
NAME
perlperf - Perl Performance and Optimization Techniques

DESCRIPTION
This is an introduction to the use of performance and optimization techniques which can be used with

particular reference to perl programs. While many perl developers have come from other languages,

and can use their prior knowledge where appropriate, there are many other people who might benefit

from a few perl specific pointers. If you want the condensed version, perhaps the best advice comes

from the renowned Japanese Samurai, Miyamoto Musashi, who said:

"Do Not Engage in Useless Activity"

in 1645.

OVERVIEW
Perhaps the most common mistake programmers make is to attempt to optimize their code before a

program actually does anything useful - this is a bad idea. There’s no point in having an extremely fast

program that doesn’t work. The first job is to get a program to correctly do something useful, (not to

mention ensuring the test suite is fully functional), and only then to consider optimizing it. Having

decided to optimize existing working code, there are several simple but essential steps to consider

which are intrinsic to any optimization process.

ONE STEP SIDEWAYS
Firstly, you need to establish a baseline time for the existing code, which timing needs to be reliable

and repeatable. You’ll probably want to use the "Benchmark" or "Devel::NYTProf" modules, or

something similar, for this step, or perhaps the Unix system "time" utility, whichever is appropriate.

See the base of this document for a longer list of benchmarking and profiling modules, and

recommended further reading.

ONE STEP FORWARD
Next, having examined the program for hot spots, (places where the code seems to run slowly), change

the code with the intention of making it run faster. Using version control software, like "subversion",

will ensure no changes are irreversible. It’s too easy to fiddle here and fiddle there - don’t change too

much at any one time or you might not discover which piece of code really was the slow bit.

ANOTHER STEP SIDEWAYS
It’s not enough to say: "that will make it run faster", you have to check it. Rerun the code under

control of the benchmarking or profiling modules, from the first step above, and check that the new

code executed the same task in less time. Save your work and repeat...

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

GENERAL GUIDELINES
The critical thing when considering performance is to remember there is no such thing as a "Golden

Bullet", which is why there are no rules, only guidelines.

It is clear that inline code is going to be faster than subroutine or method calls, because there is less

overhead, but this approach has the disadvantage of being less maintainable and comes at the cost of

greater memory usage - there is no such thing as a free lunch. If you are searching for an element in a

list, it can be more efficient to store the data in a hash structure, and then simply look to see whether

the key is defined, rather than to loop through the entire array using grep() for instance. substr() may

be (a lot) faster than grep() but not as flexible, so you have another trade-off to access. Your code may

contain a line which takes 0.01 of a second to execute which if you call it 1,000 times, quite likely in a

program parsing even medium sized files for instance, you already have a 10 second delay, in just one

single code location, and if you call that line 100,000 times, your entire program will slow down to an

unbearable crawl.

Using a subroutine as part of your sort is a powerful way to get exactly what you want, but will usually

be slower than the built-in alphabetic "cmp" and numeric "<=>" sort operators. It is possible to make

multiple passes over your data, building indices to make the upcoming sort more efficient, and to use

what is known as the "OM" (Orcish Maneuver) to cache the sort keys in advance. The cache lookup,

while a good idea, can itself be a source of slowdown by enforcing a double pass over the data - once

to setup the cache, and once to sort the data. Using "pack()" to extract the required sort key into a

consistent string can be an efficient way to build a single string to compare, instead of using multiple

sort keys, which makes it possible to use the standard, written in "c" and fast, perl "sort()" function on

the output, and is the basis of the "GRT" (Guttman Rossler Transform). Some string combinations can

slow the "GRT" down, by just being too plain complex for its own good.

For applications using database backends, the standard "DBIx" namespace has tries to help with

keeping things nippy, not least because it tries to not query the database until the latest possible

moment, but always read the docs which come with your choice of libraries. Among the many issues

facing developers dealing with databases should remain aware of is to always use "SQL" placeholders

and to consider pre-fetching data sets when this might prove advantageous. Splitting up a large file by

assigning multiple processes to parsing a single file, using say "POE", "threads" or "fork" can also be a

useful way of optimizing your usage of the available "CPU" resources, though this technique is fraught

with concurrency issues and demands high attention to detail.

Every case has a specific application and one or more exceptions, and there is no replacement for

running a few tests and finding out which method works best for your particular environment, this is

why writing optimal code is not an exact science, and why we love using Perl so much - TMTOWTDI.

BENCHMARKS

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

Here are a few examples to demonstrate usage of Perl’s benchmarking tools.

Assigning and Dereferencing Variables.
I’m sure most of us have seen code which looks like, (or worse than), this:

if ($obj->{_ref}->{_myscore} >= $obj->{_ref}->{_yourscore}) {

...

This sort of code can be a real eyesore to read, as well as being very sensitive to typos, and it’s much

clearer to dereference the variable explicitly. We’re side-stepping the issue of working with object-

oriented programming techniques to encapsulate variable access via methods, only accessible through

an object. Here we’re just discussing the technical implementation of choice, and whether this has an

effect on performance. We can see whether this dereferencing operation, has any overhead by putting

comparative code in a file and running a "Benchmark" test.

dereference

#!/usr/bin/perl

use strict;

use warnings;

use Benchmark;

my $ref = {

’ref’ => {

_myscore => ’100 + 1’,

_yourscore => ’102 - 1’,

},

};

timethese(1000000, {

’direct’ => sub {

my $x = $ref->{ref}->{_myscore} . $ref->{ref}->{_yourscore} ;

},

’dereference’ => sub {

my $ref = $ref->{ref};

my $myscore = $ref->{_myscore};

my $yourscore = $ref->{_yourscore};

my $x = $myscore . $yourscore;

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

},

});

It’s essential to run any timing measurements a sufficient number of times so the numbers settle on a

numerical average, otherwise each run will naturally fluctuate due to variations in the environment, to

reduce the effect of contention for "CPU" resources and network bandwidth for instance. Running the

above code for one million iterations, we can take a look at the report output by the "Benchmark"

module, to see which approach is the most effective.

