
NAME
perlpodspec - Plain Old Documentation: format specification and notes

DESCRIPTION
This document is detailed notes on the Pod markup language. Most people will only have to read

perlpod to know how to write in Pod, but this document may answer some incidental questions to do

with parsing and rendering Pod.

In this document, "must" / "must not", "should" / "should not", and "may" have their conventional (cf.

RFC 2119) meanings: "X must do Y" means that if X doesn’t do Y, it’s against this specification, and

should really be fixed. "X should do Y" means that it’s recommended, but X may fail to do Y, if

there’s a good reason. "X may do Y" is merely a note that X can do Y at will (although it is up to the

reader to detect any connotation of "and I think it would be nice if X did Y" versus "it wouldn’t really

bother me if X did Y").

Notably, when I say "the parser should do Y", the parser may fail to do Y, if the calling application

explicitly requests that the parser not do Y. I often phrase this as "the parser should, by default, do Y."

This doesn’t require the parser to provide an option for turning off whatever feature Y is (like

expanding tabs in verbatim paragraphs), although it implicates that such an option may be provided.

Pod Definitions
Pod is embedded in files, typically Perl source files, although you can write a file that’s nothing but

Pod.

A line in a file consists of zero or more non-newline characters, terminated by either a newline or the

end of the file.

A newline sequence is usually a platform-dependent concept, but Pod parsers should understand it to

mean any of CR (ASCII 13), LF (ASCII 10), or a CRLF (ASCII 13 followed immediately by ASCII

10), in addition to any other system-specific meaning. The first CR/CRLF/LF sequence in the file may

be used as the basis for identifying the newline sequence for parsing the rest of the file.

A blank line is a line consisting entirely of zero or more spaces (ASCII 32) or tabs (ASCII 9), and

terminated by a newline or end-of-file. A non-blank line is a line containing one or more characters

other than space or tab (and terminated by a newline or end-of-file).

(Note: Many older Pod parsers did not accept a line consisting of spaces/tabs and then a newline as a

blank line. The only lines they considered blank were lines consisting of no characters at all, terminated

by a newline.)

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

Whitespace is used in this document as a blanket term for spaces, tabs, and newline sequences. (By

itself, this term usually refers to literal whitespace. That is, sequences of whitespace characters in Pod

source, as opposed to "E<32>", which is a formatting code that denotes a whitespace character.)

A Pod parser is a module meant for parsing Pod (regardless of whether this involves calling callbacks

or building a parse tree or directly formatting it). A Pod formatter (or Pod translator) is a module or

program that converts Pod to some other format (HTML, plaintext, TeX, PostScript, RTF). A Pod
processor might be a formatter or translator, or might be a program that does something else with the

Pod (like counting words, scanning for index points, etc.).

Pod content is contained in Pod blocks. A Pod block starts with a line that matches "m/\A=[a-zA-Z]/",

and continues up to the next line that matches "m/\A=cut/" or up to the end of the file if there is no

"m/\A=cut/" line.

Note that a parser is not expected to distinguish between something that looks like pod, but is in a

quoted string, such as a here document.

Within a Pod block, there are Pod paragraphs. A Pod paragraph consists of non-blank lines of text,

separated by one or more blank lines.

For purposes of Pod processing, there are four types of paragraphs in a Pod block:

+o A command paragraph (also called a "directive"). The first line of this paragraph must match

"m/\A=[a-zA-Z]/". Command paragraphs are typically one line, as in:

=head1 NOTES

=item *

But they may span several (non-blank) lines:

=for comment

Hm, I wonder what it would look like if

you tried to write a BNF for Pod from this.

=head3 Dr. Strangelove, or: How I Learned to

Stop Worrying and Love the Bomb

Some command paragraphs allow formatting codes in their content (i.e., after the part that

matches "m/\A=[a-zA-Z]\S*\s*/"), as in:

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

=head1 Did You Remember to C<use strict;>?

In other words, the Pod processing handler for "head1" will apply the same processing to "Did

You Remember to C<use strict;>?" that it would to an ordinary paragraph (i.e., formatting codes

like "C<...>") are parsed and presumably formatted appropriately, and whitespace in the form of

literal spaces and/or tabs is not significant.

+o A verbatim paragraph. The first line of this paragraph must be a literal space or tab, and this

paragraph must not be inside a "=begin identifier", ... "=end identifier" sequence unless

"identifier" begins with a colon (":"). That is, if a paragraph starts with a literal space or tab, but

is inside a "=begin identifier", ... "=end identifier" region, then it’s a data paragraph, unless

"identifier" begins with a colon.

Whitespace is significant in verbatim paragraphs (although, in processing, tabs are probably

expanded).

+o An ordinary paragraph. A paragraph is an ordinary paragraph if its first line matches neither

"m/\A=[a-zA-Z]/" nor "m/\A[\t]/", and if it’s not inside a "=begin identifier", ... "=end identifier"

sequence unless "identifier" begins with a colon (":").

+o A data paragraph. This is a paragraph that is inside a "=begin identifier" ... "=end identifier"

sequence where "identifier" does not begin with a literal colon (":"). In some sense, a data

paragraph is not part of Pod at all (i.e., effectively it’s "out-of-band"), since it’s not subject to most

kinds of Pod parsing; but it is specified here, since Pod parsers need to be able to call an event for

it, or store it in some form in a parse tree, or at least just parse around it.

For example: consider the following paragraphs:

<- that’s the 0th column

=head1 Foo

Stuff

$foo->bar

=cut

Here, "=head1 Foo" and "=cut" are command paragraphs because the first line of each matches

"m/\A=[a-zA-Z]/". "[space][space]$foo->bar" is a verbatim paragraph, because its first line starts with

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

a literal whitespace character (and there’s no "=begin"..."=end" region around).

The "=begin identifier" ... "=end identifier" commands stop paragraphs that they surround from being

parsed as ordinary or verbatim paragraphs, if identifier doesn’t begin with a colon. This is discussed in

detail in the section "About Data Paragraphs and "=begin/=end" Regions".

Pod Commands
This section is intended to supplement and clarify the discussion in "Command Paragraph" in perlpod.

These are the currently recognized Pod commands:

"=head1", "=head2", "=head3", "=head4"

This command indicates that the text in the remainder of the paragraph is a heading. That text

may contain formatting codes. Examples:

=head1 Object Attributes

=head3 What B<Not> to Do!

"=pod"

This command indicates that this paragraph begins a Pod block. (If we are already in the middle

of a Pod block, this command has no effect at all.) If there is any text in this command paragraph

after "=pod", it must be ignored. Examples:

=pod

This is a plain Pod paragraph.

=pod This text is ignored.

"=cut"

This command indicates that this line is the end of this previously started Pod block. If there is

any text after "=cut" on the line, it must be ignored. Examples:

=cut

=cut The documentation ends here.

=cut

This is the first line of program text.

sub foo { # This is the second.

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

It is an error to try to start a Pod block with a "=cut" command. In that case, the Pod processor

must halt parsing of the input file, and must by default emit a warning.

