and

warn of any lexicals that never got introduced.

OP * pad_leavemy()

"padlist_dup"

Duplicates a pad.

PADLIST * padlist_dup(PADLIST *srcpad, CLONE_PARAMS *param)

"padname_dup"

Duplicates a pad name.

PADNAME * padname_dup(PADNAME *src, CLONE_PARAMS *param)

"padnamelist_dup"

Duplicates a pad name list.

PADNAMELIST * padnamelist_dup(PADNAMELIST *srcpad,

CLONE_PARAMS *param)

"pad_push"

Push a new pad frame onto the padlist, unless there’s already a pad at this depth, in which case

don’t bother creating a new one. Then give the new pad an @_ in slot zero.

void pad_push(PADLIST *padlist, int depth)

"pad_reset"

Mark all the current temporaries for reuse

void pad_reset()

"pad_setsv"

Set the value at offset "po" in the current (compiling or executing) pad. Use the macro

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"PAD_SETSV()" rather than calling this function directly.

void pad_setsv(PADOFFSET po, SV* sv)

"pad_sv"

Get the value at offset "po" in the current (compiling or executing) pad. Use macro "PAD_SV"

instead of calling this function directly.

SV* pad_sv(PADOFFSET po)

"pad_swipe"

Abandon the tmp in the current pad at offset "po" and replace with a new one.

void pad_swipe(PADOFFSET po, bool refadjust)

"set_context"

Implements ""PERL_SET_CONTEXT"" in perlapi, which you should use instead.

void set_context(void *t)

Errno
"dSAVEDERRNO"

Declare variables needed to save "errno" and any operating system specific error number.

void dSAVEDERRNO

"dSAVE_ERRNO"

Declare variables needed to save "errno" and any operating system specific error number, and

save them for optional later restoration by "RESTORE_ERRNO".

void dSAVE_ERRNO

"RESTORE_ERRNO"

Restore "errno" and any operating system specific error number that was saved by

"dSAVE_ERRNO" or "RESTORE_ERRNO".

void RESTORE_ERRNO

"SAVE_ERRNO"

Save "errno" and any operating system specific error number for optional later restoration by

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"RESTORE_ERRNO". Requires "dSAVEDERRNO" or "dSAVE_ERRNO" in scope.

void SAVE_ERRNO

"SETERRNO"

Set "errno", and on VMS set "vaxc$errno".

void SETERRNO(int errcode, int vmserrcode)

Exception Handling (simple) Macros
There are only public API items currently in Exception Handling (simple) Macros

Filesystem configuration values
There are only public API items currently in Filesystem configuration values

Floating point
There are only public API items currently in Floating point

General Configuration
There are only public API items currently in General Configuration

Global Variables
There are only public API items currently in Global Variables

GV Handling and Stashes
"gp_dup"

Duplicate a typeglob, returning a pointer to the cloned object.

GP* gp_dup(GP *const gp, CLONE_PARAMS *const param)

"gv_handler"

Implements "StashHANDLER", which you should use instead

CV* gv_handler(HV* stash, I32 id)

"gv_stashsvpvn_cached"

Returns a pointer to the stash for a specified package, possibly cached. Implements both

""gv_stashpvn"" in perlapi and ""gv_stashsv"" in perlapi.

Requires one of either "namesv" or "namepv" to be non-null.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

If the flag "GV_CACHE_ONLY" is set, return the stash only if found in the cache; see

""gv_stashpvn"" in perlapi for details on the other "flags".

Note it is strongly preferred for "namesv" to be non-null, for performance reasons.

HV* gv_stashsvpvn_cached(SV *namesv, const char* name,

U32 namelen, I32 flags)

"gv_try_downgrade"

NOTE: "gv_try_downgrade" is experimental and may change or be removed without notice.

If the typeglob "gv" can be expressed more succinctly, by having something other than a real GV

in its place in the stash, replace it with the optimised form. Basic requirements for this are that

"gv" is a real typeglob, is sufficiently ordinary, and is only referenced from its package. This

function is meant to be used when a GV has been looked up in part to see what was there, causing

upgrading, but based on what was found it turns out that the real GV isn’t required after all.

If "gv" is a completely empty typeglob, it is deleted from the stash.

If "gv" is a typeglob containing only a sufficiently-ordinary constant sub, the typeglob is replaced

with a scalar-reference placeholder that more compactly represents the same thing.

void gv_try_downgrade(GV* gv)

Hook manipulation
There are only public API items currently in Hook manipulation

HV Handling
"hv_eiter_p"

Implements "HvEITER" which you should use instead.

NOTE: "hv_eiter_p" must be explicitly called as "Perl_hv_eiter_p" with an "aTHX_" parameter.

HE** Perl_hv_eiter_p(pTHX_ HV *hv)

"hv_eiter_set"

Implements "HvEITER_set" which you should use instead.

NOTE: "hv_eiter_set" must be explicitly called as "Perl_hv_eiter_set" with an "aTHX_"

parameter.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

void Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter)

"hv_ename_add"

Adds a name to a stash’s internal list of effective names. See "hv_ename_delete".

This is called when a stash is assigned to a new location in the symbol table.

void hv_ename_add(HV *hv, const char *name, U32 len, U32 flags)

"hv_ename_delete"

Removes a name from a stash’s internal list of effective names. If this is the name returned by

"HvENAME", then another name in the list will take its place ("HvENAME" will use it).

This is called when a stash is deleted from the symbol table.

void hv_ename_delete(HV *hv, const char *name, U32 len,

U32 flags)

"hv_fill"

Returns the number of hash buckets that happen to be in use.

This function implements the "HvFILL" macro which you should use instead.

As of perl 5.25 this function is used only for debugging purposes, and the number of used hash

buckets is not in any way cached, thus this function can be costly to execute as it must iterate over

all the buckets in the hash.

NOTE: "hv_fill" must be explicitly called as "Perl_hv_fill" with an "aTHX_" parameter.

STRLEN Perl_hv_fill(pTHX_ HV *const hv)

"hv_placeholders_get"

Implements "HvPLACEHOLDERS_get", which you should use instead.

NOTE: "hv_placeholders_get" must be explicitly called as "Perl_hv_placeholders_get" with an

"aTHX_" parameter.

I32 Perl_hv_placeholders_get(pTHX_ const HV *hv)

"hv_placeholders_set"

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

Implements "HvPLACEHOLDERS_set", which you should use instead.

NOTE: "hv_placeholders_set" must be explicitly called as "Perl_hv_placeholders_set" with an

"aTHX_" parameter.

void Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)

"hv_riter_p"

Implements "HvRITER" which you should use instead.

NOTE: "hv_riter_p" must be explicitly called as "Perl_hv_riter_p" with an "aTHX_" parameter.

I32* Perl_hv_riter_p(pTHX_ HV *hv)

"hv_riter_set"

Implements "HvRITER_set" which you should use instead.

NOTE: "hv_riter_set" must be explicitly called as "Perl_hv_riter_set" with an "aTHX_"

parameter.

void Perl_hv_riter_set(pTHX_ HV *hv, I32 riter)

"refcounted_he_chain_2hv"

Generates and returns a "HV *" representing the content of a "refcounted_he" chain. "flags" is

currently unused and must be zero.

HV * refcounted_he_chain_2hv(const struct refcounted_he *c,

U32 flags)

"refcounted_he_fetch_pv"

Like "refcounted_he_fetch_pvn", but takes a nul-terminated string instead of a string/length pair.

SV * refcounted_he_fetch_pv(const struct refcounted_he *chain,

const char *key, U32 hash, U32 flags)

"refcounted_he_fetch_pvn"

Search along a "refcounted_he" chain for an entry with the key specified by "keypv" and "keylen".

If "flags" has the "REFCOUNTED_HE_KEY_UTF8" bit set, the key octets are interpreted as

UTF-8, otherwise they are interpreted as Latin-1. "hash" is a precomputed hash of the key string,

or zero if it has not been precomputed. Returns a mortal scalar representing the value associated

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

with the key, or &PL_sv_placeholder if there is no value associated with the key.

SV * refcounted_he_fetch_pvn(const struct refcounted_he *chain,

const char *keypv, STRLEN keylen,

U32 hash, U32 flags)

"refcounted_he_fetch_pvs"

Like "refcounted_he_fetch_pvn", but takes a literal string instead of a string/length pair, and no

precomputed hash.

SV * refcounted_he_fetch_pvs(const struct refcounted_he *chain,

"key", U32 flags)

"refcounted_he_fetch_sv"

Like "refcounted_he_fetch_pvn", but takes a Perl scalar instead of a string/length pair.