$> perl dereference

Benchmark: timing 1000000 iterations of dereference, direct...

dereference: 2 wallclock secs (1.59 usr + 0.00 sys = 1.59 CPU) @ 628930.82/s (n=1000000)

direct: 1 wallclock secs (1.20 usr + 0.00 sys = 1.20 CPU) @ 833333.33/s (n=1000000)

The difference is clear to see and the dereferencing approach is slower. While it managed to execute

an average of 628,930 times a second during our test, the direct approach managed to run an additional

204,403 times, unfortunately. Unfortunately, because there are many examples of code written using

the multiple layer direct variable access, and it’s usually horrible. It is, however, minusculy faster.

The question remains whether the minute gain is actually worth the eyestrain, or the loss of

maintainability.

Search and replace or tr
If we have a string which needs to be modified, while a regex will almost always be much more

flexible, "tr", an oft underused tool, can still be a useful. One scenario might be replace all vowels with

another character. The regex solution might look like this:

$str =~ s/[aeiou]/x/g

The "tr" alternative might look like this:

$str =~ tr/aeiou/xxxxx/

We can put that into a test file which we can run to check which approach is the fastest, using a global

$STR variable to assign to the "my $str" variable so as to avoid perl trying to optimize any of the work

away by noticing it’s assigned only the once.

regex-transliterate

#!/usr/bin/perl

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

use strict;

use warnings;

use Benchmark;

my $STR = "$$-this and that";

timethese(1000000, {

’sr’ => sub { my $str = $STR; $str =~ s/[aeiou]/x/g; return $str; },

’tr’ => sub { my $str = $STR; $str =~ tr/aeiou/xxxxx/; return $str; },

});

Running the code gives us our results:

$> perl regex-transliterate

Benchmark: timing 1000000 iterations of sr, tr...

sr: 2 wallclock secs (1.19 usr + 0.00 sys = 1.19 CPU) @ 840336.13/s (n=1000000)

tr: 0 wallclock secs (0.49 usr + 0.00 sys = 0.49 CPU) @ 2040816.33/s (n=1000000)

The "tr" version is a clear winner. One solution is flexible, the other is fast - and it’s appropriately the

programmer’s choice which to use.

Check the "Benchmark" docs for further useful techniques.

PROFILING TOOLS
A slightly larger piece of code will provide something on which a profiler can produce more extensive

reporting statistics. This example uses the simplistic "wordmatch" program which parses a given input

file and spews out a short report on the contents.

wordmatch

#!/usr/bin/perl

use strict;

use warnings;

=head1 NAME

filewords - word analysis of input file

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

=head1 SYNOPSIS

filewords -f inputfilename [-d]

=head1 DESCRIPTION

This program parses the given filename, specified with C<-f>, and

displays a simple analysis of the words found therein. Use the C<-d>

switch to enable debugging messages.

=cut

use FileHandle;

use Getopt::Long;

my $debug = 0;

my $file = ’’;

my $result = GetOptions (

’debug’ => \$debug,

’file=s’ => \$file,

);

die("invalid args") unless $result;

unless (-f $file) {

die("Usage: $0 -f filename [-d]");

}

my $FH = FileHandle->new("< $file")

or die("unable to open file($file): $!");

my $i_LINES = 0;

my $i_WORDS = 0;

my %count = ();

my @lines = <$FH>;

foreach my $line (@lines) {

$i_LINES++;

$line =~ s/\n//;

my @words = split(/ +/, $line);

my $i_words = scalar(@words);

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

$i_WORDS = $i_WORDS + $i_words;

debug("line: $i_LINES supplying $i_words words: @words");

my $i_word = 0;

foreach my $word (@words) {

$i_word++;

$count{$i_LINES}{spec} += matches($i_word, $word,

’[^a-zA-Z0-9]’);

$count{$i_LINES}{only} += matches($i_word, $word,

’^[^a-zA-Z0-9]+$’);

$count{$i_LINES}{cons} += matches($i_word, $word,

’^[(?i:bcdfghjklmnpqrstvwxyz)]+$’);

$count{$i_LINES}{vows} += matches($i_word, $word,

’^[(?i:aeiou)]+$’);

$count{$i_LINES}{caps} += matches($i_word, $word,

’^[(A-Z)]+$’);

}

}

print report(%count);

sub matches {

my $i_wd = shift;

my $word = shift;

my $regex = shift;

my $has = 0;

if ($word =~ /($regex)/) {

$has++ if $1;

}

debug("word: $i_wd "

. ($has ? ’matches’ : ’does not match’)

. " chars: /$regex/");

return $has;

}

sub report {

my %report = @_;

my %rep;

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

foreach my $line (keys %report) {

foreach my $key (keys $report{$line}->%*) {

$rep{$key} += $report{$line}{$key};

}

}

my $report = qq|

$0 report for $file:

lines in file: $i_LINES

words in file: $i_WORDS

words with special (non-word) characters: $i_spec

words with only special (non-word) characters: $i_only

words with only consonants: $i_cons

words with only capital letters: $i_caps

words with only vowels: $i_vows

|;

return $report;

}

sub debug {

my $message = shift;

if ($debug) {

print STDERR "DBG: $message\n";

}

}

exit 0;

Devel::DProf
This venerable module has been the de-facto standard for Perl code profiling for more than a decade,

but has been replaced by a number of other modules which have brought us back to the 21st century.