"=over"

This command indicates that this is the start of a list/indent region. If there is any text following

the "=over", it must consist of only a nonzero positive numeral. The semantics of this numeral is

explained in the "About =over...=back Regions" section, further below. Formatting codes are not

expanded. Examples:

=over 3

=over 3.5

=over

"=item"

This command indicates that an item in a list begins here. Formatting codes are processed. The

semantics of the (optional) text in the remainder of this paragraph are explained in the "About

=over...=back Regions" section, further below. Examples:

=item

=item *

=item *

=item 14

=item 3.

=item C<< $thing->stuff(I<dodad>) >>

=item For transporting us beyond seas to be tried for pretended

offenses

=item He is at this time transporting large armies of foreign

mercenaries to complete the works of death, desolation and

tyranny, already begun with circumstances of cruelty and perfidy

scarcely paralleled in the most barbarous ages, and totally

unworthy the head of a civilized nation.

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

"=back"

This command indicates that this is the end of the region begun by the most recent "=over"

command. It permits no text after the "=back" command.

"=begin formatname"

"=begin formatname parameter"

This marks the following paragraphs (until the matching "=end formatname") as being for some

special kind of processing. Unless "formatname" begins with a colon, the contained non-

command paragraphs are data paragraphs. But if "formatname" does begin with a colon, then

non-command paragraphs are ordinary paragraphs or data paragraphs. This is discussed in detail

in the section "About Data Paragraphs and "=begin/=end" Regions".

It is advised that formatnames match the regexp "m/\A:?[-a-zA-Z0-9_]+\z/". Everything

following whitespace after the formatname is a parameter that may be used by the formatter when

dealing with this region. This parameter must not be repeated in the "=end" paragraph.

Implementors should anticipate future expansion in the semantics and syntax of the first parameter

to "=begin"/"=end"/"=for".

"=end formatname"

This marks the end of the region opened by the matching "=begin formatname" region. If

"formatname" is not the formatname of the most recent open "=begin formatname" region, then

this is an error, and must generate an error message. This is discussed in detail in the section

"About Data Paragraphs and "=begin/=end" Regions".

"=for formatname text..."

This is synonymous with:

=begin formatname

text...

=end formatname

That is, it creates a region consisting of a single paragraph; that paragraph is to be treated as a

normal paragraph if "formatname" begins with a ":"; if "formatname" doesn’t begin with a colon,

then "text..." will constitute a data paragraph. There is no way to use "=for formatname text..." to

express "text..." as a verbatim paragraph.

"=encoding encodingname"

This command, which should occur early in the document (at least before any non-US-ASCII

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

data!), declares that this document is encoded in the encoding encodingname, which must be an

encoding name that Encode recognizes. (Encode’s list of supported encodings, in

Encode::Supported, is useful here.) If the Pod parser cannot decode the declared encoding, it

should emit a warning and may abort parsing the document altogether.

A document having more than one "=encoding" line should be considered an error. Pod

processors may silently tolerate this if the not-first "=encoding" lines are just duplicates of the first

one (e.g., if there’s a "=encoding utf8" line, and later on another "=encoding utf8" line). But Pod

processors should complain if there are contradictory "=encoding" lines in the same document

(e.g., if there is a "=encoding utf8" early in the document and "=encoding big5" later). Pod

processors that recognize BOMs may also complain if they see an "=encoding" line that

contradicts the BOM (e.g., if a document with a UTF-16LE BOM has an "=encoding shiftjis"

line).

If a Pod processor sees any command other than the ones listed above (like "=head", or "=haed1", or

"=stuff", or "=cuttlefish", or "=w123"), that processor must by default treat this as an error. It must not

process the paragraph beginning with that command, must by default warn of this as an error, and may

abort the parse. A Pod parser may allow a way for particular applications to add to the above list of

known commands, and to stipulate, for each additional command, whether formatting codes should be

processed.

Future versions of this specification may add additional commands.

Pod Formatting Codes
(Note that in previous drafts of this document and of perlpod, formatting codes were referred to as

"interior sequences", and this term may still be found in the documentation for Pod parsers, and in error

messages from Pod processors.)

There are two syntaxes for formatting codes:

+o A formatting code starts with a capital letter (just US-ASCII [A-Z]) followed by a "<", any

number of characters, and ending with the first matching ">". Examples:

That’s what I<you> think!

What’s C<CORE::dump()> for?

X<C<chmod> and C<unlink()> Under Different Operating Systems>

+o A formatting code starts with a capital letter (just US-ASCII [A-Z]) followed by two or more

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

"<"’s, one or more whitespace characters, any number of characters, one or more whitespace

characters, and ending with the first matching sequence of two or more ">"’s, where the number

of ">"’s equals the number of "<"’s in the opening of this formatting code. Examples:

That’s what I<< you >> think!

C<<< open(X, ">>thing.dat") || die $! >>>

B<< $foo->bar(); >>

With this syntax, the whitespace character(s) after the "C<<<" and before the ">>>" (or whatever

letter) are not renderable. They do not signify whitespace, are merely part of the formatting codes

themselves. That is, these are all synonymous:

C<thing>

C<< thing >>

C<< thing >>

C<<< thing >>>

C<<<<

thing

>>>>

and so on.

Finally, the multiple-angle-bracket form does not alter the interpretation of nested formatting

codes, meaning that the following four example lines are identical in meaning:

B<example: C<$a E<lt>=E<gt> $b>>

B<example: C<< $a <=> $b >>>

B<example: C<< $a E<lt>=E<gt> $b >>>

B<<< example: C<< $a E<lt>=E<gt> $b >> >>>

In parsing Pod, a notably tricky part is the correct parsing of (potentially nested!) formatting codes.

Implementors should consult the code in the "parse_text" routine in Pod::Parser as an example of a

correct implementation.

"I<text>" -- italic text

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

See the brief discussion in "Formatting Codes" in perlpod.

"B<text>" -- bold text

See the brief discussion in "Formatting Codes" in perlpod.

"C<code>" -- code text

See the brief discussion in "Formatting Codes" in perlpod.

"F<filename>" -- style for filenames

See the brief discussion in "Formatting Codes" in perlpod.

"X<topic name>" -- an index entry

See the brief discussion in "Formatting Codes" in perlpod.

This code is unusual in that most formatters completely discard this code and its content. Other

formatters will render it with invisible codes that can be used in building an index of the current

document.

"Z<>" -- a null (zero-effect) formatting code

Discussed briefly in "Formatting Codes" in perlpod.

This code is unusual in that it should have no content. That is, a processor may complain if it sees

"Z<potatoes>". Whether or not it complains, the potatoes text should ignored.

"L<name>" -- a hyperlink

The complicated syntaxes of this code are discussed at length in "Formatting Codes" in perlpod,

and implementation details are discussed below, in "About L<...> Codes". Parsing the contents of

L<content> is tricky. Notably, the content has to be checked for whether it looks like a URL, or

whether it has to be split on literal "|" and/or "/" (in the right order!), and so on, before E<...>

codes are resolved.

"E<escape>" -- a character escape

See "Formatting Codes" in perlpod, and several points in "Notes on Implementing Pod

Processors".

"S<text>" -- text contains non-breaking spaces

This formatting code is syntactically simple, but semantically complex. What it means is that

each space in the printable content of this code signifies a non-breaking space.

