
NAME
perlrecharclass - Perl Regular Expression Character Classes

DESCRIPTION
The top level documentation about Perl regular expressions is found in perlre.

This manual page discusses the syntax and use of character classes in Perl regular expressions.

A character class is a way of denoting a set of characters in such a way that one character of the set is

matched. It’s important to remember that: matching a character class consumes exactly one character

in the source string. (The source string is the string the regular expression is matched against.)

There are three types of character classes in Perl regular expressions: the dot, backslash sequences, and

the form enclosed in square brackets. Keep in mind, though, that often the term "character class" is

used to mean just the bracketed form. Certainly, most Perl documentation does that.

The dot
The dot (or period), "." is probably the most used, and certainly the most well-known character class.

By default, a dot matches any character, except for the newline. That default can be changed to add

matching the newline by using the single line modifier: for the entire regular expression with the "/s"

modifier, or locally with "(?s)" (and even globally within the scope of "use re ’/s’"). (The "\N"

backslash sequence, described below, matches any character except newline without regard to the

single line modifier.)

Here are some examples:

"a" =~ /./ # Match

"." =~ /./ # Match

"" =~ /./ # No match (dot has to match a character)

"\n" =~ /./ # No match (dot does not match a newline)

"\n" =~ /./s # Match (global ’single line’ modifier)

"\n" =~ /(?s:.)/ # Match (local ’single line’ modifier)

"ab" =~ /^.$/ # No match (dot matches one character)

Backslash sequences
A backslash sequence is a sequence of characters, the first one of which is a backslash. Perl ascribes

special meaning to many such sequences, and some of these are character classes. That is, they match

a single character each, provided that the character belongs to the specific set of characters defined by

the sequence.

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

Here’s a list of the backslash sequences that are character classes. They are discussed in more detail

below. (For the backslash sequences that aren’t character classes, see perlrebackslash.)

\d Match a decimal digit character.

\D Match a non-decimal-digit character.

\w Match a "word" character.

\W Match a non-"word" character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\h Match a horizontal whitespace character.

\H Match a character that isn’t horizontal whitespace.

\v Match a vertical whitespace character.

\V Match a character that isn’t vertical whitespace.

\N Match a character that isn’t a newline.

\pP, \p{Prop} Match a character that has the given Unicode property.

\PP, \P{Prop} Match a character that doesn’t have the Unicode property

\N

"\N", available starting in v5.12, like the dot, matches any character that is not a newline. The

difference is that "\N" is not influenced by the single line regular expression modifier (see "The dot"

above). Note that the form "\N{...}" may mean something completely different. When the "{...}" is a

quantifier, it means to match a non-newline character that many times. For example, "\N{3}" means to

match 3 non-newlines; "\N{5,}" means to match 5 or more non-newlines. But if "{...}" is not a legal

quantifier, it is presumed to be a named character. See charnames for those. For example, none of

"\N{COLON}", "\N{4F}", and "\N{F4}" contain legal quantifiers, so Perl will try to find characters

whose names are respectively "COLON", "4F", and "F4".

Digits

"\d" matches a single character considered to be a decimal digit. If the "/a" regular expression modifier

is in effect, it matches [0-9]. Otherwise, it matches anything that is matched by "\p{Digit}", which

includes [0-9]. (An unlikely possible exception is that under locale matching rules, the current locale

might not have "[0-9]" matched by "\d", and/or might match other characters whose code point is less

than 256. The only such locale definitions that are legal would be to match "[0-9]" plus another set of

10 consecutive digit characters; anything else would be in violation of the C language standard, but

Perl doesn’t currently assume anything in regard to this.)

What this means is that unless the "/a" modifier is in effect "\d" not only matches the digits ’0’ - ’9’,

but also Arabic, Devanagari, and digits from other languages. This may cause some confusion, and

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

some security issues.

Some digits that "\d" matches look like some of the [0-9] ones, but have different values. For example,

BENGALI DIGIT FOUR (U+09EA) looks very much like an ASCII DIGIT EIGHT (U+0038), and

LEPCHA DIGIT SIX (U+1C46) looks very much like an ASCII DIGIT FIVE (U+0035). An

application that is expecting only the ASCII digits might be misled, or if the match is "\d+", the

matched string might contain a mixture of digits from different writing systems that look like they

signify a number different than they actually do. "num()" in Unicode::UCD can be used to safely

calculate the value, returning "undef" if the input string contains such a mixture. Otherwise, for

example, a displayed price might be deliberately different than it appears.