SV * refcounted_he_fetch_sv(const struct refcounted_he *chain,

SV *key, U32 hash, U32 flags)

"refcounted_he_free"

Decrements the reference count of a "refcounted_he" by one. If the reference count reaches zero

the structure’s memory is freed, which (recursively) causes a reduction of its parent

"refcounted_he"’s reference count. It is safe to pass a null pointer to this function: no action

occurs in this case.

void refcounted_he_free(struct refcounted_he *he)

"refcounted_he_inc"

Increment the reference count of a "refcounted_he". The pointer to the "refcounted_he" is also

returned. It is safe to pass a null pointer to this function: no action occurs and a null pointer is

returned.

struct refcounted_he * refcounted_he_inc(

struct refcounted_he *he)

"refcounted_he_new_pv"

Like "refcounted_he_new_pvn", but takes a nul-terminated string instead of a string/length pair.

struct refcounted_he * refcounted_he_new_pv(

struct refcounted_he *parent,

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

const char *key, U32 hash,

SV *value, U32 flags)

"refcounted_he_new_pvn"

Creates a new "refcounted_he". This consists of a single key/value pair and a reference to an

existing "refcounted_he" chain (which may be empty), and thus forms a longer chain. When

using the longer chain, the new key/value pair takes precedence over any entry for the same key

further along the chain.

The new key is specified by "keypv" and "keylen". If "flags" has the

"REFCOUNTED_HE_KEY_UTF8" bit set, the key octets are interpreted as UTF-8, otherwise

they are interpreted as Latin-1. "hash" is a precomputed hash of the key string, or zero if it has not

been precomputed.

"value" is the scalar value to store for this key. "value" is copied by this function, which thus does

not take ownership of any reference to it, and later changes to the scalar will not be reflected in the

value visible in the "refcounted_he". Complex types of scalar will not be stored with referential

integrity, but will be coerced to strings. "value" may be either null or &PL_sv_placeholder to

indicate that no value is to be associated with the key; this, as with any non-null value, takes

precedence over the existence of a value for the key further along the chain.

"parent" points to the rest of the "refcounted_he" chain to be attached to the new "refcounted_he".

This function takes ownership of one reference to "parent", and returns one reference to the new

"refcounted_he".

struct refcounted_he * refcounted_he_new_pvn(

struct refcounted_he *parent,

const char *keypv,

STRLEN keylen, U32 hash,

SV *value, U32 flags)

"refcounted_he_new_pvs"

Like "refcounted_he_new_pvn", but takes a literal string instead of a string/length pair, and no

precomputed hash.

struct refcounted_he * refcounted_he_new_pvs(

struct refcounted_he *parent,

"key", SV *value, U32 flags)

"refcounted_he_new_sv"

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

Like "refcounted_he_new_pvn", but takes a Perl scalar instead of a string/length pair.

struct refcounted_he * refcounted_he_new_sv(

struct refcounted_he *parent,

SV *key, U32 hash, SV *value,

U32 flags)

"unsharepvn"

If no one has access to shared string "str" with length "len", free it.

"len" and "hash" must both be valid for "str".

void unsharepvn(const char* sv, I32 len, U32 hash)

Input/Output
"dirp_dup"

Duplicate a directory handle, returning a pointer to the cloned object.

DIR* dirp_dup(DIR *const dp, CLONE_PARAMS *const param)

"fp_dup"

Duplicate a file handle, returning a pointer to the cloned object.

PerlIO* fp_dup(PerlIO *const fp, const char type,

CLONE_PARAMS *const param)

"my_fflush_all"

Implements "PERL_FLUSHALL_FOR_CHILD" on some platforms.

I32 my_fflush_all()

"my_mkostemp"

The C library mkostemp(3) if available, or a Perl implementation of it.

NOTE: "my_mkostemp" must be explicitly called as "Perl_my_mkostemp" .

int Perl_my_mkostemp(char *templte, int flags)

"my_mkstemp"

The C library mkstemp(3) if available, or a Perl implementation of it.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

NOTE: "my_mkstemp" must be explicitly called as "Perl_my_mkstemp" .

int Perl_my_mkstemp(char *templte)

"PL_last_in_gv"

The GV which was last used for a filehandle input operation. ("<FH>")

On threaded perls, each thread has an independent copy of this variable; each initialized at

creation time with the current value of the creating thread’s copy.

GV* PL_last_in_gv

"PL_ofsgv"

The glob containing the output field separator - "*," in Perl space.

On threaded perls, each thread has an independent copy of this variable; each initialized at

creation time with the current value of the creating thread’s copy.

GV* PL_ofsgv

"PL_rs"

The input record separator - $/ in Perl space.

On threaded perls, each thread has an independent copy of this variable; each initialized at

creation time with the current value of the creating thread’s copy.

SV* PL_rs

"start_glob"

NOTE: "start_glob" is experimental and may change or be removed without notice.

Function called by "do_readline" to spawn a glob (or do the glob inside perl on VMS). This code

used to be inline, but now perl uses "File::Glob" this glob starter is only used by miniperl during

the build process, or when PERL_EXTERNAL_GLOB is defined. Moving it away shrinks

pp_hot.c; shrinking pp_hot.c helps speed perl up.

NOTE: "start_glob" must be explicitly called as "Perl_start_glob" with an "aTHX_" parameter.

PerlIO* Perl_start_glob(pTHX_ SV *tmpglob, IO *io)

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

Integer
There are only public API items currently in Integer

I/O Formats
There are only public API items currently in I/O Formats

Lexer interface
"validate_proto"

NOTE: "validate_proto" is experimental and may change or be removed without notice.

This function performs syntax checking on a prototype, "proto". If "warn" is true, any illegal

characters or mismatched brackets will trigger illegalproto warnings, declaring that they were

detected in the prototype for "name".

The return value is "true" if this is a valid prototype, and "false" if it is not, regardless of whether

"warn" was "true" or "false".

Note that "NULL" is a valid "proto" and will always return "true".

bool validate_proto(SV *name, SV *proto, bool warn,

bool curstash)

Locales
There are only public API items currently in Locales

Magic
"magic_clearhint"

Triggered by a delete from "%^H", records the key to "PL_compiling.cop_hints_hash".

int magic_clearhint(SV* sv, MAGIC* mg)

"magic_clearhints"

Triggered by clearing "%^H", resets "PL_compiling.cop_hints_hash".

int magic_clearhints(SV* sv, MAGIC* mg)

"magic_methcall"

Invoke a magic method (like FETCH).

"sv" and "mg" are the tied thingy and the tie magic.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"meth" is the name of the method to call.

"argc" is the number of args (in addition to $self) to pass to the method.

The "flags" can be:

G_DISCARD invoke method with G_DISCARD flag and don’t

return a value

G_UNDEF_FILL fill the stack with argc pointers to

PL_sv_undef

The arguments themselves are any values following the "flags" argument.

Returns the SV (if any) returned by the method, or "NULL" on failure.

NOTE: "magic_methcall" must be explicitly called as "Perl_magic_methcall" with an "aTHX_"

parameter.

SV* Perl_magic_methcall(pTHX_ SV *sv, const MAGIC *mg, SV *meth,

U32 flags, U32 argc, ...)

"magic_sethint"

Triggered by a store to "%^H", records the key/value pair to "PL_compiling.cop_hints_hash". It

is assumed that hints aren’t storing anything that would need a deep copy. Maybe we should warn

if we find a reference.

int magic_sethint(SV* sv, MAGIC* mg)

"mg_dup"

Duplicate a chain of magic, returning a pointer to the cloned object.

MAGIC* mg_dup(MAGIC *mg, CLONE_PARAMS *const param)

"mg_localize"

Copy some of the magic from an existing SV to new localized version of that SV. Container

magic (e.g., %ENV, $1, "tie") gets copied, value magic doesn’t (e.g., "taint", "pos").

If "setmagic" is false then no set magic will be called on the new (empty) SV. This typically

means that assignment will soon follow (e.g. ’local $x = $y’), and that will handle the magic.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

void mg_localize(SV* sv, SV* nsv, bool setmagic)

"si_dup"

Duplicate a stack info structure, returning a pointer to the cloned object.

PERL_SI* si_dup(PERL_SI* si, CLONE_PARAMS* param)

"ss_dup"

Duplicate the save stack, returning a pointer to the cloned object.

ANY* ss_dup(PerlInterpreter* proto_perl, CLONE_PARAMS* param)

Memory Management
"calloc"

Implements ""Newxz"" in perlapi which you should use instead.

NOTE: "calloc" must be explicitly called as "Perl_calloc" .

Malloc_t Perl_calloc(MEM_SIZE elements, MEM_SIZE size)

"malloc"

Implements ""Newx"" in perlapi which you should use instead.

NOTE: "malloc" must be explicitly called as "Perl_malloc" .

Malloc_t Perl_malloc(MEM_SIZE nbytes)

"mfree"

Implements ""Safefree"" in perlapi which you should use instead.

NOTE: "mfree" must be explicitly called as "Perl_mfree" .

Free_t Perl_mfree(Malloc_t where)

"realloc"

Implements ""Renew"" in perlapi which you should use instead.

NOTE: "realloc" must be explicitly called as "Perl_realloc" .

Malloc_t Perl_realloc(Malloc_t where, MEM_SIZE nbytes)

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

MRO
"mro_get_linear_isa_dfs"

Returns the Depth-First Search linearization of @ISA the given stash. The return value is a read-

only AV*. "level" should be 0 (it is used internally in this function’s recursion).