Consider:

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

C<$x ? $y : $z>

S<C<$x ? $y : $z>>

Both signify the monospace (c[ode] style) text consisting of "$x", one space, "?", one space, ":",

one space, "$z". The difference is that in the latter, with the S code, those spaces are not "normal"

spaces, but instead are non-breaking spaces.

If a Pod processor sees any formatting code other than the ones listed above (as in "N<...>", or

"Q<...>", etc.), that processor must by default treat this as an error. A Pod parser may allow a way for

particular applications to add to the above list of known formatting codes; a Pod parser might even

allow a way to stipulate, for each additional command, whether it requires some form of special

processing, as L<...> does.

Future versions of this specification may add additional formatting codes.

Historical note: A few older Pod processors would not see a ">" as closing a "C<" code, if the ">" was

immediately preceded by a "-". This was so that this:

C<$foo->bar>

would parse as equivalent to this:

C<$foo-E<gt>bar>

instead of as equivalent to a "C" formatting code containing only "$foo-", and then a "bar>" outside the

"C" formatting code. This problem has since been solved by the addition of syntaxes like this:

C<< $foo->bar >>

Compliant parsers must not treat "->" as special.

Formatting codes absolutely cannot span paragraphs. If a code is opened in one paragraph, and no

closing code is found by the end of that paragraph, the Pod parser must close that formatting code, and

should complain (as in "Unterminated I code in the paragraph starting at line 123: ’Time objects are

not...’"). So these two paragraphs:

I<I told you not to do this!

Don’t make me say it again!>

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

...must not be parsed as two paragraphs in italics (with the I code starting in one paragraph and starting

in another.) Instead, the first paragraph should generate a warning, but that aside, the above code must

parse as if it were:

I<I told you not to do this!>

Don’t make me say it again!E<gt>

(In SGMLish jargon, all Pod commands are like block-level elements, whereas all Pod formatting

codes are like inline-level elements.)

Notes on Implementing Pod Processors
The following is a long section of miscellaneous requirements and suggestions to do with Pod

processing.

+o Pod formatters should tolerate lines in verbatim blocks that are of any length, even if that means

having to break them (possibly several times, for very long lines) to avoid text running off the side

of the page. Pod formatters may warn of such line-breaking. Such warnings are particularly

appropriate for lines are over 100 characters long, which are usually not intentional.

+o Pod parsers must recognize all of the three well-known newline formats: CR, LF, and CRLF. See

perlport.

+o Pod parsers should accept input lines that are of any length.

+o Since Perl recognizes a Unicode Byte Order Mark at the start of files as signaling that the file is

Unicode encoded as in UTF-16 (whether big-endian or little-endian) or UTF-8, Pod parsers should

do the same. Otherwise, the character encoding should be understood as being UTF-8 if the first

highbit byte sequence in the file seems valid as a UTF-8 sequence, or otherwise as CP-1252

(earlier versions of this specification used Latin-1 instead of CP-1252).

Future versions of this specification may specify how Pod can accept other encodings.

Presumably treatment of other encodings in Pod parsing would be as in XML parsing: whatever

the encoding declared by a particular Pod file, content is to be stored in memory as Unicode

characters.

+o The well known Unicode Byte Order Marks are as follows: if the file begins with the two literal

byte values 0xFE 0xFF, this is the BOM for big-endian UTF-16. If the file begins with the two

literal byte value 0xFF 0xFE, this is the BOM for little-endian UTF-16. On an ASCII platform, if

the file begins with the three literal byte values 0xEF 0xBB 0xBF, this is the BOM for UTF-8. A

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

mechanism portable to EBCDIC platforms is to:

my $utf8_bom = "\x{FEFF}";

utf8::encode($utf8_bom);

+o A naive, but often sufficient heuristic on ASCII platforms, for testing the first highbit byte-

sequence in a BOM-less file (whether in code or in Pod!), to see whether that sequence is valid as

UTF-8 (RFC 2279) is to check whether that the first byte in the sequence is in the range 0xC2 -

0xFD and whether the next byte is in the range 0x80 - 0xBF. If so, the parser may conclude that

this file is in UTF-8, and all highbit sequences in the file should be assumed to be UTF-8.

Otherwise the parser should treat the file as being in CP-1252. (A better check, and which works

on EBCDIC platforms as well, is to pass a copy of the sequence to utf8::decode() which performs

a full validity check on the sequence and returns TRUE if it is valid UTF-8, FALSE otherwise.

This function is always pre-loaded, is fast because it is written in C, and will only get called at

most once, so you don’t need to avoid it out of performance concerns.) In the unlikely

circumstance that the first highbit sequence in a truly non-UTF-8 file happens to appear to be

UTF-8, one can cater to our heuristic (as well as any more intelligent heuristic) by prefacing that

line with a comment line containing a highbit sequence that is clearly not valid as UTF-8. A line

consisting of simply "#", an e-acute, and any non-highbit byte, is sufficient to establish this file’s

encoding.

+o Pod processors must treat a "=for [label] [content...]" paragraph as meaning the same thing as a

"=begin [label]" paragraph, content, and an "=end [label]" paragraph. (The parser may conflate

these two constructs, or may leave them distinct, in the expectation that the formatter will

nevertheless treat them the same.)

+o When rendering Pod to a format that allows comments (i.e., to nearly any format other than

plaintext), a Pod formatter must insert comment text identifying its name and version number, and

the name and version numbers of any modules it might be using to process the Pod. Minimal

examples:

%% POD::Pod2PS v3.14159, using POD::Parser v1.92

<!-- Pod::HTML v3.14159, using POD::Parser v1.92 -->

{\doccomm generated by Pod::Tree::RTF 3.14159 using Pod::Tree 1.08}

.\" Pod::Man version 3.14159, using POD::Parser version 1.92

Formatters may also insert additional comments, including: the release date of the Pod formatter

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

program, the contact address for the author(s) of the formatter, the current time, the name of input

file, the formatting options in effect, version of Perl used, etc.

Formatters may also choose to note errors/warnings as comments, besides or instead of emitting

them otherwise (as in messages to STDERR, or "die"ing).

+o Pod parsers may emit warnings or error messages ("Unknown E code E<zslig>!") to STDERR

(whether through printing to STDERR, or "warn"ing/"carp"ing, or "die"ing/"croak"ing), but must

allow suppressing all such STDERR output, and instead allow an option for reporting

errors/warnings in some other way, whether by triggering a callback, or noting errors in some

attribute of the document object, or some similarly unobtrusive mechanism -- or even by

appending a "Pod Errors" section to the end of the parsed form of the document.

+o In cases of exceptionally aberrant documents, Pod parsers may abort the parse. Even then, using

"die"ing/"croak"ing is to be avoided; where possible, the parser library may simply close the input

file and add text like "*** Formatting Aborted ***" to the end of the (partial) in-memory

document.

+o In paragraphs where formatting codes (like E<...>, B<...>) are understood (i.e., not verbatim

paragraphs, but including ordinary paragraphs, and command paragraphs that produce renderable

text, like "=head1"), literal whitespace should generally be considered "insignificant", in that one

literal space has the same meaning as any (nonzero) number of literal spaces, literal newlines, and

literal tabs (as long as this produces no blank lines, since those would terminate the paragraph).