What "\p{Digit}" means (and hence "\d" except under the "/a" modifier) is

"\p{General_Category=Decimal_Number}", or synonymously, "\p{General_Category=Digit}".

Starting with Unicode version 4.1, this is the same set of characters matched by

"\p{Numeric_Type=Decimal}". But Unicode also has a different property with a similar name,

"\p{Numeric_Type=Digit}", which matches a completely different set of characters. These characters

are things such as "CIRCLED DIGIT ONE" or subscripts, or are from writing systems that lack all ten

digits.

The design intent is for "\d" to exactly match the set of characters that can safely be used with "normal"

big-endian positional decimal syntax, where, for example 123 means one ’hundred’, plus two ’tens’,

plus three ’ones’. This positional notation does not necessarily apply to characters that match the other

type of "digit", "\p{Numeric_Type=Digit}", and so "\d" doesn’t match them.

The Tamil digits (U+0BE6 - U+0BEF) can also legally be used in old-style Tamil numbers in which

they would appear no more than one in a row, separated by characters that mean "times 10", "times

100", etc. (See <https://www.unicode.org/notes/tn21>.)

Any character not matched by "\d" is matched by "\D".

Word characters

A "\w" matches a single alphanumeric character (an alphabetic character, or a decimal digit); or a

connecting punctuation character, such as an underscore ("_"); or a "mark" character (like some sort of

accent) that attaches to one of those. It does not match a whole word. To match a whole word, use

"\w+". This isn’t the same thing as matching an English word, but in the ASCII range it is the same as

a string of Perl-identifier characters.

If the "/a" modifier is in effect ...

"\w" matches the 63 characters [a-zA-Z0-9_].

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

otherwise ...

For code points above 255 ...

"\w" matches the same as "\p{Word}" matches in this range. That is, it matches Thai letters,

Greek letters, etc. This includes connector punctuation (like the underscore) which connect

two words together, or diacritics, such as a "COMBINING TILDE" and the modifier letters,

which are generally used to add auxiliary markings to letters.

For code points below 256 ...

if locale rules are in effect ...

"\w" matches the platform’s native underscore character plus whatever the locale

considers to be alphanumeric.

if, instead, Unicode rules are in effect ...

"\w" matches exactly what "\p{Word}" matches.

otherwise ...

"\w" matches [a-zA-Z0-9_].

Which rules apply are determined as described in "Which character set modifier is in effect?" in perlre.

There are a number of security issues with the full Unicode list of word characters. See

<http://unicode.org/reports/tr36>.

Also, for a somewhat finer-grained set of characters that are in programming language identifiers

beyond the ASCII range, you may wish to instead use the more customized "Unicode Properties",

"\p{ID_Start}", "\p{ID_Continue}", "\p{XID_Start}", and "\p{XID_Continue}". See

<http://unicode.org/reports/tr31>.

Any character not matched by "\w" is matched by "\W".

Whitespace

"\s" matches any single character considered whitespace.

If the "/a" modifier is in effect ...

In all Perl versions, "\s" matches the 5 characters [\t\n\f\r]; that is, the horizontal tab, the newline,

the form feed, the carriage return, and the space. Starting in Perl v5.18, it also matches the

vertical tab, "\cK". See note "[1]" below for a discussion of this.

otherwise ...

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

For code points above 255 ...

"\s" matches exactly the code points above 255 shown with an "s" column in the table below.

For code points below 256 ...

if locale rules are in effect ...

"\s" matches whatever the locale considers to be whitespace.

if, instead, Unicode rules are in effect ...

"\s" matches exactly the characters shown with an "s" column in the table below.

otherwise ...

"\s" matches [\t\n\f\r] and, starting in Perl v5.18, the vertical tab, "\cK". (See note "[1]"

below for a discussion of this.) Note that this list doesn’t include the non-breaking

space.

Which rules apply are determined as described in "Which character set modifier is in effect?" in perlre.

Any character not matched by "\s" is matched by "\S".