Although you’re recommended to evaluate your tool from the several mentioned here and from the

CPAN list at the base of this document, (and currently Devel::NYTProf seems to be the weapon of

choice - see below), we’ll take a quick look at the output from Devel::DProf first, to set a baseline for

Perl profiling tools. Run the above program under the control of "Devel::DProf" by using the "-d"

switch on the command-line.

$> perl -d:DProf wordmatch -f perl5db.pl

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

<...multiple lines snipped...>

wordmatch report for perl5db.pl:

lines in file: 9428

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

"Devel::DProf" produces a special file, called tmon.out by default, and this file is read by the "dprofpp"

program, which is already installed as part of the "Devel::DProf" distribution. If you call "dprofpp"

with no options, it will read the tmon.out file in the current directory and produce a human readable

statistics report of the run of your program. Note that this may take a little time.

$> dprofpp

Total Elapsed Time = 2.951677 Seconds

User+System Time = 2.871677 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

102. 2.945 3.003 251215 0.0000 0.0000 main::matches

2.40 0.069 0.069 260643 0.0000 0.0000 main::debug

1.74 0.050 0.050 1 0.0500 0.0500 main::report

1.04 0.030 0.049 4 0.0075 0.0123 main::BEGIN

0.35 0.010 0.010 3 0.0033 0.0033 Exporter::as_heavy

0.35 0.010 0.010 7 0.0014 0.0014 IO::File::BEGIN

0.00 - -0.000 1 - - Getopt::Long::FindOption

0.00 - -0.000 1 - - Symbol::BEGIN

0.00 - -0.000 1 - - Fcntl::BEGIN

0.00 - -0.000 1 - - Fcntl::bootstrap

0.00 - -0.000 1 - - warnings::BEGIN

0.00 - -0.000 1 - - IO::bootstrap

0.00 - -0.000 1 - - Getopt::Long::ConfigDefaults

0.00 - -0.000 1 - - Getopt::Long::Configure

0.00 - -0.000 1 - - Symbol::gensym

"dprofpp" will produce some quite detailed reporting on the activity of the "wordmatch" program. The

wallclock, user and system, times are at the top of the analysis, and after this are the main columns

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

defining which define the report. Check the "dprofpp" docs for details of the many options it supports.

See also "Apache::DProf" which hooks "Devel::DProf" into "mod_perl".

Devel::Profiler
Let’s take a look at the same program using a different profiler: "Devel::Profiler", a drop-in Perl-only

replacement for "Devel::DProf". The usage is very slightly different in that instead of using the special

"-d:" flag, you pull "Devel::Profiler" in directly as a module using "-M".

$> perl -MDevel::Profiler wordmatch -f perl5db.pl

<...multiple lines snipped...>

wordmatch report for perl5db.pl:

lines in file: 9428

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

"Devel::Profiler" generates a tmon.out file which is compatible with the "dprofpp" program, thus

saving the construction of a dedicated statistics reader program. "dprofpp" usage is therefore identical

to the above example.

$> dprofpp

Total Elapsed Time = 20.984 Seconds

User+System Time = 19.981 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

49.0 9.792 14.509 251215 0.0000 0.0001 main::matches

24.4 4.887 4.887 260643 0.0000 0.0000 main::debug

0.25 0.049 0.049 1 0.0490 0.0490 main::report

0.00 0.000 0.000 1 0.0000 0.0000 Getopt::Long::GetOptions

0.00 0.000 0.000 2 0.0000 0.0000 Getopt::Long::ParseOptionSpec

0.00 0.000 0.000 1 0.0000 0.0000 Getopt::Long::FindOption

0.00 0.000 0.000 1 0.0000 0.0000 IO::File::new

0.00 0.000 0.000 1 0.0000 0.0000 IO::Handle::new

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

0.00 0.000 0.000 1 0.0000 0.0000 Symbol::gensym

0.00 0.000 0.000 1 0.0000 0.0000 IO::File::open

Interestingly we get slightly different results, which is mostly because the algorithm which generates

the report is different, even though the output file format was allegedly identical. The elapsed, user and

system times are clearly showing the time it took for "Devel::Profiler" to execute its own run, but the

column listings feel more accurate somehow than the ones we had earlier from "Devel::DProf". The

102% figure has disappeared, for example. This is where we have to use the tools at our disposal, and

recognise their pros and cons, before using them. Interestingly, the numbers of calls for each

subroutine are identical in the two reports, it’s the percentages which differ. As the author of

"Devel::Proviler" writes:

...running HTML::Template’s test suite under Devel::DProf shows

output() taking NO time but Devel::Profiler shows around 10% of the

time is in output(). I don’t know which to trust but my gut tells me

something is wrong with Devel::DProf. HTML::Template::output() is a

big routine that’s called for every test. Either way, something needs

fixing.

YMMV.

See also "Devel::Apache::Profiler" which hooks "Devel::Profiler" into "mod_perl".

Devel::SmallProf
The "Devel::SmallProf" profiler examines the runtime of your Perl program and produces a line-by-

line listing to show how many times each line was called, and how long each line took to execute. It is

called by supplying the familiar "-d" flag to Perl at runtime.