You are responsible for "SvREFCNT_inc()" on the return value if you plan to store it anywhere

semi-permanently (otherwise it might be deleted out from under you the next time the cache is

invalidated).

AV* mro_get_linear_isa_dfs(HV* stash, U32 level)

"mro_isa_changed_in"

Takes the necessary steps (cache invalidations, mostly) when the @ISA of the given package has

changed. Invoked by the "setisa" magic, should not need to invoke directly.

void mro_isa_changed_in(HV* stash)

"mro_package_moved"

Call this function to signal to a stash that it has been assigned to another spot in the stash

hierarchy. "stash" is the stash that has been assigned. "oldstash" is the stash it replaces, if any.

"gv" is the glob that is actually being assigned to.

This can also be called with a null first argument to indicate that "oldstash" has been deleted.

This function invalidates isa caches on the old stash, on all subpackages nested inside it, and on

the subclasses of all those, including non-existent packages that have corresponding entries in

"stash".

It also sets the effective names ("HvENAME") on all the stashes as appropriate.

If the "gv" is present and is not in the symbol table, then this function simply returns. This

checked will be skipped if "flags & 1".

void mro_package_moved(HV * const stash, HV * const oldstash,

const GV * const gv, U32 flags)

Multicall Functions
There are only public API items currently in Multicall Functions

Numeric Functions

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"isinfnansv"

Checks whether the argument would be either an infinity or "NaN" when used as a number, but is

careful not to trigger non-numeric or uninitialized warnings. it assumes the caller has done

"SvGETMAGIC(sv)" already.

Note that this always accepts trailing garbage (similar to "grok_number_flags" with

"PERL_SCAN_TRAILING"), so "inferior" and "NAND gates" will return true.

bool isinfnansv(SV *sv)

Optrees
"finalize_optree"

This function finalizes the optree. Should be called directly after the complete optree is built. It

does some additional checking which can’t be done in the normal "ck_"xxx functions and makes

the tree thread-safe.

void finalize_optree(OP* o)

"newATTRSUB_x"

Construct a Perl subroutine, also performing some surrounding jobs.

This function is expected to be called in a Perl compilation context, and some aspects of the

subroutine are taken from global variables associated with compilation. In particular,

"PL_compcv" represents the subroutine that is currently being compiled. It must be non-null

when this function is called, and some aspects of the subroutine being constructed are taken from

it. The constructed subroutine may actually be a reuse of the "PL_compcv" object, but will not

necessarily be so.

If "block" is null then the subroutine will have no body, and for the time being it will be an error

to call it. This represents a forward subroutine declaration such as "sub foo ($$);". If "block" is

non-null then it provides the Perl code of the subroutine body, which will be executed when the

subroutine is called. This body includes any argument unwrapping code resulting from a

subroutine signature or similar. The pad use of the code must correspond to the pad attached to

"PL_compcv". The code is not expected to include a "leavesub" or "leavesublv" op; this function

will add such an op. "block" is consumed by this function and will become part of the constructed

subroutine.

"proto" specifies the subroutine’s prototype, unless one is supplied as an attribute (see below). If

"proto" is null, then the subroutine will not have a prototype. If "proto" is non-null, it must point

to a "const" op whose value is a string, and the subroutine will have that string as its prototype. If

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

a prototype is supplied as an attribute, the attribute takes precedence over "proto", but in that case

"proto" should preferably be null. In any case, "proto" is consumed by this function.

"attrs" supplies attributes to be applied the subroutine. A handful of attributes take effect by built-

in means, being applied to "PL_compcv" immediately when seen. Other attributes are collected

up and attached to the subroutine by this route. "attrs" may be null to supply no attributes, or

point to a "const" op for a single attribute, or point to a "list" op whose children apart from the

"pushmark" are "const" ops for one or more attributes. Each "const" op must be a string, giving

the attribute name optionally followed by parenthesised arguments, in the manner in which

attributes appear in Perl source. The attributes will be applied to the sub by this function. "attrs"

is consumed by this function.

If "o_is_gv" is false and "o" is null, then the subroutine will be anonymous. If "o_is_gv" is false

and "o" is non-null, then "o" must point to a "const" OP, which will be consumed by this function,

and its string value supplies a name for the subroutine. The name may be qualified or unqualified,

and if it is unqualified then a default stash will be selected in some manner. If "o_is_gv" is true,

then "o" doesn’t point to an "OP" at all, but is instead a cast pointer to a "GV" by which the

subroutine will be named.

If there is already a subroutine of the specified name, then the new sub will either replace the

existing one in the glob or be merged with the existing one. A warning may be generated about

redefinition.

If the subroutine has one of a few special names, such as "BEGIN" or "END", then it will be

claimed by the appropriate queue for automatic running of phase-related subroutines. In this case

the relevant glob will be left not containing any subroutine, even if it did contain one before. In

the case of "BEGIN", the subroutine will be executed and the reference to it disposed of before

this function returns.

The function returns a pointer to the constructed subroutine. If the sub is anonymous then

ownership of one counted reference to the subroutine is transferred to the caller. If the sub is

named then the caller does not get ownership of a reference. In most such cases, where the sub

has a non-phase name, the sub will be alive at the point it is returned by virtue of being contained

in the glob that names it. A phase-named subroutine will usually be alive by virtue of the

reference owned by the phase’s automatic run queue. But a "BEGIN" subroutine, having already

been executed, will quite likely have been destroyed already by the time this function returns,

making it erroneous for the caller to make any use of the returned pointer. It is the caller’s

responsibility to ensure that it knows which of these situations applies.

CV* newATTRSUB_x(I32 floor, OP *o, OP *proto, OP *attrs,

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

OP *block, bool o_is_gv)

"newXS_len_flags"

Construct an XS subroutine, also performing some surrounding jobs.

The subroutine will have the entry point "subaddr". It will have the prototype specified by the

nul-terminated string "proto", or no prototype if "proto" is null. The prototype string is copied; the

caller can mutate the supplied string afterwards. If "filename" is non-null, it must be a nul-

terminated filename, and the subroutine will have its "CvFILE" set accordingly. By default

"CvFILE" is set to point directly to the supplied string, which must be static. If "flags" has the

"XS_DYNAMIC_FILENAME" bit set, then a copy of the string will be taken instead.

Other aspects of the subroutine will be left in their default state. If anything else needs to be done

to the subroutine for it to function correctly, it is the caller’s responsibility to do that after this

function has constructed it. However, beware of the subroutine potentially being destroyed before

this function returns, as described below.

If "name" is null then the subroutine will be anonymous, with its "CvGV" referring to an

"__ANON__" glob. If "name" is non-null then the subroutine will be named accordingly,

referenced by the appropriate glob. "name" is a string of length "len" bytes giving a sigilless

symbol name, in UTF-8 if "flags" has the "SVf_UTF8" bit set and in Latin-1 otherwise. The

name may be either qualified or unqualified, with the stash defaulting in the same manner as for

"gv_fetchpvn_flags". "flags" may contain flag bits understood by "gv_fetchpvn_flags" with the

same meaning as they have there, such as "GV_ADDWARN". The symbol is always added to the

stash if necessary, with "GV_ADDMULTI" semantics.

If there is already a subroutine of the specified name, then the new sub will replace the existing

one in the glob. A warning may be generated about the redefinition. If the old subroutine was

"CvCONST" then the decision about whether to warn is influenced by an expectation about

whether the new subroutine will become a constant of similar value. That expectation is

determined by "const_svp". (Note that the call to this function doesn’t make the new subroutine

"CvCONST" in any case; that is left to the caller.) If "const_svp" is null then it indicates that the

new subroutine will not become a constant. If "const_svp" is non-null then it indicates that the

new subroutine will become a constant, and it points to an "SV*" that provides the constant value

that the subroutine will have.

If the subroutine has one of a few special names, such as "BEGIN" or "END", then it will be

claimed by the appropriate queue for automatic running of phase-related subroutines. In this case

the relevant glob will be left not containing any subroutine, even if it did contain one before. In

the case of "BEGIN", the subroutine will be executed and the reference to it disposed of before

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

this function returns, and also before its prototype is set. If a "BEGIN" subroutine would not be

sufficiently constructed by this function to be ready for execution then the caller must prevent this

happening by giving the subroutine a different name.

The function returns a pointer to the constructed subroutine. If the sub is anonymous then

ownership of one counted reference to the subroutine is transferred to the caller. If the sub is

named then the caller does not get ownership of a reference. In most such cases, where the sub

has a non-phase name, the sub will be alive at the point it is returned by virtue of being contained

in the glob that names it. A phase-named subroutine will usually be alive by virtue of the

reference owned by the phase’s automatic run queue. But a "BEGIN" subroutine, having already

been executed, will quite likely have been destroyed already by the time this function returns,

making it erroneous for the caller to make any use of the returned pointer. It is the caller’s

responsibility to ensure that it knows which of these situations applies.