"\h" matches any character considered horizontal whitespace; this includes the platform’s space and tab

characters and several others listed in the table below. "\H" matches any character not considered

horizontal whitespace. They use the platform’s native character set, and do not consider any locale that

may otherwise be in use.

"\v" matches any character considered vertical whitespace; this includes the platform’s carriage return

and line feed characters (newline) plus several other characters, all listed in the table below. "\V"

matches any character not considered vertical whitespace. They use the platform’s native character set,

and do not consider any locale that may otherwise be in use.

"\R" matches anything that can be considered a newline under Unicode rules. It can match a multi-

character sequence. It cannot be used inside a bracketed character class; use "\v" instead (vertical

whitespace). It uses the platform’s native character set, and does not consider any locale that may

otherwise be in use. Details are discussed in perlrebackslash.

Note that unlike "\s" (and "\d" and "\w"), "\h" and "\v" always match the same characters, without

regard to other factors, such as the active locale or whether the source string is in UTF-8 format.

One might think that "\s" is equivalent to "[\h\v]". This is indeed true starting in Perl v5.18, but prior to

that, the sole difference was that the vertical tab ("\cK") was not matched by "\s".

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

The following table is a complete listing of characters matched by "\s", "\h" and "\v" as of Unicode

14.0.

The first column gives the Unicode code point of the character (in hex format), the second column

gives the (Unicode) name. The third column indicates by which class(es) the character is matched

(assuming no locale is in effect that changes the "\s" matching).

0x0009 CHARACTER TABULATION h s

0x000a LINE FEED (LF) vs

0x000b LINE TABULATION vs [1]

0x000c FORM FEED (FF) vs

0x000d CARRIAGE RETURN (CR) vs

0x0020 SPACE h s

0x0085 NEXT LINE (NEL) vs [2]

0x00a0 NO-BREAK SPACE h s [2]

0x1680 OGHAM SPACE MARK h s

0x2000 EN QUAD h s

0x2001 EM QUAD h s

0x2002 EN SPACE h s

0x2003 EM SPACE h s

0x2004 THREE-PER-EM SPACE h s

0x2005 FOUR-PER-EM SPACE h s

0x2006 SIX-PER-EM SPACE h s

0x2007 FIGURE SPACE h s

0x2008 PUNCTUATION SPACE h s

0x2009 THIN SPACE h s

0x200a HAIR SPACE h s

0x2028 LINE SEPARATOR vs

0x2029 PARAGRAPH SEPARATOR vs

0x202f NARROW NO-BREAK SPACE h s

0x205f MEDIUM MATHEMATICAL SPACE h s

0x3000 IDEOGRAPHIC SPACE h s

[1] Prior to Perl v5.18, "\s" did not match the vertical tab. "[^\S\cK]" (obscurely) matches what "\s"

traditionally did.

[2] NEXT LINE and NO-BREAK SPACE may or may not match "\s" depending on the rules in

effect. See the beginning of this section.

Unicode Properties

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

"\pP" and "\p{Prop}" are character classes to match characters that fit given Unicode properties. One

letter property names can be used in the "\pP" form, with the property name following the "\p",

otherwise, braces are required. When using braces, there is a single form, which is just the property

name enclosed in the braces, and a compound form which looks like "\p{name=value}", which means

to match if the property "name" for the character has that particular "value". For instance, a match for a

number can be written as "/\pN/" or as "/\p{Number}/", or as "/\p{Number=True}/". Lowercase letters

are matched by the property Lowercase_Letter which has the short form Ll. They need the braces, so

are written as "/\p{Ll}/" or "/\p{Lowercase_Letter}/", or "/\p{General_Category=Lowercase_Letter}/"

(the underscores are optional). "/\pLl/" is valid, but means something different. It matches a two

character string: a letter (Unicode property "\pL"), followed by a lowercase "l".

What a Unicode property matches is never subject to locale rules, and if locale rules are not otherwise

in effect, the use of a Unicode property will force the regular expression into using Unicode rules, if it

isn’t already.