$> perl -d:SmallProf wordmatch -f perl5db.pl

<...multiple lines snipped...>

wordmatch report for perl5db.pl:

lines in file: 9428

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

"Devel::SmallProf" writes it’s output into a file called smallprof.out, by default. The format of the file

looks like this:

<num> <time> <ctime> <line>:<text>

When the program has terminated, the output may be examined and sorted using any standard text

filtering utilities. Something like the following may be sufficient:

$> cat smallprof.out | grep \d*: | sort -k3 | tac | head -n20

251215 1.65674 7.68000 75: if ($word =~ /($regex)/) {

251215 0.03264 4.40000 79: debug("word: $i_wd ".($has ? ’matches’ :

251215 0.02693 4.10000 81: return $has;

260643 0.02841 4.07000 128: if ($debug) {

260643 0.02601 4.04000 126: my $message = shift;

251215 0.02641 3.91000 73: my $has = 0;

251215 0.03311 3.71000 70: my $i_wd = shift;

251215 0.02699 3.69000 72: my $regex = shift;

251215 0.02766 3.68000 71: my $word = shift;

50243 0.59726 1.00000 59: $count{$i_LINES}{cons} =

50243 0.48175 0.92000 61: $count{$i_LINES}{spec} =

50243 0.00644 0.89000 56: my $i_cons = matches($i_word, $word,

50243 0.48837 0.88000 63: $count{$i_LINES}{caps} =

50243 0.00516 0.88000 58: my $i_caps = matches($i_word, $word, ’^[(A-

50243 0.00631 0.81000 54: my $i_spec = matches($i_word, $word, ’[^a-

50243 0.00496 0.80000 57: my $i_vows = matches($i_word, $word,

50243 0.00688 0.80000 53: $i_word++;

50243 0.48469 0.79000 62: $count{$i_LINES}{only} =

50243 0.48928 0.77000 60: $count{$i_LINES}{vows} =

50243 0.00683 0.75000 55: my $i_only = matches($i_word, $word, ’^[^a-

You can immediately see a slightly different focus to the subroutine profiling modules, and we start to

see exactly which line of code is taking the most time. That regex line is looking a bit suspicious, for

example. Remember that these tools are supposed to be used together, there is no single best way to

profile your code, you need to use the best tools for the job.

See also "Apache::SmallProf" which hooks "Devel::SmallProf" into "mod_perl".

Devel::FastProf
"Devel::FastProf" is another Perl line profiler. This was written with a view to getting a faster line

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

profiler, than is possible with for example "Devel::SmallProf", because it’s written in "C". To use

"Devel::FastProf", supply the "-d" argument to Perl:

$> perl -d:FastProf wordmatch -f perl5db.pl

<...multiple lines snipped...>

wordmatch report for perl5db.pl:

lines in file: 9428

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

"Devel::FastProf" writes statistics to the file fastprof.out in the current directory. The output file,

which can be specified, can be interpreted by using the "fprofpp" command-line program.

$> fprofpp | head -n20

fprofpp output format is:

filename:line time count: source

wordmatch:75 3.93338 251215: if ($word =~ /($regex)/) {

wordmatch:79 1.77774 251215: debug("word: $i_wd ".($has ? ’matches’ : ’does not match’)." chars: /$regex/");

wordmatch:81 1.47604 251215: return $has;

wordmatch:126 1.43441 260643: my $message = shift;

wordmatch:128 1.42156 260643: if ($debug) {

wordmatch:70 1.36824 251215: my $i_wd = shift;

wordmatch:71 1.36739 251215: my $word = shift;

wordmatch:72 1.35939 251215: my $regex = shift;

Straightaway we can see that the number of times each line has been called is identical to the

"Devel::SmallProf" output, and the sequence is only very slightly different based on the ordering of the

amount of time each line took to execute, "if ($debug) { " and "my $message = shift;", for example.

The differences in the actual times recorded might be in the algorithm used internally, or it could be

due to system resource limitations or contention.

See also the DBIx::Profile which will profile database queries running under the "DBIx::*" namespace.

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

Devel::NYTProf
"Devel::NYTProf" is the next generation of Perl code profiler, fixing many shortcomings in other tools

and implementing many cool features. First of all it can be used as either a line profiler, a block or a

subroutine profiler, all at once. It can also use sub-microsecond (100ns) resolution on systems which

provide "clock_gettime()". It can be started and stopped even by the program being profiled. It’s a

one-line entry to profile "mod_perl" applications. It’s written in "c" and is probably the fastest profiler

available for Perl. The list of coolness just goes on. Enough of that, let’s see how to it works - just use

the familiar "-d" switch to plug it in and run the code.

$> perl -d:NYTProf wordmatch -f perl5db.pl

wordmatch report for perl5db.pl:

lines in file: 9427

words in file: 50243

words with special (non-word) characters: 20480

words with only special (non-word) characters: 7790

words with only consonants: 4801

words with only capital letters: 1316

words with only vowels: 1701

"NYTProf" will generate a report database into the file nytprof.out by default. Human readable reports

can be generated from here by using the supplied "nytprofhtml" (HTML output) and "nytprofcsv"

(CSV output) programs. We’ve used the Unix system "html2text" utility to convert the

nytprof/index.html file for convenience here.