CV * newXS_len_flags(const char *name, STRLEN len,

XSUBADDR_t subaddr,

const char *const filename,

const char *const proto, SV **const_svp,

U32 flags)

"op_refcnt_lock"

Implements the "OP_REFCNT_LOCK" macro which you should use instead.

void op_refcnt_lock()

"op_refcnt_unlock"

Implements the "OP_REFCNT_UNLOCK" macro which you should use instead.

void op_refcnt_unlock()

"optimize_optree"

This function applies some optimisations to the optree in top-down order. It is called before the

peephole optimizer, which processes ops in execution order. Note that finalize_optree() also does

a top-down scan, but is called *after* the peephole optimizer.

void optimize_optree(OP* o)

"traverse_op_tree"

Return the next op in a depth-first traversal of the op tree, returning NULL when the traversal is

complete.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

The initial call must supply the root of the tree as both top and o.

For now it’s static, but it may be exposed to the API in the future.

OP* traverse_op_tree(OP* top, OP* o)

Pack and Unpack
There are only public API items currently in Pack and Unpack

Pad Data Structures
"CX_CURPAD_SAVE"

Save the current pad in the given context block structure.

void CX_CURPAD_SAVE(struct context)

"CX_CURPAD_SV"

Access the SV at offset "po" in the saved current pad in the given context block structure (can be

used as an lvalue).

SV * CX_CURPAD_SV(struct context, PADOFFSET po)

"PAD_BASE_SV"

Get the value from slot "po" in the base (DEPTH=1) pad of a padlist

SV * PAD_BASE_SV(PADLIST padlist, PADOFFSET po)

"PAD_CLONE_VARS"

Clone the state variables associated with running and compiling pads.

void PAD_CLONE_VARS(PerlInterpreter *proto_perl,

CLONE_PARAMS* param)

"PAD_COMPNAME_FLAGS"

Return the flags for the current compiling pad name at offset "po". Assumes a valid slot entry.

U32 PAD_COMPNAME_FLAGS(PADOFFSET po)

"PAD_COMPNAME_GEN"

The generation number of the name at offset "po" in the current compiling pad (lvalue).

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

STRLEN PAD_COMPNAME_GEN(PADOFFSET po)

"PAD_COMPNAME_GEN_set"

Sets the generation number of the name at offset "po" in the current ling pad (lvalue) to "gen".

STRLEN PAD_COMPNAME_GEN_set(PADOFFSET po, int gen)

"PAD_COMPNAME_OURSTASH"

Return the stash associated with an "our" variable. Assumes the slot entry is a valid "our" lexical.

HV * PAD_COMPNAME_OURSTASH(PADOFFSET po)

"PAD_COMPNAME_PV"

Return the name of the current compiling pad name at offset "po". Assumes a valid slot entry.

char * PAD_COMPNAME_PV(PADOFFSET po)

"PAD_COMPNAME_TYPE"

Return the type (stash) of the current compiling pad name at offset "po". Must be a valid name.

Returns null if not typed.

HV * PAD_COMPNAME_TYPE(PADOFFSET po)

"PadnameIsOUR"

Whether this is an "our" variable.

bool PadnameIsOUR(PADNAME * pn)

"PadnameIsSTATE"

Whether this is a "state" variable.

bool PadnameIsSTATE(PADNAME * pn)

"PadnameOURSTASH"

The stash in which this "our" variable was declared.

HV * PadnameOURSTASH(PADNAME * pn)

"PadnameOUTER"

Whether this entry belongs to an outer pad. Entries for which this is true are often referred to as

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

’fake’.

bool PadnameOUTER(PADNAME * pn)

"PadnameTYPE"

The stash associated with a typed lexical. This returns the %Foo:: hash for "my Foo $bar".

HV * PadnameTYPE(PADNAME * pn)

"PAD_RESTORE_LOCAL"

Restore the old pad saved into the local variable "opad" by "PAD_SAVE_LOCAL()"

void PAD_RESTORE_LOCAL(PAD *opad)

"PAD_SAVE_LOCAL"

Save the current pad to the local variable "opad", then make the current pad equal to "npad"

void PAD_SAVE_LOCAL(PAD *opad, PAD *npad)

"PAD_SAVE_SETNULLPAD"

Save the current pad then set it to null.

void PAD_SAVE_SETNULLPAD()

"PAD_SETSV"

Set the slot at offset "po" in the current pad to "sv"

SV * PAD_SETSV(PADOFFSET po, SV* sv)

"PAD_SET_CUR"

Set the current pad to be pad "n" in the padlist, saving the previous current pad. NB currently this

macro expands to a string too long for some compilers, so it’s best to replace it with

SAVECOMPPAD();

PAD_SET_CUR_NOSAVE(padlist,n);

void PAD_SET_CUR(PADLIST padlist, I32 n)

"PAD_SET_CUR_NOSAVE"

like PAD_SET_CUR, but without the save

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

void PAD_SET_CUR_NOSAVE(PADLIST padlist, I32 n)

"PAD_SV"

Get the value at offset "po" in the current pad

SV * PAD_SV(PADOFFSET po)

"PAD_SVl"

Lightweight and lvalue version of "PAD_SV". Get or set the value at offset "po" in the current

pad. Unlike "PAD_SV", does not print diagnostics with -DX. For internal use only.

SV * PAD_SVl(PADOFFSET po)

"SAVECLEARSV"

Clear the pointed to pad value on scope exit. (i.e. the runtime action of "my")

void SAVECLEARSV(SV **svp)

"SAVECOMPPAD"

save "PL_comppad" and "PL_curpad"

void SAVECOMPPAD()

"SAVEPADSV"

Save a pad slot (used to restore after an iteration)

void SAVEPADSV(PADOFFSET po)

Password and Group access
There are only public API items currently in Password and Group access

Paths to system commands
There are only public API items currently in Paths to system commands

Prototype information
There are only public API items currently in Prototype information

REGEXP Functions
"regnode"

Described in perlreguts.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

Reports and Formats
There are only public API items currently in Reports and Formats

Signals
There are only public API items currently in Signals

Site configuration
There are only public API items currently in Site configuration

Sockets configuration values
There are only public API items currently in Sockets configuration values

Source Filters
There are only public API items currently in Source Filters

Stack Manipulation Macros
"djSP"

Declare Just "SP". This is actually identical to "dSP", and declares a local copy of perl’s stack

pointer, available via the "SP" macro. See ""SP" in perlapi". (Available for backward source

code compatibility with the old (Perl 5.005) thread model.)

djSP();

"LVRET"

True if this op will be the return value of an lvalue subroutine

"save_alloc"

Implements ""SSNEW"" in perlapi and kin, which should be used instead of this function.

I32 save_alloc(I32 size, I32 pad)

String Handling
"delimcpy_no_escape"

Copy a source buffer to a destination buffer, stopping at (but not including) the first occurrence in

the source of the delimiter byte, "delim". The source is the bytes between

"from" and "from_end" - 1. Similarly, the dest is "to" up to "to_end".

The number of bytes copied is written to *retlen.

Returns the position of "delim" in the "from" buffer, but if there is no such occurrence before

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"from_end", then "from_end" is returned, and the entire buffer "from" .. "from_end" - 1 is copied.

If there is room in the destination available after the copy, an extra terminating safety "NUL" byte

is appended (not included in the returned length).

The error case is if the destination buffer is not large enough to accommodate everything that

should be copied. In this situation, a value larger than "to_end" - "to" is written to *retlen, and as

much of the source as fits will be written to the destination. Not having room for the safety

"NUL" is not considered an error.

char* delimcpy_no_escape(char* to, const char* to_end,

const char* from, const char* from_end,

const int delim, I32* retlen)

"my_cxt_init"

Implements the ""MY_CXT_INIT"" in perlxs macro, which you should use instead.

The first time a module is loaded, the global "PL_my_cxt_index" is incremented, and that value is

assigned to that module’s static "my_cxt_index" (whose address is passed as an arg). Then, for

each interpreter this function is called for, it makes sure a "void*" slot is available to hang the

static data off, by allocating or extending the interpreter’s "PL_my_cxt_list" array

NOTE: "my_cxt_init" must be explicitly called as "Perl_my_cxt_init" with an "aTHX_"

parameter.

void* Perl_my_cxt_init(pTHX_ int *indexp, size_t size)

"quadmath_format_needed"

"quadmath_format_needed()" returns true if the "format" string seems to contain at least one non-

Q-prefixed "%[efgaEFGA]" format specifier, or returns false otherwise.

The format specifier detection is not complete printf-syntax detection, but it should catch most

common cases.

If true is returned, those arguments should in theory be processed with "quadmath_snprintf()", but

in case there is more than one such format specifier (see "quadmath_format_valid"), and if there is

anything else beyond that one (even just a single byte), they cannot be processed because

"quadmath_snprintf()" is very strict, accepting only one format spec, and nothing else. In this

case, the code should probably fail.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

bool quadmath_format_needed(const char* format)

"quadmath_format_valid"

"quadmath_snprintf()" is very strict about its "format" string and will fail, returning -1, if the

format is invalid. It accepts exactly one format spec.