Pod parsers should compact literal whitespace in each processed paragraph, but may provide an

option for overriding this (since some processing tasks do not require it), or may follow additional

special rules (for example, specially treating period-space-space or period-newline sequences).

+o Pod parsers should not, by default, try to coerce apostrophe (’) and quote (") into smart quotes

(little 9’s, 66’s, 99’s, etc), nor try to turn backtick (‘) into anything else but a single backtick

character (distinct from an open quote character!), nor "--" into anything but two minus signs.

They must never do any of those things to text in C<...> formatting codes, and never ever to text

in verbatim paragraphs.

+o When rendering Pod to a format that has two kinds of hyphens (-), one that’s a non-breaking

hyphen, and another that’s a breakable hyphen (as in "object-oriented", which can be split across

lines as "object-", newline, "oriented"), formatters are encouraged to generally translate "-" to non-

breaking hyphen, but may apply heuristics to convert some of these to breaking hyphens.

+o Pod formatters should make reasonable efforts to keep words of Perl code from being broken

across lines. For example, "Foo::Bar" in some formatting systems is seen as eligible for being

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

broken across lines as "Foo::" newline "Bar" or even "Foo::-" newline "Bar". This should be

avoided where possible, either by disabling all line-breaking in mid-word, or by wrapping

particular words with internal punctuation in "don’t break this across lines" codes (which in some

formats may not be a single code, but might be a matter of inserting non-breaking zero-width

spaces between every pair of characters in a word.)

+o Pod parsers should, by default, expand tabs in verbatim paragraphs as they are processed, before

passing them to the formatter or other processor. Parsers may also allow an option for overriding

this.

+o Pod parsers should, by default, remove newlines from the end of ordinary and verbatim

paragraphs before passing them to the formatter. For example, while the paragraph you’re reading

now could be considered, in Pod source, to end with (and contain) the newline(s) that end it, it

should be processed as ending with (and containing) the period character that ends this sentence.

+o Pod parsers, when reporting errors, should make some effort to report an approximate line number

("Nested E<>’s in Paragraph #52, near line 633 of Thing/Foo.pm!"), instead of merely noting the

paragraph number ("Nested E<>’s in Paragraph #52 of Thing/Foo.pm!"). Where this is

problematic, the paragraph number should at least be accompanied by an excerpt from the

paragraph ("Nested E<>’s in Paragraph #52 of Thing/Foo.pm, which begins ’Read/write accessor

for the C<interest rate> attribute...’").

+o Pod parsers, when processing a series of verbatim paragraphs one after another, should consider

them to be one large verbatim paragraph that happens to contain blank lines. I.e., these two lines,

which have a blank line between them:

use Foo;

print Foo->VERSION

should be unified into one paragraph ("\tuse Foo;\n\n\tprint Foo->VERSION") before being

passed to the formatter or other processor. Parsers may also allow an option for overriding this.

While this might be too cumbersome to implement in event-based Pod parsers, it is

straightforward for parsers that return parse trees.

+o Pod formatters, where feasible, are advised to avoid splitting short verbatim paragraphs (under

twelve lines, say) across pages.

+o Pod parsers must treat a line with only spaces and/or tabs on it as a "blank line" such as separates

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

paragraphs. (Some older parsers recognized only two adjacent newlines as a "blank line" but

would not recognize a newline, a space, and a newline, as a blank line. This is noncompliant

behavior.)

+o Authors of Pod formatters/processors should make every effort to avoid writing their own Pod

parser. There are already several in CPAN, with a wide range of interface styles -- and one of

them, Pod::Simple, comes with modern versions of Perl.

+o Characters in Pod documents may be conveyed either as literals, or by number in E<n> codes, or

by an equivalent mnemonic, as in E<eacute> which is exactly equivalent to E<233>. The

numbers are the Latin1/Unicode values, even on EBCDIC platforms.

When referring to characters by using a E<n> numeric code, numbers in the range 32-126 refer to

those well known US-ASCII characters (also defined there by Unicode, with the same meaning),

which all Pod formatters must render faithfully. Characters whose E<> numbers are in the ranges

0-31 and 127-159 should not be used (neither as literals, nor as E<number> codes), except for the

literal byte-sequences for newline (ASCII 13, ASCII 13 10, or ASCII 10), and tab (ASCII 9).

Numbers in the range 160-255 refer to Latin-1 characters (also defined there by Unicode, with the

same meaning). Numbers above 255 should be understood to refer to Unicode characters.

+o Be warned that some formatters cannot reliably render characters outside 32-126; and many are

able to handle 32-126 and 160-255, but nothing above 255.

+o Besides the well-known "E<lt>" and "E<gt>" codes for less-than and greater-than, Pod parsers

must understand "E<sol>" for "/" (solidus, slash), and "E<verbar>" for "|" (vertical bar, pipe). Pod

parsers should also understand "E<lchevron>" and "E<rchevron>" as legacy codes for characters

171 and 187, i.e., "left-pointing double angle quotation mark" = "left pointing guillemet" and

"right-pointing double angle quotation mark" = "right pointing guillemet". (These look like little

"<<" and ">>", and they are now preferably expressed with the HTML/XHTML codes

"E<laquo>" and "E<raquo>".)

+o Pod parsers should understand all "E<html>" codes as defined in the entity declarations in the

most recent XHTML specification at "www.W3.org". Pod parsers must understand at least the

entities that define characters in the range 160-255 (Latin-1). Pod parsers, when faced with some

unknown "E<identifier>" code, shouldn’t simply replace it with nullstring (by default, at least),

but may pass it through as a string consisting of the literal characters E, less-than, identifier,

greater-than. Or Pod parsers may offer the alternative option of processing such unknown

"E<identifier>" codes by firing an event especially for such codes, or by adding a special node-

type to the in-memory document tree. Such "E<identifier>" may have special meaning to some

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

processors, or some processors may choose to add them to a special error report.

+o Pod parsers must also support the XHTML codes "E<quot>" for character 34 (doublequote, "),

"E<amp>" for character 38 (ampersand, &), and "E<apos>" for character 39 (apostrophe, ’).

+o Note that in all cases of "E<whatever>", whatever (whether an htmlname, or a number in any

base) must consist only of alphanumeric characters -- that is, whatever must match "m/\A\w+\z/".

So "E< 0 1 2 3 >" is invalid, because it contains spaces, which aren’t alphanumeric characters.

This presumably does not need special treatment by a Pod processor; " 0 1 2 3 " doesn’t look like

a number in any base, so it would presumably be looked up in the table of HTML-like names.

Since there isn’t (and cannot be) an HTML-like entity called " 0 1 2 3 ", this will be treated as an

error. However, Pod processors may treat "E< 0 1 2 3 >" or "E<e-acute>" as syntactically invalid,

potentially earning a different error message than the error message (or warning, or event)

generated by a merely unknown (but theoretically valid) htmlname, as in "E<qacute>" [sic].

However, Pod parsers are not required to make this distinction.

+o Note that E<number> must not be interpreted as simply "codepoint number in the current/native

character set". It always means only "the character represented by codepoint number in Unicode."

(This is identical to the semantics of &#number; in XML.)