$> html2text nytprof/index.html

Performance Profile Index

For wordmatch

Run on Fri Sep 26 13:46:39 2008

Reported on Fri Sep 26 13:47:23 2008

Top 15 Subroutines -- ordered by exclusive time

|Calls |P |F |Inclusive|Exclusive|Subroutine |

| | | |Time |Time | |

|251215|5 |1 |13.09263 |10.47692 |main:: |matches |

|260642|2 |1 |2.71199 |2.71199 |main:: |debug |

|1 |1 |1 |0.21404 |0.21404 |main:: |report |

|2 |2 |2 |0.00511 |0.00511 |XSLoader:: |load (xsub) |

|14 |14|7 |0.00304 |0.00298 |Exporter:: |import |

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

|3 |1 |1 |0.00265 |0.00254 |Exporter:: |as_heavy |

|10 |10|4 |0.00140 |0.00140 |vars:: |import |

|13 |13|1 |0.00129 |0.00109 |constant:: |import |

|1 |1 |1 |0.00360 |0.00096 |FileHandle:: |import |

|3 |3 |3 |0.00086 |0.00074 |warnings::register::|import |

|9 |3 |1 |0.00036 |0.00036 |strict:: |bits |

|13 |13|13|0.00032 |0.00029 |strict:: |import |

|2 |2 |2 |0.00020 |0.00020 |warnings:: |import |

|2 |1 |1 |0.00020 |0.00020 |Getopt::Long:: |ParseOptionSpec|

|7 |7 |6 |0.00043 |0.00020 |strict:: |unimport |

For more information see the full list of 189 subroutines.

The first part of the report already shows the critical information regarding which subroutines are using

the most time. The next gives some statistics about the source files profiled.

Source Code Files -- ordered by exclusive time then name

|Stmts |Exclusive|Avg. |Reports |Source File |

| |Time | | | |

|2699761|15.66654 |6e-06 |line . block . sub|wordmatch |

|35 |0.02187 |0.00062|line . block . sub|IO/Handle.pm |

|274 |0.01525 |0.00006|line . block . sub|Getopt/Long.pm |

|20 |0.00585 |0.00029|line . block . sub|Fcntl.pm |

|128 |0.00340 |0.00003|line . block . sub|Exporter/Heavy.pm |

|42 |0.00332 |0.00008|line . block . sub|IO/File.pm |

|261 |0.00308 |0.00001|line . block . sub|Exporter.pm |

|323 |0.00248 |8e-06 |line . block . sub|constant.pm |

|12 |0.00246 |0.00021|line . block . sub|File/Spec/Unix.pm |

|191 |0.00240 |0.00001|line . block . sub|vars.pm |

|77 |0.00201 |0.00003|line . block . sub|FileHandle.pm |

|12 |0.00198 |0.00016|line . block . sub|Carp.pm |

|14 |0.00175 |0.00013|line . block . sub|Symbol.pm |

|15 |0.00130 |0.00009|line . block . sub|IO.pm |

|22 |0.00120 |0.00005|line . block . sub|IO/Seekable.pm |

|198 |0.00085 |4e-06 |line . block . sub|warnings/register.pm|

|114 |0.00080 |7e-06 |line . block . sub|strict.pm |

|47 |0.00068 |0.00001|line . block . sub|warnings.pm |

|27 |0.00054 |0.00002|line . block . sub|overload.pm |

|9 |0.00047 |0.00005|line . block . sub|SelectSaver.pm |

|13 |0.00045 |0.00003|line . block . sub|File/Spec.pm |

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

|2701595|15.73869 | |Total |

|128647 |0.74946 | |Average |

| |0.00201 |0.00003|Median |

| |0.00121 |0.00003|Deviation |

Report produced by the NYTProf 2.03 Perl profiler, developed by Tim Bunce and

Adam Kaplan.

At this point, if you’re using the html report, you can click through the various links to bore down into

each subroutine and each line of code. Because we’re using the text reporting here, and there’s a whole

directory full of reports built for each source file, we’ll just display a part of the corresponding

wordmatch-line.html file, sufficient to give an idea of the sort of output you can expect from this cool

tool.