Note that almost all properties are immune to case-insensitive matching. That is, adding a "/i" regular

expression modifier does not change what they match. But there are two sets that are affected. The

first set is "Uppercase_Letter", "Lowercase_Letter", and "Titlecase_Letter", all of which match

"Cased_Letter" under "/i" matching. The second set is "Uppercase", "Lowercase", and "Titlecase", all

of which match "Cased" under "/i" matching. (The difference between these sets is that some things,

such as Roman numerals, come in both upper and lower case, so they are "Cased", but aren’t

considered to be letters, so they aren’t "Cased_Letter"s. They’re actually "Letter_Number"s.) This set

also includes its subsets "PosixUpper" and "PosixLower", both of which under "/i" match

"PosixAlpha".

For more details on Unicode properties, see "Unicode Character Properties" in perlunicode; for a

complete list of possible properties, see "Properties accessible through \p{} and \P{}" in perluniprops,

which notes all forms that have "/i" differences. It is also possible to define your own properties. This

is discussed in "User-Defined Character Properties" in perlunicode.

Unicode properties are defined (surprise!) only on Unicode code points. Starting in v5.20, when

matching against "\p" and "\P", Perl treats non-Unicode code points (those above the legal Unicode

maximum of 0x10FFFF) as if they were typical unassigned Unicode code points.

Prior to v5.20, Perl raised a warning and made all matches fail on non-Unicode code points. This could

be somewhat surprising:

chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Fails on Perls < v5.20.

chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Also fails on Perls

< v5.20

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

Even though these two matches might be thought of as complements, until v5.20 they were so only on

Unicode code points.

Starting in perl v5.30, wildcards are allowed in Unicode property values. See "Wildcards in Property

Values" in perlunicode.

Examples

"a" =~ /\w/ # Match, "a" is a ’word’ character.

"7" =~ /\w/ # Match, "7" is a ’word’ character as well.

"a" =~ /\d/ # No match, "a" isn’t a digit.

"7" =~ /\d/ # Match, "7" is a digit.

" " =~ /\s/ # Match, a space is whitespace.

"a" =~ /\D/ # Match, "a" is a non-digit.

"7" =~ /\D/ # No match, "7" is not a non-digit.

" " =~ /\S/ # No match, a space is not non-whitespace.

" " =~ /\h/ # Match, space is horizontal whitespace.

" " =~ /\v/ # No match, space is not vertical whitespace.

"\r" =~ /\v/ # Match, a return is vertical whitespace.

"a" =~ /\pL/ # Match, "a" is a letter.

"a" =~ /\p{Lu}/ # No match, /\p{Lu}/ matches upper case letters.

"\x{0e0b}" =~ /\p{Thai}/ # Match, \x{0e0b} is the character

’THAI CHARACTER SO SO’, and that’s in

Thai Unicode class.

"a" =~ /\P{Lao}/ # Match, as "a" is not a Laotian character.

It is worth emphasizing that "\d", "\w", etc, match single characters, not complete numbers or words.

To match a number (that consists of digits), use "\d+"; to match a word, use "\w+". But be aware of the

security considerations in doing so, as mentioned above.

Bracketed Character Classes
The third form of character class you can use in Perl regular expressions is the bracketed character

class. In its simplest form, it lists the characters that may be matched, surrounded by square brackets,

like this: "[aeiou]". This matches one of "a", "e", "i", "o" or "u". Like the other character classes,

exactly one character is matched.* To match a longer string consisting of characters mentioned in the

character class, follow the character class with a quantifier. For instance, "[aeiou]+" matches one or

more lowercase English vowels.

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

Repeating a character in a character class has no effect; it’s considered to be in the set only once.

Examples:

"e" =~ /[aeiou]/ # Match, as "e" is listed in the class.

"p" =~ /[aeiou]/ # No match, "p" is not listed in the class.

"ae" =~ /^[aeiou]$/ # No match, a character class only matches

a single character.

"ae" =~ /^[aeiou]+$/ # Match, due to the quantifier.

* There are two exceptions to a bracketed character class matching a single character only. Each

requires special handling by Perl to make things work:

+o When the class is to match caselessly under "/i" matching rules, and a character that is explicitly

mentioned inside the class matches a multiple-character sequence caselessly under Unicode rules,

the class will also match that sequence. For example, Unicode says that the letter "LATIN

SMALL LETTER SHARP S" should match the sequence "ss" under "/i" rules. Thus,

’ss’ =~ /\A\N{LATIN SMALL LETTER SHARP S}\z/i # Matches

’ss’ =~ /\A[aeioust\N{LATIN SMALL LETTER SHARP S}]\z/i # Matches

For this to happen, the class must not be inverted (see "Negation") and the character must be

explicitly specified, and not be part of a multi-character range (not even as one of its endpoints).