"quadmath_format_valid()" checks that the intended single spec looks sane: begins with "%", has

only one "%", ends with "[efgaEFGA]", and has "Q" before it. This is not a full "printf syntax

check", just the basics.

Returns true if it is valid, false if not.

See also "quadmath_format_needed".

bool quadmath_format_valid(const char* format)

SV Flags
"SVt_INVLIST"

Type flag for scalars. See "svtype" in perlapi.

SV Handling
"PL_Sv"

A scratch pad SV for whatever temporary use you need. Chiefly used as a fallback by macros on

platforms where "PERL_USE_GCC_BRACE_GROUPS" in perlapi> is unavailable, and which

would otherwise evaluate their SV parameter more than once.

PL_Sv

"sv_2bool"

This macro is only used by "sv_true()" or its macro equivalent, and only if the latter’s argument is

neither "SvPOK", "SvIOK" nor "SvNOK". It calls "sv_2bool_flags" with the "SV_GMAGIC"

flag.

bool sv_2bool(SV *const sv)

"sv_2bool_flags"

This function is only used by "sv_true()" and friends, and only if the latter’s argument is neither

"SvPOK", "SvIOK" nor "SvNOK". If the flags contain "SV_GMAGIC", then it does an

"mg_get()" first.

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

bool sv_2bool_flags(SV *sv, I32 flags)

"sv_2num"

NOTE: "sv_2num" is experimental and may change or be removed without notice.

Return an SV with the numeric value of the source SV, doing any necessary reference or overload

conversion. The caller is expected to have handled get-magic already.

SV* sv_2num(SV *const sv)

"sv_2pvbyte_nolen"

Return a pointer to the byte-encoded representation of the SV. May cause the SV to be

downgraded from UTF-8 as a side-effect.

Usually accessed via the "SvPVbyte_nolen" macro.

char* sv_2pvbyte_nolen(SV* sv)

"sv_2pvutf8_nolen"

Return a pointer to the UTF-8-encoded representation of the SV. May cause the SV to be

upgraded to UTF-8 as a side-effect.

Usually accessed via the "SvPVutf8_nolen" macro.

char* sv_2pvutf8_nolen(SV* sv)

"sv_2pv_nolen"

Like "sv_2pv()", but doesn’t return the length too. You should usually use the macro wrapper

"SvPV_nolen(sv)" instead.

char* sv_2pv_nolen(SV* sv)

"sv_add_arena"

Given a chunk of memory, link it to the head of the list of arenas, and split it into a list of free

SVs.

void sv_add_arena(char *const ptr, const U32 size,

const U32 flags)

"sv_clean_all"

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

Decrement the refcnt of each remaining SV, possibly triggering a cleanup. This function may

have to be called multiple times to free SVs which are in complex self-referential hierarchies.

I32 sv_clean_all()

"sv_clean_objs"

Attempt to destroy all objects not yet freed.

void sv_clean_objs()

"sv_free_arenas"

Deallocate the memory used by all arenas. Note that all the individual SV heads and bodies

within the arenas must already have been freed.

void sv_free_arenas()

"sv_grow"

Expands the character buffer in the SV. If necessary, uses "sv_unref" and upgrades the SV to

"SVt_PV". Returns a pointer to the character buffer. Use the "SvGROW" wrapper instead.

char* sv_grow(SV *const sv, STRLEN newlen)

"sv_grow_fresh"

A cut-down version of sv_grow intended only for when sv is a freshly-minted SVt_PV,

SVt_PVIV, SVt_PVNV, or SVt_PVMG. i.e. sv has the default flags, has never been any other

type, and does not have an existing string. Basically, just assigns a char buffer and returns a

pointer to it.

char* sv_grow_fresh(SV *const sv, STRLEN newlen)

"sv_iv"

"DEPRECATED!" It is planned to remove "sv_iv" from a future release of Perl. Do not use it for

new code; remove it from existing code.

A private implementation of the "SvIVx" macro for compilers which can’t cope with complex

macro expressions. Always use the macro instead.

IV sv_iv(SV* sv)

"sv_newref"

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

Increment an SV’s reference count. Use the "SvREFCNT_inc()" wrapper instead.

SV* sv_newref(SV *const sv)

"sv_nv"

"DEPRECATED!" It is planned to remove "sv_nv" from a future release of Perl. Do not use it

for new code; remove it from existing code.

A private implementation of the "SvNVx" macro for compilers which can’t cope with complex

macro expressions. Always use the macro instead.

NV sv_nv(SV* sv)

"sv_pv"

Use the "SvPV_nolen" macro instead

char* sv_pv(SV *sv)

"sv_pvbyte"

Use "SvPVbyte_nolen" instead.

char* sv_pvbyte(SV *sv)

"sv_pvbyten"

"DEPRECATED!" It is planned to remove "sv_pvbyten" from a future release of Perl. Do not

use it for new code; remove it from existing code.

A private implementation of the "SvPVbyte" macro for compilers which can’t cope with complex

macro expressions. Always use the macro instead.

char* sv_pvbyten(SV *sv, STRLEN *lp)

"sv_pvbyten_force"

The backend for the "SvPVbytex_force" macro. Always use the macro instead. If the SV cannot

be downgraded from UTF-8, this croaks.

char* sv_pvbyten_force(SV *const sv, STRLEN *const lp)

"sv_pvn"

"DEPRECATED!" It is planned to remove "sv_pvn" from a future release of Perl. Do not use it

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

for new code; remove it from existing code.

A private implementation of the "SvPV" macro for compilers which can’t cope with complex

macro expressions. Always use the macro instead.

char* sv_pvn(SV *sv, STRLEN *lp)

"sv_pvn_force"

Get a sensible string out of the SV somehow. A private implementation of the "SvPV_force"

macro for compilers which can’t cope with complex macro expressions. Always use the macro

instead.

char* sv_pvn_force(SV* sv, STRLEN* lp)

"sv_pvutf8"

Use the "SvPVutf8_nolen" macro instead

char* sv_pvutf8(SV *sv)

"sv_pvutf8n"

"DEPRECATED!" It is planned to remove "sv_pvutf8n" from a future release of Perl. Do not use

it for new code; remove it from existing code.

A private implementation of the "SvPVutf8" macro for compilers which can’t cope with complex

macro expressions. Always use the macro instead.

char* sv_pvutf8n(SV *sv, STRLEN *lp)

"sv_pvutf8n_force"

The backend for the "SvPVutf8x_force" macro. Always use the macro instead.

char* sv_pvutf8n_force(SV *const sv, STRLEN *const lp)

"sv_tainted"

Test an SV for taintedness. Use "SvTAINTED" instead.

bool sv_tainted(SV *const sv)

"SvTHINKFIRST"

A quick flag check to see whether an "sv" should be passed to "sv_force_normal" to be

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"downgraded" before "SvIVX" or "SvPVX" can be modified directly.

For example, if your scalar is a reference and you want to modify the "SvIVX" slot, you can’t just

do "SvROK_off", as that will leak the referent.

This is used internally by various sv-modifying functions, such as "sv_setsv", "sv_setiv" and

"sv_pvn_force".

One case that this does not handle is a gv without SvFAKE set. After

if (SvTHINKFIRST(gv)) sv_force_normal(gv);

it will still be a gv.

"SvTHINKFIRST" sometimes produces false positives. In those cases "sv_force_normal" does

nothing.

U32 SvTHINKFIRST(SV *sv)

"sv_true"

Returns true if the SV has a true value by Perl’s rules. Use the "SvTRUE" macro instead, which

may call "sv_true()" or may instead use an in-line version.

I32 sv_true(SV *const sv)

"sv_untaint"

Untaint an SV. Use "SvTAINTED_off" instead.

void sv_untaint(SV *const sv)

"sv_uv"

"DEPRECATED!" It is planned to remove "sv_uv" from a future release of Perl. Do not use it

for new code; remove it from existing code.

A private implementation of the "SvUVx" macro for compilers which can’t cope with complex

macro expressions. Always use the macro instead.