$> html2text nytprof/wordmatch-line.html

Performance Profile -- -block view-.-line view-.-sub view-

For wordmatch

Run on Fri Sep 26 13:46:39 2008

Reported on Fri Sep 26 13:47:22 2008

File wordmatch

Subroutines -- ordered by exclusive time

|Calls |P|F|Inclusive|Exclusive|Subroutine |

| | | |Time |Time | |

|251215|5|1|13.09263 |10.47692 |main::|matches|

|260642|2|1|2.71199 |2.71199 |main::|debug |

|1 |1|1|0.21404 |0.21404 |main::|report |

|0 |0|0|0 |0 |main::|BEGIN |

|Line|Stmts.|Exclusive|Avg. |Code |

| | |Time | | |

|1 | | | |#!/usr/bin/perl |

|2 | | | | |

| | | | |use strict; |

|3 |3 |0.00086 |0.00029|# spent 0.00003s making 1 calls to strict:: |

| | | | |import |

| | | | |use warnings; |

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

|4 |3 |0.01563 |0.00521|# spent 0.00012s making 1 calls to warnings:: |

| | | | |import |

|5 | | | | |

|6 | | | |=head1 NAME |

|7 | | | | |

|8 | | | |filewords - word analysis of input file |

<...snip...>

|62 |1 |0.00445 |0.00445|print report(%count); |

| | | | |# spent 0.21404s making 1 calls to main::report|

|63 | | | | |

| | | | |# spent 23.56955s (10.47692+2.61571) within |

| | | | |main::matches which was called 251215 times, |

| | | | |avg 0.00005s/call: # 50243 times |

| | | | |(2.12134+0.51939s) at line 57 of wordmatch, avg|

| | | | |0.00005s/call # 50243 times (2.17735+0.54550s) |

|64 | | | |at line 56 of wordmatch, avg 0.00005s/call # |

| | | | |50243 times (2.10992+0.51797s) at line 58 of |

| | | | |wordmatch, avg 0.00005s/call # 50243 times |

| | | | |(2.12696+0.51598s) at line 55 of wordmatch, avg|

| | | | |0.00005s/call # 50243 times (1.94134+0.51687s) |

| | | | |at line 54 of wordmatch, avg 0.00005s/call |

| | | | |sub matches { |

<...snip...>

|102 | | | | |

| | | | |# spent 2.71199s within main::debug which was |

| | | | |called 260642 times, avg 0.00001s/call: # |

| | | | |251215 times (2.61571+0s) by main::matches at |

|103 | | | |line 74 of wordmatch, avg 0.00001s/call # 9427 |

| | | | |times (0.09628+0s) at line 50 of wordmatch, avg|

| | | | |0.00001s/call |

| | | | |sub debug { |

|104 |260642|0.58496 |2e-06 |my $message = shift; |

|105 | | | | |

|106 |260642|1.09917 |4e-06 |if ($debug) { |

|107 | | | |print STDERR "DBG: $message\n"; |

|108 | | | |} |

|109 | | | |} |

|110 | | | | |

|111 |1 |0.01501 |0.01501|exit 0; |

|112 | | | | |

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

Oodles of very useful information in there - this seems to be the way forward.

See also "Devel::NYTProf::Apache" which hooks "Devel::NYTProf" into "mod_perl".

SORTING
Perl modules are not the only tools a performance analyst has at their disposal, system tools like "time"

should not be overlooked as the next example shows, where we take a quick look at sorting. Many

books, theses and articles, have been written about efficient sorting algorithms, and this is not the place

to repeat such work, there’s several good sorting modules which deserve taking a look at too:

"Sort::Maker", "Sort::Key" spring to mind. However, it’s still possible to make some observations on

certain Perl specific interpretations on issues relating to sorting data sets and give an example or two

with regard to how sorting large data volumes can effect performance. Firstly, an often overlooked

point when sorting large amounts of data, one can attempt to reduce the data set to be dealt with and in

many cases "grep()" can be quite useful as a simple filter:

@data = sort grep { /$filter/ } @incoming

A command such as this can vastly reduce the volume of material to actually sort through in the first

place, and should not be too lightly disregarded purely on the basis of its simplicity. The "KISS"

principle is too often overlooked - the next example uses the simple system "time" utility to

demonstrate. Let’s take a look at an actual example of sorting the contents of a large file, an apache

logfile would do. This one has over a quarter of a million lines, is 50M in size, and a snippet of it looks

like this:

logfile

188.209-65-87.adsl-dyn.isp.belgacom.be - - [08/Feb/2007:12:57:16 +0000] "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/4.0

188.209-65-87.adsl-dyn.isp.belgacom.be - - [08/Feb/2007:12:57:16 +0000] "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/4.0

151.56.71.198 - - [08/Feb/2007:12:57:41 +0000] "GET /suse-on-vaio.html HTTP/1.1" 200 2858 "http://www.linux-on-laptops.com/sony.html"

151.56.71.198 - - [08/Feb/2007:12:57:42 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net/suse-on-vaio.html"

151.56.71.198 - - [08/Feb/2007:12:57:43 +0000] "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/5.0 (Windows; U;

217.113.68.60 - - [08/Feb/2007:13:02:15 +0000] "GET / HTTP/1.1" 304 - "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows

217.113.68.60 - - [08/Feb/2007:13:02:16 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net/" "Mozilla/4.0

debora.to.isac.cnr.it - - [08/Feb/2007:13:03:58 +0000] "GET /suse-on-vaio.html HTTP/1.1" 200 2858 "http://www.linux-on-laptops.com/sony.html"

debora.to.isac.cnr.it - - [08/Feb/2007:13:03:58 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net/suse-on-vaio.html"

debora.to.isac.cnr.it - - [08/Feb/2007:13:03:58 +0000] "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/5.0 (compatible;

195.24.196.99 - - [08/Feb/2007:13:26:48 +0000] "GET / HTTP/1.0" 200 3309 "-" "Mozilla/5.0 (Windows; U; Windows

195.24.196.99 - - [08/Feb/2007:13:26:58 +0000] "GET /data/css HTTP/1.0" 404 206 "http://www.rfi.net/" "Mozilla/5.0

195.24.196.99 - - [08/Feb/2007:13:26:59 +0000] "GET /favicon.ico HTTP/1.0" 404 209 "-" "Mozilla/5.0 (Windows; U;

crawl1.cosmixcorp.com - - [08/Feb/2007:13:27:57 +0000] "GET /robots.txt HTTP/1.0" 200 179 "-" "voyager/1.0"

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

crawl1.cosmixcorp.com - - [08/Feb/2007:13:28:25 +0000] "GET /links.html HTTP/1.0" 200 3413 "-" "voyager/1.0"

fhm226.internetdsl.tpnet.pl - - [08/Feb/2007:13:37:32 +0000] "GET /suse-on-vaio.html HTTP/1.1" 200 2858 "http://www.linux-on-laptops.com/sony.html"

fhm226.internetdsl.tpnet.pl - - [08/Feb/2007:13:37:34 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net/suse-on-vaio.html"

80.247.140.134 - - [08/Feb/2007:13:57:35 +0000] "GET / HTTP/1.1" 200 3309 "-" "Mozilla/4.0 (compatible; MSIE 6.0;