This will likely require many formatters to have tables mapping from treatable Unicode

codepoints (such as the "\xE9" for the e-acute character) to the escape sequences or codes

necessary for conveying such sequences in the target output format. A converter to *roff would,

for example know that "\xE9" (whether conveyed literally, or via a E<...> sequence) is to be

conveyed as "e*’". Similarly, a program rendering Pod in a Mac OS application window, would

presumably need to know that "\xE9" maps to codepoint 142 in MacRoman encoding that (at time

of writing) is native for Mac OS. Such Unicode2whatever mappings are presumably already

widely available for common output formats. (Such mappings may be incomplete! Implementers

are not expected to bend over backwards in an attempt to render Cherokee syllabics, Etruscan

runes, Byzantine musical symbols, or any of the other weird things that Unicode can encode.)

And if a Pod document uses a character not found in such a mapping, the formatter should

consider it an unrenderable character.

+o If, surprisingly, the implementor of a Pod formatter can’t find a satisfactory pre-existing table

mapping from Unicode characters to escapes in the target format (e.g., a decent table of Unicode

characters to *roff escapes), it will be necessary to build such a table. If you are in this

circumstance, you should begin with the characters in the range 0x00A0 - 0x00FF, which is

mostly the heavily used accented characters. Then proceed (as patience permits and

fastidiousness compels) through the characters that the (X)HTML standards groups judged

important enough to merit mnemonics for. These are declared in the (X)HTML specifications at

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

the www.W3.org site. At time of writing (September 2001), the most recent entity declaration

files are:

http://www.w3.org/TR/xhtml1/DTD/xhtml-lat1.ent

http://www.w3.org/TR/xhtml1/DTD/xhtml-special.ent

http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent

Then you can progress through any remaining notable Unicode characters in the range

0x2000-0x204D (consult the character tables at www.unicode.org), and whatever else strikes your

fancy. For example, in xhtml-symbol.ent, there is the entry:

<!ENTITY infin "∞"> <!-- infinity, U+221E ISOtech -->

While the mapping "infin" to the character "\x{221E}" will (hopefully) have been already handled

by the Pod parser, the presence of the character in this file means that it’s reasonably important

enough to include in a formatter’s table that maps from notable Unicode characters to the codes

necessary for rendering them. So for a Unicode-to-*roff mapping, for example, this would merit

the entry:

"\x{221E}" => ’\(in’,

It is eagerly hoped that in the future, increasing numbers of formats (and formatters) will support

Unicode characters directly (as (X)HTML does with "∞", "∞", or "∞"),

reducing the need for idiosyncratic mappings of Unicode-to-my_escapes.

+o It is up to individual Pod formatter to display good judgement when confronted with an

unrenderable character (which is distinct from an unknown E<thing> sequence that the parser

couldn’t resolve to anything, renderable or not). It is good practice to map Latin letters with

diacritics (like "E<eacute>"/"E<233>") to the corresponding unaccented US-ASCII letters (like a

simple character 101, "e"), but clearly this is often not feasible, and an unrenderable character may

be represented as "?", or the like. In attempting a sane fallback (as from E<233> to "e"), Pod

formatters may use the %Latin1Code_to_fallback table in Pod::Escapes, or Text::Unidecode, if

available.

For example, this Pod text:

magic is enabled if you set C<$Currency> to ’E<euro>’.

may be rendered as: "magic is enabled if you set $Currency to ’?’" or as "magic is enabled if you

set $Currency to ’[euro]’", or as "magic is enabled if you set $Currency to ’[x20AC]’, etc.

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

A Pod formatter may also note, in a comment or warning, a list of what unrenderable characters

were encountered.

+o E<...> may freely appear in any formatting code (other than in another E<...> or in an Z<>). That

is, "X<The E<euro>1,000,000 Solution>" is valid, as is "L<The E<euro>1,000,000

Solution|Million::Euros>".

+o Some Pod formatters output to formats that implement non-breaking spaces as an individual

character (which I’ll call "NBSP"), and others output to formats that implement non-breaking

spaces just as spaces wrapped in a "don’t break this across lines" code. Note that at the level of

Pod, both sorts of codes can occur: Pod can contain a NBSP character (whether as a literal, or as a

"E<160>" or "E<nbsp>" code); and Pod can contain "S<foo I<bar> baz>" codes, where "mere

spaces" (character 32) in such codes are taken to represent non-breaking spaces. Pod parsers

should consider supporting the optional parsing of "S<foo I<bar> baz>" as if it were

"fooNBSPI<bar>NBSPbaz", and, going the other way, the optional parsing of groups of words

joined by NBSP’s as if each group were in a S<...> code, so that formatters may use the

representation that maps best to what the output format demands.

+o Some processors may find that the "S<...>" code is easiest to implement by replacing each space

in the parse tree under the content of the S, with an NBSP. But note: the replacement should

apply not to spaces in all text, but only to spaces in printable text. (This distinction may or may

not be evident in the particular tree/event model implemented by the Pod parser.) For example,

consider this unusual case:

S<L</Autoloaded Functions>>

This means that the space in the middle of the visible link text must not be broken across lines. In

other words, it’s the same as this:

L<"AutoloadedE<160>Functions"/Autoloaded Functions>

However, a misapplied space-to-NBSP replacement could (wrongly) produce something

equivalent to this:

L<"AutoloadedE<160>Functions"/AutoloadedE<160>Functions>

...which is almost definitely not going to work as a hyperlink (assuming this formatter outputs a

format supporting hypertext).

Formatters may choose to just not support the S format code, especially in cases where the output

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

format simply has no NBSP character/code and no code for "don’t break this stuff across lines".

+o Besides the NBSP character discussed above, implementors are reminded of the existence of the

other "special" character in Latin-1, the "soft hyphen" character, also known as "discretionary

hyphen", i.e. "E<173>" = "E<0xAD>" = "E<shy>"). This character expresses an optional

hyphenation point. That is, it normally renders as nothing, but may render as a "-" if a formatter

breaks the word at that point. Pod formatters should, as appropriate, do one of the following: 1)

render this with a code with the same meaning (e.g., "\-" in RTF), 2) pass it through in the

expectation that the formatter understands this character as such, or 3) delete it.

For example:

sigE<shy>action

manuE<shy>script

JarkE<shy>ko HieE<shy>taE<shy>nieE<shy>mi

These signal to a formatter that if it is to hyphenate "sigaction" or "manuscript", then it should be

done as "sig-[linebreak]action" or "manu-[linebreak]script" (and if it doesn’t hyphenate it, then the

"E<shy>" doesn’t show up at all). And if it is to hyphenate "Jarkko" and/or "Hietaniemi", it can

do so only at the points where there is a "E<shy>" code.

In practice, it is anticipated that this character will not be used often, but formatters should either

support it, or delete it.

+o If you think that you want to add a new command to Pod (like, say, a "=biblio" command),

consider whether you could get the same effect with a for or begin/end sequence: "=for biblio ..."

or "=begin biblio" ... "=end biblio". Pod processors that don’t understand "=for biblio", etc, will

simply ignore it, whereas they may complain loudly if they see "=biblio".