UV sv_uv(SV* sv)

Tainting

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"sv_taint"

Taint an SV. Use "SvTAINTED_on" instead.

void sv_taint(SV* sv)

"TAINT"

If we aren’t in taint checking mode, do nothing; otherwise indicate to ""TAINT_set"" and

""TAINT_PROPER"" that some unspecified element is tainted.

void TAINT()

"TAINT_ENV"

Looks at several components of %ENV for taintedness, and calls ""taint_proper"" if any are

tainted. The components it searches are things like $PATH.

void TAINT_ENV

"taint_env"

Implements the "TAINT_ENV" macro, which you should generally use instead.

void taint_env()

"TAINT_get"

Returns a boolean as to whether some element is tainted or not.

bool TAINT_get()

"TAINT_IF"

If "c" evaluates to true, call ""TAINT"" to indicate that something is tainted; otherwise do nothing.

void TAINT_IF(bool c)

"TAINTING_get"

Returns a boolean as to whether taint checking is enabled or not.

bool TAINTING_get()

"TAINTING_set"

Turn taint checking mode off/on

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

void TAINTING_set(bool s)

"TAINT_NOT"

Remove any taintedness previously set by, e.g., "TAINT".

void TAINT_NOT()

"TAINT_PROPER"

If no element is tainted, do nothing; otherwise output a message (containing "s") that indicates

there is a tainting violation. If such violations are fatal, it croaks.

void TAINT_PROPER(const char * s)

"taint_proper"

Implements the "TAINT_PROPER" macro, which you should generally use instead.

void taint_proper(const char* f, const char *const s)

"TAINT_set"

If "s" is true, ""TAINT_get"" returns true; If "s" is false, ""TAINT_get"" returns false;

void TAINT_set(bool s)

"TAINT_WARN_get"

Returns false if tainting violations are fatal; Returns true if they’re just warnings

bool TAINT_WARN_get()

"TAINT_WARN_set"

"s" being true indicates ""TAINT_WARN_get"" should return that tainting violations are just

warnings

"s" being false indicates ""TAINT_WARN_get"" should return that tainting violations are fatal.

void TAINT_WARN_set(bool s)

Time
There are only public API items currently in Time

Typedef names

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

There are only public API items currently in Typedef names

Unicode Support
"bytes_from_utf8_loc"

NOTE: "bytes_from_utf8_loc" is experimental and may change or be removed without notice.

Like ""bytes_from_utf8" in perlapi()", but takes an extra parameter, a pointer to where to store the

location of the first character in "s" that cannot be converted to non-UTF8.

If that parameter is "NULL", this function behaves identically to "bytes_from_utf8".

Otherwise if *is_utf8p is 0 on input, the function behaves identically to "bytes_from_utf8", except

it also sets *first_non_downgradable to "NULL".

Otherwise, the function returns a newly created "NUL"-terminated string containing the

non-UTF8 equivalent of the convertible first portion of "s". *lenp is set to its length, not including

the terminating "NUL". If the entire input string was converted, *is_utf8p is set to a FALSE

value, and *first_non_downgradable is set to "NULL".

Otherwise, *first_non_downgradable is set to point to the first byte of the first character in the

original string that wasn’t converted. *is_utf8p is unchanged. Note that the new string may have

length 0.

Another way to look at it is, if *first_non_downgradable is non-"NULL" and *is_utf8p is TRUE,

this function starts at the beginning of "s" and converts as many characters in it as possible

stopping at the first one it finds that can’t be converted to non-UTF-8. *first_non_downgradable

is set to point to that. The function returns the portion that could be converted in a newly created

"NUL"-terminated string, and *lenp is set to its length, not including the terminating "NUL". If

the very first character in the original could not be converted, *lenp will be 0, and the new string

will contain just a single "NUL". If the entire input string was converted, *is_utf8p is set to

FALSE and *first_non_downgradable is set to "NULL".

Upon successful return, the number of variants in the converted portion of the string can be

computed by having saved the value of *lenp before the call, and subtracting the after-call value

of *lenp from it.

U8* bytes_from_utf8_loc(const U8 *s, STRLEN *lenp,

bool *is_utf8p,

const U8 ** first_unconverted)

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"find_uninit_var"

NOTE: "find_uninit_var" is experimental and may change or be removed without notice.

Find the name of the undefined variable (if any) that caused the operator to issue a "Use of

uninitialized value" warning. If match is true, only return a name if its value matches "uninit_sv".

So roughly speaking, if a unary operator (such as "OP_COS") generates a warning, then following

the direct child of the op may yield an "OP_PADSV" or "OP_GV" that gives the name of the

undefined variable. On the other hand, with "OP_ADD" there are two branches to follow, so we

only print the variable name if we get an exact match. "desc_p" points to a string pointer holding

the description of the op. This may be updated if needed.

The name is returned as a mortal SV.

Assumes that "PL_op" is the OP that originally triggered the error, and that

"PL_comppad"/"PL_curpad" points to the currently executing pad.

SV* find_uninit_var(const OP *const obase,

const SV *const uninit_sv, bool match,

const char **desc_p)

"isSCRIPT_RUN"

Returns a bool as to whether or not the sequence of bytes from "s" up to but not including "send"

form a "script run". "utf8_target" is TRUE iff the sequence starting at "s" is to be treated as

UTF-8. To be precise, except for two degenerate cases given below, this function returns TRUE

iff all code points in it come from any combination of three "scripts" given by the Unicode "Script

Extensions" property: Common, Inherited, and possibly one other. Additionally all decimal digits

must come from the same consecutive sequence of 10.

For example, if all the characters in the sequence are Greek, or Common, or Inherited, this

function will return TRUE, provided any decimal digits in it are from the same block of digits in

Common. (These are the ASCII digits "0".."9" and additionally a block for full width forms of

these, and several others used in mathematical notation.) For scripts (unlike Greek) that have

their own digits defined this will accept either digits from that set or from one of the Common

digit sets, but not a combination of the two. Some scripts, such as Arabic, have more than one set

of digits. All digits must come from the same set for this function to return TRUE.

*ret_script, if "ret_script" is not NULL, will on return of TRUE contain the script found, using the

"SCX_enum" typedef. Its value will be "SCX_INVALID" if the function returns FALSE.

If the sequence is empty, TRUE is returned, but *ret_script (if asked for) will be

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

"SCX_INVALID".

If the sequence contains a single code point which is unassigned to a character in the version of

Unicode being used, the function will return TRUE, and the script will be "SCX_Unknown". Any

other combination of unassigned code points in the input sequence will result in the function

treating the input as not being a script run.

The returned script will be "SCX_Inherited" iff all the code points in it are from the Inherited

script.

Otherwise, the returned script will be "SCX_Common" iff all the code points in it are from the

Inherited or Common scripts.

bool isSCRIPT_RUN(const U8 *s, const U8 *send,

const bool utf8_target)

"is_utf8_non_invariant_string"

Returns TRUE if "is_utf8_invariant_string" in perlapi returns FALSE for the first "len" bytes of

the string "s", but they are, nonetheless, legal Perl-extended UTF-8; otherwise returns FALSE.

A TRUE return means that at least one code point represented by the sequence either is a wide

character not representable as a single byte, or the representation differs depending on whether the

sequence is encoded in UTF-8 or not.

See also ""is_utf8_invariant_string" in perlapi", ""is_utf8_string" in perlapi"

bool is_utf8_non_invariant_string(const U8* const s, STRLEN len)

"report_uninit"

Print appropriate "Use of uninitialized variable" warning.

void report_uninit(const SV *uninit_sv)

"utf8n_to_uvuni"

"DEPRECATED!" It is planned to remove "utf8n_to_uvuni" from a future release of Perl. Do

not use it for new code; remove it from existing code.

Instead use "utf8_to_uvchr_buf" in perlapi, or rarely, "utf8n_to_uvchr" in perlapi.

This function was useful for code that wanted to handle both EBCDIC and ASCII platforms with

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

Unicode properties, but starting in Perl v5.20, the distinctions between the platforms have mostly

been made invisible to most code, so this function is quite unlikely to be what you want. If you do

need this precise functionality, use instead "NATIVE_TO_UNI(utf8_to_uvchr_buf(...))" or

"NATIVE_TO_UNI(utf8n_to_uvchr(...))".

UV utf8n_to_uvuni(const U8 *s, STRLEN curlen, STRLEN *retlen,

U32 flags)

"utf8_to_uvuni"

"DEPRECATED!" It is planned to remove "utf8_to_uvuni" from a future release of Perl. Do not

use it for new code; remove it from existing code.

Returns the Unicode code point of the first character in the string "s" which is assumed to be in

UTF-8 encoding; "retlen" will be set to the length, in bytes, of that character.

Some, but not all, UTF-8 malformations are detected, and in fact, some malformed input could

cause reading beyond the end of the input buffer, which is one reason why this function is

deprecated. The other is that only in extremely limited circumstances should the Unicode versus

native code point be of any interest to you. See "utf8_to_uvuni_buf" for alternatives.

If "s" points to one of the detected malformations, and UTF8 warnings are enabled, zero is

returned and *retlen is set (if "retlen" doesn’t point to NULL) to -1. If those warnings are off, the

computed value if well-defined (or the Unicode REPLACEMENT CHARACTER, if not) is

silently returned, and *retlen is set (if "retlen" isn’t NULL) so that ("s" + *retlen) is the next

possible position in "s" that could begin a non-malformed character. See "utf8n_to_uvchr" in

perlapi for details on when the REPLACEMENT CHARACTER is returned.

UV utf8_to_uvuni(const U8 *s, STRLEN *retlen)

"utf8_to_uvuni_buf"

"DEPRECATED!" It is planned to remove "utf8_to_uvuni_buf" from a future release of Perl. Do

not use it for new code; remove it from existing code.

Only in very rare circumstances should code need to be dealing in Unicode (as opposed to native)

code points. In those few cases, use "NATIVE_TO_UNI(utf8_to_uvchr_buf(...))" instead. If you

are not absolutely sure this is one of those cases, then assume it isn’t and use plain

"utf8_to_uvchr_buf" instead.