("Character Ranges" will be explained shortly.) Therefore,

’ss’ =~ /\A[\0-\x{ff}]\z/ui # Doesn’t match

’ss’ =~ /\A[\0-\N{LATIN SMALL LETTER SHARP S}]\z/ui # No match

’ss’ =~ /\A[\xDF-\xDF]\z/ui # Matches on ASCII platforms, since

\xDF is LATIN SMALL LETTER SHARP S,

and the range is just a single

element

Note that it isn’t a good idea to specify these types of ranges anyway.

+o Some names known to "\N{...}" refer to a sequence of multiple characters, instead of the usual

single character. When one of these is included in the class, the entire sequence is matched. For

example,

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

"\N{TAMIL LETTER KA}\N{TAMIL VOWEL SIGN AU}"

=~ / ^ [\N{TAMIL SYLLABLE KAU}] $ /x;

matches, because "\N{TAMIL SYLLABLE KAU}" is a named sequence consisting of the two

characters matched against. Like the other instance where a bracketed class can match multiple

characters, and for similar reasons, the class must not be inverted, and the named sequence may

not appear in a range, even one where it is both endpoints. If these happen, it is a fatal error if the

character class is within the scope of "use re ’strict", or within an extended "(?[...])" class;

otherwise only the first code point is used (with a "regexp"-type warning raised).

Special Characters Inside a Bracketed Character Class

Most characters that are meta characters in regular expressions (that is, characters that carry a special

meaning like ".", "*", or "(") lose their special meaning and can be used inside a character class without

the need to escape them. For instance, "[()]" matches either an opening parenthesis, or a closing

parenthesis, and the parens inside the character class don’t group or capture. Be aware that, unless the

pattern is evaluated in single-quotish context, variable interpolation will take place before the bracketed

class is parsed:

$, = "\t| ";

$a =~ m’[$,]’; # single-quotish: matches ’$’ or ’,’

$a =~ q{[$,]}’ # same

$a =~ m/[$,]/; # double-quotish: Because we made an

assignment to $, above, this now

matches "\t", "|", or " "

Characters that may carry a special meaning inside a character class are: "\", "^", "-", "[" and "]", and

are discussed below. They can be escaped with a backslash, although this is sometimes not needed, in

which case the backslash may be omitted.

The sequence "\b" is special inside a bracketed character class. While outside the character class, "\b" is

an assertion indicating a point that does not have either two word characters or two non-word

characters on either side, inside a bracketed character class, "\b" matches a backspace character.

The sequences "\a", "\c", "\e", "\f", "\n", "\N{NAME}", "\N{U+hex char}", "\r", "\t", and "\x" are also

special and have the same meanings as they do outside a bracketed character class.

Also, a backslash followed by two or three octal digits is considered an octal number.

A "[" is not special inside a character class, unless it’s the start of a POSIX character class (see "POSIX

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

Character Classes" below). It normally does not need escaping.

A "]" is normally either the end of a POSIX character class (see "POSIX Character Classes" below), or

it signals the end of the bracketed character class. If you want to include a "]" in the set of characters,

you must generally escape it.

However, if the "]" is the first (or the second if the first character is a caret) character of a bracketed

character class, it does not denote the end of the class (as you cannot have an empty class) and is

considered part of the set of characters that can be matched without escaping.

Examples:

"+" =~ /[+?*]/ # Match, "+" in a character class is not special.

"\cH" =~ /[\b]/ # Match, \b inside in a character class

is equivalent to a backspace.

"]" =~ /[][]/ # Match, as the character class contains

both [and].

"[]" =~ /[[]]/ # Match, the pattern contains a character class

containing just [, and the character class is

followed by a].

Bracketed Character Classes and the "/xx" pattern modifier

Normally SPACE and TAB characters have no special meaning inside a bracketed character class; they

are just added to the list of characters matched by the class. But if the "/xx" pattern modifier is in

effect, they are generally ignored and can be added to improve readability. They can’t be added in the

middle of a single construct:

/ [\x{10 FFFF}] /xx # WRONG!