80.247.140.134 - - [08/Feb/2007:13:57:37 +0000] "GET /data/css HTTP/1.1" 404 206 "http://www.rfi.net" "Mozilla/4.0

pop.compuscan.co.za - - [08/Feb/2007:14:10:43 +0000] "GET / HTTP/1.1" 200 3309 "-" "www.clamav.net"

livebot-207-46-98-57.search.live.com - - [08/Feb/2007:14:12:04 +0000] "GET /robots.txt HTTP/1.0" 200 179 "-" "msnbot/1.0

livebot-207-46-98-57.search.live.com - - [08/Feb/2007:14:12:04 +0000] "GET /html/oracle.html HTTP/1.0" 404 214 "-"

dslb-088-064-005-154.pools.arcor-ip.net - - [08/Feb/2007:14:12:15 +0000] "GET / HTTP/1.1" 200 3309 "-" "www.clamav.net"

196.201.92.41 - - [08/Feb/2007:14:15:01 +0000] "GET / HTTP/1.1" 200 3309 "-" "MOT-L7/08.B7.DCR MIB/2.2.1 Profile/MIDP-2.0

The specific task here is to sort the 286,525 lines of this file by Response Code, Query, Browser,

Referring Url, and lastly Date. One solution might be to use the following code, which iterates over the

files given on the command-line.

sort-apache-log

#!/usr/bin/perl -n

use strict;

use warnings;

my @data;

LINE:

while (<>) {

my $line = $_;

if (

$line =~ m/^(

([\w\.\-]+) # client

\s*-\s*-\s*\[

([^]]+) # date

\]\s*"\w+\s*

(\S+) # query

[^"]+"\s*

(\d+) # status

\s+\S+\s+"[^"]*"\s+"

([^"]*) # browser

"

.*

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

)$/x

) {

my @chunks = split(/ +/, $line);

my $ip = $1;

my $date = $2;

my $query = $3;

my $status = $4;

my $browser = $5;

push(@data, [$ip, $date, $query, $status, $browser, $line]);

}

}

my @sorted = sort {

$a->[3] cmp $b->[3]

||

$a->[2] cmp $b->[2]

||

$a->[0] cmp $b->[0]

||

$a->[1] cmp $b->[1]

||

$a->[4] cmp $b->[4]

} @data;

foreach my $data (@sorted) {

print $data->[5];

}

exit 0;

When running this program, redirect "STDOUT" so it is possible to check the output is correct from

following test runs and use the system "time" utility to check the overall runtime.

$> time ./sort-apache-log logfile > out-sort

real 0m17.371s

user 0m15.757s

sys 0m0.592s

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

The program took just over 17 wallclock seconds to run. Note the different values "time" outputs, it’s

important to always use the same one, and to not confuse what each one means.

Elapsed Real Time

The overall, or wallclock, time between when "time" was called, and when it terminates. The

elapsed time includes both user and system times, and time spent waiting for other users and

processes on the system. Inevitably, this is the most approximate of the measurements given.

User CPU Time

The user time is the amount of time the entire process spent on behalf of the user on this system

executing this program.

System CPU Time

The system time is the amount of time the kernel itself spent executing routines, or system calls,

on behalf of this process user.

Running this same process as a "Schwarzian Transform" it is possible to eliminate the input and output

arrays for storing all the data, and work on the input directly as it arrives too. Otherwise, the code

looks fairly similar:

sort-apache-log-schwarzian

#!/usr/bin/perl -n

use strict;

use warnings;

print

map $_->[0] =>

sort {

$a->[4] cmp $b->[4]

||

$a->[3] cmp $b->[3]

||

$a->[1] cmp $b->[1]

||

$a->[2] cmp $b->[2]

||

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

$a->[5] cmp $b->[5]

}

map [$_, m/^(

([\w\.\-]+) # client

\s*-\s*-\s*\[

([^]]+) # date

\]\s*"\w+\s*

(\S+) # query

[^"]+"\s*

(\d+) # status

\s+\S+\s+"[^"]*"\s+"

([^"]*) # browser

"

.*

)$/xo]

=> <>;

exit 0;

Run the new code against the same logfile, as above, to check the new time.

$> time ./sort-apache-log-schwarzian logfile > out-schwarz

real 0m9.664s

user 0m8.873s

sys 0m0.704s

The time has been cut in half, which is a respectable speed improvement by any standard. Naturally, it

is important to check the output is consistent with the first program run, this is where the Unix system

"cksum" utility comes in.

$> cksum out-sort out-schwarz

3044173777 52029194 out-sort

3044173777 52029194 out-schwarz

BTW. Beware too of pressure from managers who see you speed a program up by 50% of the runtime

once, only to get a request one month later to do the same again (true story) - you’ll just have to point

out you’re only human, even if you are a Perl programmer, and you’ll see what you can do...

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

LOGGING
An essential part of any good development process is appropriate error handling with appropriately

informative messages, however there exists a school of thought which suggests that log files should be

chatty, as if the chain of unbroken output somehow ensures the survival of the program. If speed is in

any way an issue, this approach is wrong.