Returns the Unicode (not-native) code point of the first character in the string "s" which is

assumed to be in UTF-8 encoding; "send" points to 1 beyond the end of "s". "retlen" will be set to

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

the length, in bytes, of that character.

If "s" does not point to a well-formed UTF-8 character and UTF8 warnings are enabled, zero is

returned and *retlen is set (if "retlen" isn’t NULL) to -1. If those warnings are off, the computed

value if well-defined (or the Unicode REPLACEMENT CHARACTER, if not) is silently

returned, and *retlen is set (if "retlen" isn’t NULL) so that ("s" + *retlen) is the next possible

position in "s" that could begin a non-malformed character. See "utf8n_to_uvchr" in perlapi for

details on when the REPLACEMENT CHARACTER is returned.

UV utf8_to_uvuni_buf(const U8 *s, const U8 *send, STRLEN *retlen)

"uvoffuni_to_utf8_flags"

THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.

Instead, Almost all code should use "uvchr_to_utf8" in perlapi or "uvchr_to_utf8_flags" in
perlapi.

This function is like them, but the input is a strict Unicode (as opposed to native) code point.

Only in very rare circumstances should code not be using the native code point.

For details, see the description for "uvchr_to_utf8_flags" in perlapi.

U8* uvoffuni_to_utf8_flags(U8 *d, UV uv, UV flags)

"uvuni_to_utf8_flags"

"DEPRECATED!" It is planned to remove "uvuni_to_utf8_flags" from a future release of Perl.

Do not use it for new code; remove it from existing code.

Instead you almost certainly want to use "uvchr_to_utf8" in perlapi or "uvchr_to_utf8_flags" in

perlapi.

This function is a deprecated synonym for "uvoffuni_to_utf8_flags", which itself, while not

deprecated, should be used only in isolated circumstances. These functions were useful for code

that wanted to handle both EBCDIC and ASCII platforms with Unicode properties, but starting in

Perl v5.20, the distinctions between the platforms have mostly been made invisible to most code,

so this function is quite unlikely to be what you want.

U8* uvuni_to_utf8_flags(U8 *d, UV uv, UV flags)

"valid_utf8_to_uvchr"

Like ""utf8_to_uvchr_buf" in perlapi", but should only be called when it is known that the next

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

character in the input UTF-8 string "s" is well-formed (e.g., it passes ""isUTF8_CHAR" in

perlapi". Surrogates, non-character code points, and non-Unicode code points are allowed.

UV valid_utf8_to_uvchr(const U8 *s, STRLEN *retlen)

"variant_under_utf8_count"

This function looks at the sequence of bytes between "s" and "e", which are assumed to be

encoded in ASCII/Latin1, and returns how many of them would change should the string be

translated into UTF-8. Due to the nature of UTF-8, each of these would occupy two bytes instead

of the single one in the input string. Thus, this function returns the precise number of bytes the

string would expand by when translated to UTF-8.

Unlike most of the other functions that have "utf8" in their name, the input to this function is NOT

a UTF-8-encoded string. The function name is slightly odd to emphasize this.

This function is internal to Perl because khw thinks that any XS code that would want this is

probably operating too close to the internals. Presenting a valid use case could change that.

See also ""is_utf8_invariant_string" in perlapi" and ""is_utf8_invariant_string_loc" in perlapi",

Size_t variant_under_utf8_count(const U8* const s,

const U8* const e)

Utility Functions
"my_popen_list"

Implementing function on some systems for PerlProc_popen_list()

PerlIO* my_popen_list(const char* mode, int n, SV ** args)

"my_socketpair"

Emulates socketpair(2) on systems that don’t have it, but which do have enough functionality for

the emulation.

int my_socketpair(int family, int type, int protocol, int fd[2])

Versioning
There are only public API items currently in Versioning

Warning and Dieing
"PL_dowarn"

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

The C variable that roughly corresponds to Perl’s $^W warning variable. However, $^W is

treated as a boolean, whereas "PL_dowarn" is a collection of flag bits.

On threaded perls, each thread has an independent copy of this variable; each initialized at

creation time with the current value of the creating thread’s copy.

U8 PL_dowarn

XS
There are only public API items currently in XS

Undocumented elements
The following functions are currently undocumented. If you use one of them, you may wish to

consider creating and submitting documentation for it.