+o Throughout this document, "Pod" has been the preferred spelling for the name of the

documentation format. One may also use "POD" or "pod". For the documentation that is

(typically) in the Pod format, you may use "pod", or "Pod", or "POD". Understanding these

distinctions is useful; but obsessing over how to spell them, usually is not.

About L<...> Codes
As you can tell from a glance at perlpod, the L<...> code is the most complex of the Pod formatting

codes. The points below will hopefully clarify what it means and how processors should deal with it.

+o In parsing an L<...> code, Pod parsers must distinguish at least four attributes:

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

First:

The link-text. If there is none, this must be "undef". (E.g., in "L<Perl Functions|perlfunc>",

the link-text is "Perl Functions". In "L<Time::HiRes>" and even "L<|Time::HiRes>", there

is no link text. Note that link text may contain formatting.)

Second:

The possibly inferred link-text; i.e., if there was no real link text, then this is the text that

we’ll infer in its place. (E.g., for "L<Getopt::Std>", the inferred link text is "Getopt::Std".)

Third:

The name or URL, or "undef" if none. (E.g., in "L<Perl Functions|perlfunc>", the name (also

sometimes called the page) is "perlfunc". In "L</CAVEATS>", the name is "undef".)

Fourth:

The section (AKA "item" in older perlpods), or "undef" if none. E.g., in

"L<Getopt::Std/DESCRIPTION>", "DESCRIPTION" is the section. (Note that this is not

the same as a manpage section like the "5" in "man 5 crontab". "Section Foo" in the Pod

sense means the part of the text that’s introduced by the heading or item whose text is "Foo".)

Pod parsers may also note additional attributes including:

Fifth:

A flag for whether item 3 (if present) is a URL (like "http://lists.perl.org" is), in which case

there should be no section attribute; a Pod name (like "perldoc" and "Getopt::Std" are); or

possibly a man page name (like "crontab(5)" is).

Sixth:

The raw original L<...> content, before text is split on "|", "/", etc, and before E<...> codes

are expanded.

(The above were numbered only for concise reference below. It is not a requirement that these be

passed as an actual list or array.)

For example:

L<Foo::Bar>

=> undef, # link text

"Foo::Bar", # possibly inferred link text

"Foo::Bar", # name

undef, # section

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

’pod’, # what sort of link

"Foo::Bar" # original content

L<Perlport’s section on NL’s|perlport/Newlines>

=> "Perlport’s section on NL’s", # link text

"Perlport’s section on NL’s", # possibly inferred link text

"perlport", # name

"Newlines", # section

’pod’, # what sort of link

"Perlport’s section on NL’s|perlport/Newlines"

original content

L<perlport/Newlines>

=> undef, # link text

’"Newlines" in perlport’, # possibly inferred link text

"perlport", # name

"Newlines", # section

’pod’, # what sort of link

"perlport/Newlines" # original content

L<crontab(5)/"DESCRIPTION">

=> undef, # link text

’"DESCRIPTION" in crontab(5)’, # possibly inferred link text

"crontab(5)", # name

"DESCRIPTION", # section

’man’, # what sort of link

’crontab(5)/"DESCRIPTION"’ # original content

L</Object Attributes>

=> undef, # link text

’"Object Attributes"’, # possibly inferred link text

undef, # name

"Object Attributes", # section

’pod’, # what sort of link

"/Object Attributes" # original content

L<https://www.perl.org/>

=> undef, # link text

"https://www.perl.org/", # possibly inferred link text

"https://www.perl.org/", # name

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

undef, # section

’url’, # what sort of link

"https://www.perl.org/" # original content

L<Perl.org|https://www.perl.org/>

=> "Perl.org", # link text

"https://www.perl.org/", # possibly inferred link text

"https://www.perl.org/", # name

undef, # section

’url’, # what sort of link

"Perl.org|https://www.perl.org/" # original content

Note that you can distinguish URL-links from anything else by the fact that they match

"m/\A\w+:[^:\s]\S*\z/". So "L<http://www.perl.com>" is a URL, but "L<HTTP::Response>"

isn’t.

+o In case of L<...> codes with no "text|" part in them, older formatters have exhibited great variation

in actually displaying the link or cross reference. For example, L<crontab(5)> would render as

"the crontab(5) manpage", or "in the crontab(5) manpage" or just "crontab(5)".

Pod processors must now treat "text|"-less links as follows:

L<name> => L<name|name>

L</section> => L<"section"|/section>

L<name/section> => L<"section" in name|name/section>

+o Note that section names might contain markup. I.e., if a section starts with:

=head2 About the C<-M> Operator

or with:

=item About the C<-M> Operator

then a link to it would look like this:

L<somedoc/About the C<-M> Operator>

Formatters may choose to ignore the markup for purposes of resolving the link and use only the

renderable characters in the section name, as in:

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

<h1>About the <code>-M</code>

Operator</h1>

...

About the <code>-M</code>

Operator" in somedoc

+o Previous versions of perlpod distinguished "L<name/"section">" links from "L<name/item>"

links (and their targets). These have been merged syntactically and semantically in the current

specification, and section can refer either to a "=headn Heading Content" command or to a "=item

Item Content" command. This specification does not specify what behavior should be in the case

of a given document having several things all seeming to produce the same section identifier (e.g.,

in HTML, several things all producing the same anchorname in ...

elements). Where Pod processors can control this behavior, they should use the first such anchor.

That is, "L<Foo/Bar>" refers to the first "Bar" section in Foo.

But for some processors/formats this cannot be easily controlled; as with the HTML example, the

behavior of multiple ambiguous ... is most easily just left up to

browsers to decide.

+o In a "L<text|...>" code, text may contain formatting codes for formatting or for E<...> escapes, as

in:

L<B<ummE<234>stuff>|...>

For "L<...>" codes without a "name|" part, only "E<...>" and "Z<>" codes may occur. That is,

authors should not use ""L<B<Foo::Bar>>"".

Note, however, that formatting codes and Z<>’s can occur in any and all parts of an L<...> (i.e., in

name, section, text, and url).

Authors must not nest L<...> codes. For example, "L<The L<Foo::Bar> man page>" should be

treated as an error.

+o Note that Pod authors may use formatting codes inside the "text" part of "L<text|name>" (and so

on for L<text|/"sec">).

In other words, this is valid:

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

Go read L<the docs on C<$.>|perlvar/"$.">

Some output formats that do allow rendering "L<...>" codes as hypertext, might not allow the

link-text to be formatted; in that case, formatters will have to just ignore that formatting.

+o At time of writing, "L<name>" values are of two types: either the name of a Pod page like

"L<Foo::Bar>" (which might be a real Perl module or program in an @INC / PATH directory, or

a .pod file in those places); or the name of a Unix man page, like "L<crontab(5)>". In theory,

"L<chmod>" is ambiguous between a Pod page called "chmod", or the Unix man page "chmod"

(in whatever man-section). However, the presence of a string in parens, as in "crontab(5)", is

sufficient to signal that what is being discussed is not a Pod page, and so is presumably a Unix

man page. The distinction is of no importance to many Pod processors, but some processors that

render to hypertext formats may need to distinguish them in order to know how to render a given

"L<foo>" code.