A common sight is code which looks something like this:

logger->debug("A logging message via process-id: $$ INC: "

. Dumper(\%INC))

The problem is that this code will always be parsed and executed, even when the debug level set in the

logging configuration file is zero. Once the debug() subroutine has been entered, and the internal

$debug variable confirmed to be zero, for example, the message which has been sent in will be

discarded and the program will continue. In the example given though, the "\%INC" hash will already

have been dumped, and the message string constructed, all of which work could be bypassed by a

debug variable at the statement level, like this:

logger->debug("A logging message via process-id: $$ INC: "

. Dumper(\%INC)) if $DEBUG;

This effect can be demonstrated by setting up a test script with both forms, including a "debug()"

subroutine to emulate typical "logger()" functionality.

ifdebug

#!/usr/bin/perl

use strict;

use warnings;

use Benchmark;

use Data::Dumper;

my $DEBUG = 0;

sub debug {

my $msg = shift;

if ($DEBUG) {

print "DEBUG: $msg\n";

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

}

};

timethese(100000, {

’debug’ => sub {

debug("A $0 logging message via process-id: $$" . Dumper(\%INC))

},

’ifdebug’ => sub {

debug("A $0 logging message via process-id: $$" . Dumper(\%INC)) if $DEBUG

},

});

Let’s see what "Benchmark" makes of this:

$> perl ifdebug

Benchmark: timing 100000 iterations of constant, sub...

ifdebug: 0 wallclock secs (0.01 usr + 0.00 sys = 0.01 CPU) @ 10000000.00/s (n=100000)

(warning: too few iterations for a reliable count)

debug: 14 wallclock secs (13.18 usr + 0.04 sys = 13.22 CPU) @ 7564.30/s (n=100000)

In the one case the code, which does exactly the same thing as far as outputting any debugging

information is concerned, in other words nothing, takes 14 seconds, and in the other case the code takes

one hundredth of a second. Looks fairly definitive. Use a $DEBUG variable BEFORE you call the

subroutine, rather than relying on the smart functionality inside it.

Logging if DEBUG (constant)
It’s possible to take the previous idea a little further, by using a compile time "DEBUG" constant.

ifdebug-constant

#!/usr/bin/perl

use strict;

use warnings;

use Benchmark;

use Data::Dumper;

use constant

DEBUG => 0

;

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

sub debug {

if (DEBUG) {

my $msg = shift;

print "DEBUG: $msg\n";

}

};

timethese(100000, {

’debug’ => sub {

debug("A $0 logging message via process-id: $$" . Dumper(\%INC))

},

’constant’ => sub {

debug("A $0 logging message via process-id: $$" . Dumper(\%INC)) if DEBUG

},

});

Running this program produces the following output:

$> perl ifdebug-constant

Benchmark: timing 100000 iterations of constant, sub...

constant: 0 wallclock secs (-0.00 usr + 0.00 sys = -0.00 CPU) @ -7205759403792793600000.00/s (n=100000)

(warning: too few iterations for a reliable count)

sub: 14 wallclock secs (13.09 usr + 0.00 sys = 13.09 CPU) @ 7639.42/s (n=100000)

The "DEBUG" constant wipes the floor with even the $debug variable, clocking in at minus zero

seconds, and generates a "warning: too few iterations for a reliable count" message into the bargain.

To see what is really going on, and why we had too few iterations when we thought we asked for

100000, we can use the very useful "B::Deparse" to inspect the new code:

$> perl -MO=Deparse ifdebug-constant

use Benchmark;

use Data::Dumper;

use constant (’DEBUG’, 0);

sub debug {

use warnings;

use strict ’refs’;

0;

}

use warnings;

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

use strict ’refs’;

timethese(100000, {’sub’, sub {

debug "A $0 logging message via process-id: $$" . Dumper(\%INC);

}

, ’constant’, sub {

0;

}

});

ifdebug-constant syntax OK

The output shows the constant() subroutine we’re testing being replaced with the value of the

"DEBUG" constant: zero. The line to be tested has been completely optimized away, and you can’t get

much more efficient than that.

POSTSCRIPT
This document has provided several way to go about identifying hot-spots, and checking whether any

modifications have improved the runtime of the code.

As a final thought, remember that it’s not (at the time of writing) possible to produce a useful program

which will run in zero or negative time and this basic principle can be written as: useful programs are

slow by their very definition. It is of course possible to write a nearly instantaneous program, but it’s

not going to do very much, here’s a very efficient one:

$> perl -e 0

Optimizing that any further is a job for "p5p".

SEE ALSO
Further reading can be found using the modules and links below.

PERLDOCS
For example: "perldoc -f sort".

perlfaq4.

perlfork, perlfunc, perlretut, perlthrtut.

threads.

MAN PAGES

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

"time".

MODULES
It’s not possible to individually showcase all the performance related code for Perl here, naturally, but

here’s a short list of modules from the CPAN which deserve further attention.

Apache::DProf

Apache::SmallProf

Benchmark

DBIx::Profile

Devel::AutoProfiler

Devel::DProf

Devel::DProfLB

Devel::FastProf

Devel::GraphVizProf

Devel::NYTProf

Devel::NYTProf::Apache

Devel::Profiler

Devel::Profile

Devel::Profit

Devel::SmallProf

Devel::WxProf

POE::Devel::Profiler

Sort::Key

Sort::Maker

URLS
Very useful online reference material:

http://www.ccl4.org/~nick/P/Fast_Enough/

http://www-128.ibm.com/developerworks/library/l-optperl.html

http://perlbuzz.com/2007/11/bind-output-variables-in-dbi-for-speed-and-safety.html

http://en.wikipedia.org/wiki/Performance_analysis

http://apache.perl.org/docs/1.0/guide/performance.html

http://perlgolf.sourceforge.net/

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

http://www.sysarch.com/Perl/sort_paper.html

AUTHOR
Richard Foley <richard.foley@rfi.net> Copyright (c) 2008

PERLPERF(1) Perl Programmers Reference Guide PERLPERF(1)

perl v5.34.3 2023-11-28 PERLPERF(1)