The SPACE in the middle of the hex constant is illegal.

To specify a literal SPACE character, you can escape it with a backslash, like:

/[a e i o u \]/xx

This matches the English vowels plus the SPACE character.

For clarity, you should already have been using "\t" to specify a literal tab, and "\t" is unaffected by

"/xx".

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

Character Ranges

It is not uncommon to want to match a range of characters. Luckily, instead of listing all characters in

the range, one may use the hyphen ("-"). If inside a bracketed character class you have two characters

separated by a hyphen, it’s treated as if all characters between the two were in the class. For instance,

"[0-9]" matches any ASCII digit, and "[a-m]" matches any lowercase letter from the first half of the

ASCII alphabet.

Note that the two characters on either side of the hyphen are not necessarily both letters or both digits.

Any character is possible, although not advisable. "[’-?]" contains a range of characters, but most

people will not know which characters that means. Furthermore, such ranges may lead to portability

problems if the code has to run on a platform that uses a different character set, such as EBCDIC.

If a hyphen in a character class cannot syntactically be part of a range, for instance because it is the first

or the last character of the character class, or if it immediately follows a range, the hyphen isn’t special,

and so is considered a character to be matched literally. If you want a hyphen in your set of characters

to be matched and its position in the class is such that it could be considered part of a range, you must

escape that hyphen with a backslash.

Examples:

[a-z] # Matches a character that is a lower case ASCII letter.

[a-fz] # Matches any letter between ’a’ and ’f’ (inclusive) or

the letter ’z’.

[-z] # Matches either a hyphen (’-’) or the letter ’z’.

[a-f-m] # Matches any letter between ’a’ and ’f’ (inclusive), the

hyphen (’-’), or the letter ’m’.

[’-?] # Matches any of the characters ’()*+,-./0123456789:;<=>?

(But not on an EBCDIC platform).

[\N{APOSTROPHE}-\N{QUESTION MARK}]

Matches any of the characters ’()*+,-./0123456789:;<=>?

even on an EBCDIC platform.

[\N{U+27}-\N{U+3F}] # Same. (U+27 is "’", and U+3F is "?")

As the final two examples above show, you can achieve portability to non-ASCII platforms by using

the "\N{...}" form for the range endpoints. These indicate that the specified range is to be interpreted

using Unicode values, so "[\N{U+27}-\N{U+3F}]" means to match "\N{U+27}", "\N{U+28}",

"\N{U+29}", ..., "\N{U+3D}", "\N{U+3E}", and "\N{U+3F}", whatever the native code point versions

for those are. These are called "Unicode" ranges. If either end is of the "\N{...}" form, the range is

considered Unicode. A "regexp" warning is raised under "use re ’strict’" if the other endpoint is

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

specified non-portably:

[\N{U+00}-\x09] # Warning under re ’strict’; \x09 is non-portable

[\N{U+00}-\t] # No warning;

Both of the above match the characters "\N{U+00}" "\N{U+01}", ... "\N{U+08}", "\N{U+09}", but

the "\x09" looks like it could be a mistake so the warning is raised (under "re ’strict’") for it.

Perl also guarantees that the ranges "A-Z", "a-z", "0-9", and any subranges of these match what an

English-only speaker would expect them to match on any platform. That is, "[A-Z]" matches the 26

ASCII uppercase letters; "[a-z]" matches the 26 lowercase letters; and "[0-9]" matches the 10 digits.

Subranges, like "[h-k]", match correspondingly, in this case just the four letters "h", "i", "j", and "k".

This is the natural behavior on ASCII platforms where the code points (ordinal values) for "h" through

"k" are consecutive integers (0x68 through 0x6B). But special handling to achieve this may be needed

on platforms with a non-ASCII native character set. For example, on EBCDIC platforms, the code

point for "h" is 0x88, "i" is 0x89, "j" is 0x91, and "k" is 0x92. Perl specially treats "[h-k]" to exclude

the seven code points in the gap: 0x8A through 0x90. This special handling is only invoked when the

range is a subrange of one of the ASCII uppercase, lowercase, and digit ranges, AND each end of the

range is expressed either as a literal, like "A", or as a named character ("\N{...}", including the

"\N{U+..." form).