+o Previous versions of perlpod allowed for a "L<section>" syntax (as in "L<Object Attributes>"),

which was not easily distinguishable from "L<name>" syntax and for "L<"section">" which was

only slightly less ambiguous. This syntax is no longer in the specification, and has been replaced

by the "L</section>" syntax (where the slash was formerly optional). Pod parsers should tolerate

the "L<"section">" syntax, for a while at least. The suggested heuristic for distinguishing

"L<section>" from "L<name>" is that if it contains any whitespace, it’s a section. Pod processors

should warn about this being deprecated syntax.

About =over...=back Regions
"=over"..."=back" regions are used for various kinds of list-like structures. (I use the term "region"

here simply as a collective term for everything from the "=over" to the matching "=back".)

+o The non-zero numeric indentlevel in "=over indentlevel" ... "=back" is used for giving the

formatter a clue as to how many "spaces" (ems, or roughly equivalent units) it should tab over,

although many formatters will have to convert this to an absolute measurement that may not

exactly match with the size of spaces (or M’s) in the document’s base font. Other formatters may

have to completely ignore the number. The lack of any explicit indentlevel parameter is

equivalent to an indentlevel value of 4. Pod processors may complain if indentlevel is present but

is not a positive number matching "m/\A(\d*\.)?\d+\z/".

+o Authors of Pod formatters are reminded that "=over" ... "=back" may map to several different

constructs in your output format. For example, in converting Pod to (X)HTML, it can map to any

of ..., ..., <dl>...</dl>, or <blockquote>...</blockquote>. Similarly, "=item"

can map to or <dt>.

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

+o Each "=over" ... "=back" region should be one of the following:

+o An "=over" ... "=back" region containing only "=item *" commands, each followed by some

number of ordinary/verbatim paragraphs, other nested "=over" ... "=back" regions, "=for..."

paragraphs, and "=begin"..."=end" regions.

(Pod processors must tolerate a bare "=item" as if it were "=item *".) Whether "*" is

rendered as a literal asterisk, an "o", or as some kind of real bullet character, is left up to the

Pod formatter, and may depend on the level of nesting.

+o An "=over" ... "=back" region containing only "m/\A=item\s+\d+\.?\s*\z/" paragraphs, each

one (or each group of them) followed by some number of ordinary/verbatim paragraphs,

other nested "=over" ... "=back" regions, "=for..." paragraphs, and/or "=begin"..."=end"

codes. Note that the numbers must start at 1 in each section, and must proceed in order and

without skipping numbers.

(Pod processors must tolerate lines like "=item 1" as if they were "=item 1.", with the period.)

+o An "=over" ... "=back" region containing only "=item [text]" commands, each one (or each

group of them) followed by some number of ordinary/verbatim paragraphs, other nested

"=over" ... "=back" regions, or "=for..." paragraphs, and "=begin"..."=end" regions.

The "=item [text]" paragraph should not match "m/\A=item\s+\d+\.?\s*\z/" or

"m/\A=item\s+*\s*\z/", nor should it match just "m/\A=item\s*\z/".

+o An "=over" ... "=back" region containing no "=item" paragraphs at all, and containing only

some number of ordinary/verbatim paragraphs, and possibly also some nested "=over" ...

"=back" regions, "=for..." paragraphs, and "=begin"..."=end" regions. Such an itemless

"=over" ... "=back" region in Pod is equivalent in meaning to a

"<blockquote>...</blockquote>" element in HTML.

Note that with all the above cases, you can determine which type of "=over" ... "=back" you have,

by examining the first (non-"=cut", non-"=pod") Pod paragraph after the "=over" command.

+o Pod formatters must tolerate arbitrarily large amounts of text in the "=item text..." paragraph. In

practice, most such paragraphs are short, as in:

=item For cutting off our trade with all parts of the world

But they may be arbitrarily long:

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

=item For transporting us beyond seas to be tried for pretended

offenses

=item He is at this time transporting large armies of foreign

mercenaries to complete the works of death, desolation and

tyranny, already begun with circumstances of cruelty and perfidy

scarcely paralleled in the most barbarous ages, and totally

unworthy the head of a civilized nation.

+o Pod processors should tolerate "=item *" / "=item number" commands with no accompanying

paragraph. The middle item is an example:

=over

=item 1

Pick up dry cleaning.

=item 2

=item 3

Stop by the store. Get Abba Zabas, Stoli, and cheap lawn chairs.

=back

+o No "=over" ... "=back" region can contain headings. Processors may treat such a heading as an

error.

+o Note that an "=over" ... "=back" region should have some content. That is, authors should not

have an empty region like this:

=over

=back

Pod processors seeing such a contentless "=over" ... "=back" region, may ignore it, or may report

it as an error.

+o Processors must tolerate an "=over" list that goes off the end of the document (i.e., which has no

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

matching "=back"), but they may warn about such a list.

+o Authors of Pod formatters should note that this construct:

=item Neque

=item Porro

=item Quisquam Est

Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci

velit, sed quia non numquam eius modi tempora incidunt ut

labore et dolore magnam aliquam quaerat voluptatem.

=item Ut Enim

is semantically ambiguous, in a way that makes formatting decisions a bit difficult. On the one

hand, it could be mention of an item "Neque", mention of another item "Porro", and mention of

another item "Quisquam Est", with just the last one requiring the explanatory paragraph "Qui

dolorem ipsum quia dolor..."; and then an item "Ut Enim". In that case, you’d want to format it

like so:

Neque

Porro

Quisquam Est

Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci

velit, sed quia non numquam eius modi tempora incidunt ut

labore et dolore magnam aliquam quaerat voluptatem.

Ut Enim

But it could equally well be a discussion of three (related or equivalent) items, "Neque", "Porro",

and "Quisquam Est", followed by a paragraph explaining them all, and then a new item "Ut

Enim". In that case, you’d probably want to format it like so:

Neque

Porro

Quisquam Est

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci

velit, sed quia non numquam eius modi tempora incidunt ut

labore et dolore magnam aliquam quaerat voluptatem.

Ut Enim

But (for the foreseeable future), Pod does not provide any way for Pod authors to distinguish

which grouping is meant by the above "=item"-cluster structure. So formatters should format it

like so:

Neque

Porro

Quisquam Est

Qui dolorem ipsum quia dolor sit amet, consectetur, adipisci

velit, sed quia non numquam eius modi tempora incidunt ut

labore et dolore magnam aliquam quaerat voluptatem.

Ut Enim

That is, there should be (at least roughly) equal spacing between items as between paragraphs

(although that spacing may well be less than the full height of a line of text). This leaves it to the

reader to use (con)textual cues to figure out whether the "Qui dolorem ipsum..." paragraph applies

to the "Quisquam Est" item or to all three items "Neque", "Porro", and "Quisquam Est". While

not an ideal situation, this is preferable to providing formatting cues that may be actually contrary

to the author’s intent.

About Data Paragraphs and "=begin/=end" Regions
Data paragraphs are typically used for inlining non-Pod data that is to be used (typically passed

through) when rendering the document to a specific format:

=begin rtf

\par{\pard\qr\sa4500{\i Printed\~\chdate\~\chtime}\par}

=end rtf

The exact same effect could, incidentally, be achieved with a single "=for" paragraph:

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

=for rtf \par{\pard\qr\sa4500{\i Printed\~\chdate\~\chtime}\par}

(Although that is not formally a data paragraph, it has the same meaning as one, and Pod parsers may

parse it as one.)