abort_execution

add_cp_to_invlist

_add_range_to_invlist

alloc_LOGOP

allocmy

amagic_cmp

amagic_cmp_desc

amagic_cmp_locale

amagic_cmp_locale_desc

amagic_is_enabled

amagic_i_ncmp

amagic_i_ncmp_desc

amagic_ncmp

amagic_ncmp_desc

any_dup

append_utf8_from_native_byte

apply

ASCII_TO_NEED

atfork_lock

atfork_unlock

av_arylen_p

av_extend_guts

av_iter_p

av_nonelem

av_reify

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

bind_match

block_gimme

boot_core_builtin

boot_core_mro

boot_core_PerlIO

boot_core_UNIVERSAL

_byte_dump_string

call_list

cando

cast_i32

cast_iv

cast_ulong

cast_uv

check_utf8_print

ck_anoncode

ck_backtick

ck_bitop

ck_cmp

ck_concat

ck_defined

ck_delete

ck_each

ck_entersub_args_core

ck_eof

ck_eval

ck_exec

ck_exists

ck_ftst

ck_fun

ck_glob

ck_grep

ck_index

ck_isa

ck_join

ck_length

ck_lfun

ck_listiob

ck_match

ck_method

ck_null

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

ck_open

ck_prototype

ck_readline

ck_refassign

ck_repeat

ck_require

ck_return

ck_rfun

ck_rvconst

ck_sassign

ck_select

ck_shift

ck_smartmatch

ck_sort

ck_spair

ck_split

ck_stringify

ck_subr

ck_substr

ck_svconst

ck_tell

ck_trunc

ck_trycatch

ckwarn

ckwarn_d

clear_defarray

closest_cop

cmpchain_extend

cmpchain_finish

cmpchain_start

cmp_desc

cmp_locale_desc

cntrl_to_mnemonic

cop_file_avn

coresub_op

create_eval_scope

croak_caller

croak_memory_wrap

croak_no_mem

croak_popstack

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

csighandler

csighandler1

csighandler3

current_re_engine

custom_op_get_field

cv_ckproto_len_flags

cv_clone_into

cv_const_sv_or_av

cvgv_from_hek

cvgv_set

cvstash_set

cv_undef_flags

cx_dump

cx_dup

cxinc

cx_popblock

cx_popeval

cx_popformat

cx_popgiven

cx_poploop

cx_popsub

cx_popsub_args

cx_popsub_common

cx_popwhen

cx_pushblock

cx_pusheval

cx_pushformat

cx_pushgiven

cx_pushloop_for

cx_pushloop_plain

cx_pushsub

cx_pushtry

cx_pushwhen

cx_topblock

debstackptrs

deb_stack_all

debug_hash_seed

defelem_target

delete_eval_scope

despatch_signals

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

die_unwind

do_aexec

do_aexec5

do_aspawn

do_eof

does_utf8_overflow

do_exec

do_exec3

dofile

do_gvgv_dump

do_gv_dump

do_hv_dump

doing_taint

do_ipcctl

do_ipcget

do_magic_dump

do_msgrcv

do_msgsnd

do_ncmp

do_open6

do_open_raw

do_op_dump

do_pmop_dump

do_print

do_readline

doref

do_seek

do_semop

do_shmio

do_spawn

do_spawn_nowait

do_sv_dump

do_sysseek

do_tell

do_trans

do_uniprop_match

do_vecget

do_vecset

do_vop

drand48_init_r

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

drand48_r

dtrace_probe_call

dtrace_probe_load

dtrace_probe_op

dtrace_probe_phase

dump_all_perl

dump_indent

dump_packsubs_perl

dump_sub_perl

dump_sv_child

dump_vindent

dup_warnings

emulate_cop_io

find_first_differing_byte_pos

find_lexical_cv

find_runcv_where

find_script

foldEQ_latin1

foldEQ_latin1_s2_folded

foldEQ_utf8_flags

_force_out_malformed_utf8_message

form_alien_digit_msg

form_cp_too_large_msg

free_tied_hv_pool

free_tmps

get_and_check_backslash_N_name

get_db_sub

get_debug_opts

get_deprecated_property_msg

getenv_len

get_hash_seed

get_invlist_iter_addr

get_invlist_offset_addr

get_invlist_previous_index_addr

get_mstats

get_no_modify

get_opargs

get_ppaddr

get_prop_definition

get_prop_values

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

get_regclass_nonbitmap_data

get_regex_charset_name

get_re_arg

get_re_gclass_nonbitmap_data

get_vtbl

gimme_V

gp_free

gp_ref

grok_bin_oct_hex

grok_bslash_c

grok_bslash_o

grok_bslash_x

gv_check

gv_fetchmeth_internal

gv_override

gv_setref

gv_stashpvn_internal

he_dup

hek_dup

hfree_next_entry

hv_auxalloc

hv_backreferences_p

hv_common

hv_common_key_len

hv_delayfree_ent

hv_kill_backrefs

hv_placeholders_p

hv_pushkv

hv_rand_set

hv_undef_flags

init_argv_symbols

init_constants

init_dbargs

init_debugger

init_i18nl10n

init_i18nl14n

init_named_cv

init_stacks

init_tm

init_uniprops

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

_inverse_folds

invert

invlist_array

invlist_clear

invlist_clone

invlist_contents

_invlistEQ

invlist_extend

invlist_highest

invlist_is_iterating

invlist_iterfinish

invlist_iterinit

invlist_iternext

invlist_lowest

invlist_max

invlist_previous_index

invlist_set_len

invlist_set_previous_index

invlist_trim

_invlist_array_init

_invlist_contains_cp

_invlist_dump

_invlist_intersection

_invlist_intersection_maybe_complement_2nd

_invlist_invert

_invlist_len

_invlist_search

_invlist_subtract

_invlist_union

_invlist_union_maybe_complement_2nd

invmap_dump

io_close

isFF_overlong

is_grapheme

is_invlist

is_utf8_char_helper_

is_utf8_common

is_utf8_FF_helper_

is_utf8_overlong

_is_cur_LC_category_utf8

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

_is_in_locale_category

_is_uni_FOO

_is_uni_perl_idcont

_is_uni_perl_idstart

_is_utf8_FOO

_is_utf8_perl_idcont

_is_utf8_perl_idstart

jmaybe

keyword

keyword_plugin_standard

list

load_charnames

localize

lossless_NV_to_IV

lsbit_pos32

lsbit_pos64

magic_cleararylen_p

magic_clearenv

magic_clearisa

magic_clearpack

magic_clearsig

magic_clear_all_env

magic_copycallchecker

magic_existspack

magic_freearylen_p

magic_freecollxfrm

magic_freemglob

magic_freeovrld

magic_freeutf8

magic_get

magic_getarylen

magic_getdebugvar

magic_getdefelem

magic_getnkeys

magic_getpack

magic_getpos

magic_getsig

magic_getsubstr

magic_gettaint

magic_getuvar

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

magic_getvec

magic_killbackrefs

magic_nextpack

magic_regdata_cnt

magic_regdatum_get

magic_regdatum_set

magic_scalarpack

magic_set

magic_setarylen

magic_setcollxfrm

magic_setdbline

magic_setdebugvar

magic_setdefelem

magic_setenv

magic_setisa

magic_setlvref

magic_setmglob

magic_setnkeys

magic_setnonelem

magic_setpack

magic_setpos

magic_setregexp

magic_setsig

magic_setsigall

magic_setsubstr

magic_settaint

magic_setutf8

magic_setuvar

magic_setvec

magic_set_all_env

magic_sizepack

magic_wipepack

malloced_size

malloc_good_size

markstack_grow

mem_collxfrm

mem_log_alloc

mem_log_del_sv

mem_log_free

mem_log_new_sv

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

mem_log_realloc

_mem_collxfrm

mg_find_mglob

mg_size

mode_from_discipline

more_bodies

more_sv

moreswitches

mortal_getenv

mro_get_private_data

mro_meta_dup

mro_meta_init

msbit_pos32

msbit_pos64

multiconcat_stringify

multideref_stringify

my_atof2

my_atof3

my_attrs

my_clearenv

my_lstat

my_lstat_flags

my_memrchr

my_mkostemp_cloexec

my_mkstemp_cloexec

my_stat

my_stat_flags

my_strerror

my_unexec

NATIVE_TO_NEED

newFORM

newGP

newMETHOP_internal

newMYSUB

newPROG

new_stackinfo

newSTUB

newSVavdefelem

new_warnings_bitfield

newXS_deffile

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

_new_invlist

_new_invlist_C_array

nextargv

no_bareword_filehandle

noperl_die

notify_parser_that_changed_to_utf8

oopsAV

oopsHV

op_clear

op_integerize

op_lvalue_flags

opmethod_stash

op_refcnt_dec

op_refcnt_inc

op_relocate_sv

opslab_force_free

opslab_free

opslab_free_nopad

op_std_init

op_unscope

package

package_version

pad_add_weakref

padlist_store

padname_free

PadnameIN_SCOPE

padnamelist_free

parser_dup

parser_free

parser_free_nexttoke_ops

parse_unicode_opts

path_is_searchable

peep

perl_alloc_using

perl_clone_using

PerlIO_context_layers

PerlIO_restore_errno

PerlIO_save_errno

PerlLIO_dup2_cloexec

PerlLIO_dup_cloexec

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

PerlLIO_open3_cloexec

PerlLIO_open_cloexec

PerlProc_pipe_cloexec

PerlSock_accept_cloexec

PerlSock_socketpair_cloexec

PerlSock_socket_cloexec

perly_sighandler

pmruntime

POPMARK

populate_isa

pregfree

pregfree2

qerror

ReANY

reentrant_free

reentrant_init

reentrant_retry

reentrant_size

re_exec_indentf

ref

regcurly

regdump

regdupe_internal

regexec_flags

regfree_internal

reginitcolors

reg_named_buff

reg_named_buff_all

reg_named_buff_exists

reg_named_buff_fetch

reg_named_buff_firstkey

reg_named_buff_iter

reg_named_buff_nextkey

reg_named_buff_scalar

regnext

reg_numbered_buff_fetch

reg_numbered_buff_length

reg_numbered_buff_store

regprop

reg_qr_package

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

reg_skipcomment

reg_temp_copy

re_indentf

re_intuit_start

re_intuit_string

re_op_compile

report_evil_fh

report_redefined_cv

report_wrongway_fh

re_printf

rpeep

rsignal_restore

rsignal_save

rvpv_dup

rxres_save

same_dirent

save_bool

save_clearsv

save_delete

save_destructor

save_destructor_x

save_freeop

save_freepv

save_freesv

save_I16

save_I32

save_I8

save_int

save_iv

save_long

save_mortalizesv

save_pptr

save_re_context

save_sptr

savestack_grow

savestack_grow_cnt

save_strlen

save_to_buffer

sawparens

scalar

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

scalarvoid

scan_num

scan_str

scan_word

seed

set_caret_X

setfd_cloexec

setfd_cloexec_for_nonsysfd

setfd_cloexec_or_inhexec_by_sysfdness

setfd_inhexec

setfd_inhexec_for_sysfd

set_numeric_standard

set_numeric_underlying

set_padlist

_setup_canned_invlist

share_hek

should_warn_nl

should_we_output_Debug_r

sighandler

sighandler1

sighandler3

single_1bit_pos32

single_1bit_pos64

skipspace_flags

Slab_Alloc

Slab_Free

Slab_to_ro

Slab_to_rw

softref2xv

sortsv_flags_impl

stack_grow

str_to_version

sub_crush_depth

sv_2iv

sv_2uv

sv_add_backref

sv_buf_to_ro

sv_del_backref

sv_free2

sv_i_ncmp

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

sv_i_ncmp_desc

sv_kill_backrefs

sv_magicext_mglob

sv_ncmp

sv_ncmp_desc

sv_only_taint_gmagic

sv_or_pv_pos_u2b

sv_resetpvn

sv_sethek

sv_setsv_cow

SvTRUE_common

sv_unglob

sys_init

sys_init3

sys_intern_clear

sys_intern_dup

sys_intern_init

sys_term

tied_method

tmps_grow_p

TOPMARK

to_uni_fold

to_uni_lower

to_uni_title

to_uni_upper

_to_fold_latin1

_to_uni_fold_flags

_to_upper_title_latin1

_to_utf8_fold_flags

_to_utf8_lower_flags

_to_utf8_title_flags

_to_utf8_upper_flags

translate_substr_offsets

try_amagic_bin

try_amagic_un

uiv_2buf

unlnk

unshare_hek

utf16_to_utf8

utf16_to_utf8_base

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

utf16_to_utf8_reversed

_utf8n_to_uvchr_msgs_helper

utf8_to_utf16_base

utf8_to_uvchr_buf_helper

utilize

uvoffuni_to_utf8_flags_msgs

uvuni_to_utf8

valid_utf8_to_uvuni

variant_byte_number

varname

vivify_defelem

vivify_ref

wait4pid

_warn_problematic_locale

was_lvalue_sub

watch

win32_croak_not_implemented

write_to_stderr

xs_boot_epilog

xs_handshake

yyerror

yyerror_pv

yyerror_pvn

yylex

yyparse

yyquit

yyunlex

AUTHORS
The autodocumentation system was originally added to the Perl core by Benjamin Stuhl.

Documentation is by whoever was kind enough to document their functions.

SEE ALSO
config.h, perlapi, perlapio, perlcall, perlclib, perlembed, perlfilter, perlguts, perlhacktips, perlinterp,

perliol, perlmroapi, perlreapi, perlreguts, perlxs

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

perl v5.36.3 2024-12-22 PERLINTERN(1)