Another example of a data paragraph:

=begin html

I like PIE!

<hr>Especially pecan pie!

=end html

If these were ordinary paragraphs, the Pod parser would try to expand the "E" (in the first

paragraph) as a formatting code, just like "E<lt>" or "E<eacute>". But since this is in a "=begin

identifier"..."=end identifier" region and the identifier "html" doesn’t begin have a ":" prefix, the

contents of this region are stored as data paragraphs, instead of being processed as ordinary paragraphs

(or if they began with a spaces and/or tabs, as verbatim paragraphs).

As a further example: At time of writing, no "biblio" identifier is supported, but suppose some

processor were written to recognize it as a way of (say) denoting a bibliographic reference (necessarily

containing formatting codes in ordinary paragraphs). The fact that "biblio" paragraphs were meant for

ordinary processing would be indicated by prefacing each "biblio" identifier with a colon:

=begin :biblio

Wirth, Niklaus. 1976. I<Algorithms + Data Structures =

Programs.> Prentice-Hall, Englewood Cliffs, NJ.

=end :biblio

This would signal to the parser that paragraphs in this begin...end region are subject to normal handling

as ordinary/verbatim paragraphs (while still tagged as meant only for processors that understand the

"biblio" identifier). The same effect could be had with:

=for :biblio

Wirth, Niklaus. 1976. I<Algorithms + Data Structures =

Programs.> Prentice-Hall, Englewood Cliffs, NJ.

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

The ":" on these identifiers means simply "process this stuff normally, even though the result will be

for some special target". I suggest that parser APIs report "biblio" as the target identifier, but also

report that it had a ":" prefix. (And similarly, with the above "html", report "html" as the target

identifier, and note the lack of a ":" prefix.)

Note that a "=begin identifier"..."=end identifier" region where identifier begins with a colon, can

contain commands. For example:

=begin :biblio

Wirth’s classic is available in several editions, including:

=for comment

hm, check abebooks.com for how much used copies cost.

=over

=item

Wirth, Niklaus. 1975. I<Algorithmen und Datenstrukturen.>

Teubner, Stuttgart. [Yes, it’s in German.]

=item

Wirth, Niklaus. 1976. I<Algorithms + Data Structures =

Programs.> Prentice-Hall, Englewood Cliffs, NJ.

=back

=end :biblio

Note, however, a "=begin identifier"..."=end identifier" region where identifier does not begin with a

colon, should not directly contain "=head1" ... "=head4" commands, nor "=over", nor "=back", nor

"=item". For example, this may be considered invalid:

=begin somedata

This is a data paragraph.

=head1 Don’t do this!

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

This is a data paragraph too.

=end somedata

A Pod processor may signal that the above (specifically the "=head1" paragraph) is an error. Note,

however, that the following should not be treated as an error:

=begin somedata

This is a data paragraph.

=cut

Yup, this isn’t Pod anymore.

sub excl { (rand() > .5) ? "hoo!" : "hah!" }

=pod

This is a data paragraph too.

=end somedata

And this too is valid:

=begin someformat

This is a data paragraph.

And this is a data paragraph.

=begin someotherformat

This is a data paragraph too.

And this is a data paragraph too.

=begin :yetanotherformat

=head2 This is a command paragraph!

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

This is an ordinary paragraph!

And this is a verbatim paragraph!

=end :yetanotherformat

=end someotherformat

Another data paragraph!

=end someformat

The contents of the above "=begin :yetanotherformat" ... "=end :yetanotherformat" region aren’t data

paragraphs, because the immediately containing region’s identifier (":yetanotherformat") begins with a

colon. In practice, most regions that contain data paragraphs will contain only data paragraphs;

however, the above nesting is syntactically valid as Pod, even if it is rare. However, the handlers for

some formats, like "html", will accept only data paragraphs, not nested regions; and they may complain

if they see (targeted for them) nested regions, or commands, other than "=end", "=pod", and "=cut".

Also consider this valid structure:

=begin :biblio

Wirth’s classic is available in several editions, including:

=over

=item

Wirth, Niklaus. 1975. I<Algorithmen und Datenstrukturen.>

Teubner, Stuttgart. [Yes, it’s in German.]

=item

Wirth, Niklaus. 1976. I<Algorithms + Data Structures =

Programs.> Prentice-Hall, Englewood Cliffs, NJ.

=back

Buy buy buy!

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

=begin html

<hr>

=end html

Now now now!

=end :biblio

There, the "=begin html"..."=end html" region is nested inside the larger "=begin :biblio"..."=end

:biblio" region. Note that the content of the "=begin html"..."=end html" region is data paragraph(s),

because the immediately containing region’s identifier ("html") doesn’t begin with a colon.

Pod parsers, when processing a series of data paragraphs one after another (within a single region),

should consider them to be one large data paragraph that happens to contain blank lines. So the content

of the above "=begin html"..."=end html" may be stored as two data paragraphs (one consisting of

"\n" and another consisting of "<hr>\n"), but should be

stored as a single data paragraph (consisting of "<img

src=’wirth_spokesmodeling_book.png’>\n\n<hr>\n").

Pod processors should tolerate empty "=begin something"..."=end something" regions, empty "=begin

:something"..."=end :something" regions, and contentless "=for something" and "=for :something"

paragraphs. I.e., these should be tolerated:

=for html

=begin html

=end html

=begin :biblio

=end :biblio

Incidentally, note that there’s no easy way to express a data paragraph starting with something that

looks like a command. Consider:

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

=begin stuff

=shazbot

=end stuff

There, "=shazbot" will be parsed as a Pod command "shazbot", not as a data paragraph "=shazbot\n".

However, you can express a data paragraph consisting of "=shazbot\n" using this code:

=for stuff =shazbot

The situation where this is necessary, is presumably quite rare.

Note that =end commands must match the currently open =begin command. That is, they must

properly nest. For example, this is valid:

=begin outer

X

=begin inner

Y

=end inner

Z

=end outer

while this is invalid:

=begin outer

X

=begin inner

Y

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

=end outer

Z

=end inner

This latter is improper because when the "=end outer" command is seen, the currently open region has

the formatname "inner", not "outer". (It just happens that "outer" is the format name of a higher-up

region.) This is an error. Processors must by default report this as an error, and may halt processing

the document containing that error. A corollary of this is that regions cannot "overlap". That is, the

latter block above does not represent a region called "outer" which contains X and Y, overlapping a

region called "inner" which contains Y and Z. But because it is invalid (as all apparently overlapping

regions would be), it doesn’t represent that, or anything at all.

Similarly, this is invalid:

=begin thing

=end hting

This is an error because the region is opened by "thing", and the "=end" tries to close "hting" [sic].

This is also invalid:

=begin thing

=end

This is invalid because every "=end" command must have a formatname parameter.

SEE ALSO
perlpod, "PODs: Embedded Documentation" in perlsyn, podchecker

AUTHOR
Sean M. Burke

PERLPODSPEC(1) Perl Programmers Reference Guide PERLPODSPEC(1)

perl v5.34.3 2023-11-28 PERLPODSPEC(1)