EBCDIC Examples:

[i-j] # Matches either "i" or "j"

[i-\N{LATIN SMALL LETTER J}] # Same

[i-\N{U+6A}] # Same

[\N{U+69}-\N{U+6A}] # Same

[\x{89}-\x{91}] # Matches 0x89 ("i"), 0x8A .. 0x90, 0x91 ("j")

[i-\x{91}] # Same

[\x{89}-j] # Same

[i-J] # Matches, 0x89 ("i") .. 0xC1 ("J"); special

handling doesn’t apply because range is mixed

case

Negation

It is also possible to instead list the characters you do not want to match. You can do so by using a caret

("^") as the first character in the character class. For instance, "[^a-z]" matches any character that is not

a lowercase ASCII letter, which therefore includes more than a million Unicode code points. The class

is said to be "negated" or "inverted".

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

This syntax make the caret a special character inside a bracketed character class, but only if it is the

first character of the class. So if you want the caret as one of the characters to match, either escape the

caret or else don’t list it first.

In inverted bracketed character classes, Perl ignores the Unicode rules that normally say that named

sequence, and certain characters should match a sequence of multiple characters use under caseless "/i"

matching. Following those rules could lead to highly confusing situations:

"ss" =~ /^[^\xDF]+$/ui; # Matches!

This should match any sequences of characters that aren’t "\xDF" nor what "\xDF" matches under "/i".

"s" isn’t "\xDF", but Unicode says that "ss" is what "\xDF" matches under "/i". So which one "wins"?

Do you fail the match because the string has "ss" or accept it because it has an "s" followed by another

"s"? Perl has chosen the latter. (See note in "Bracketed Character Classes" above.)

Examples:

"e" =~ /[^aeiou]/ # No match, the ’e’ is listed.

"x" =~ /[^aeiou]/ # Match, as ’x’ isn’t a lowercase vowel.

"^" =~ /[^^]/ # No match, matches anything that isn’t a caret.

"^" =~ /[x^]/ # Match, caret is not special here.

Backslash Sequences

You can put any backslash sequence character class (with the exception of "\N" and "\R") inside a

bracketed character class, and it will act just as if you had put all characters matched by the backslash

sequence inside the character class. For instance, "[a-f\d]" matches any decimal digit, or any of the

lowercase letters between ’a’ and ’f’ inclusive.

"\N" within a bracketed character class must be of the forms "\N{name}" or "\N{U+hex char}", and

NOT be the form that matches non-newlines, for the same reason that a dot "." inside a bracketed

character class loses its special meaning: it matches nearly anything, which generally isn’t what you

want to happen.

Examples:

/[\p{Thai}\d]/ # Matches a character that is either a Thai

character, or a digit.

/[^\p{Arabic}()]/ # Matches a character that is neither an Arabic

character, nor a parenthesis.

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

Backslash sequence character classes cannot form one of the endpoints of a range. Thus, you can’t say:

/[\p{Thai}-\d]/ # Wrong!

POSIX Character Classes

POSIX character classes have the form "[:class:]", where class is the name, and the "[:" and ":]"

delimiters. POSIX character classes only appear inside bracketed character classes, and are a

convenient and descriptive way of listing a group of characters.

Be careful about the syntax,

Correct:

$string =~ /[[:alpha:]]/

Incorrect (will warn):

$string =~ /[:alpha:]/

The latter pattern would be a character class consisting of a colon, and the letters "a", "l", "p" and "h".

POSIX character classes can be part of a larger bracketed character class. For example,

[01[:alpha:]%]

is valid and matches ’0’, ’1’, any alphabetic character, and the percent sign.

Perl recognizes the following POSIX character classes:

alpha Any alphabetical character (e.g., [A-Za-z]).

alnum Any alphanumeric character (e.g., [A-Za-z0-9]).

ascii Any character in the ASCII character set.

blank A GNU extension, equal to a space or a horizontal tab ("\t").

cntrl Any control character. See Note [2] below.

digit Any decimal digit (e.g., [0-9]), equivalent to "\d".

graph Any printable character, excluding a space. See Note [3] below.

lower Any lowercase character (e.g., [a-z]).

print Any printable character, including a space. See Note [4] below.

punct Any graphical character excluding "word" characters. Note [5].

space Any whitespace character. "\s" including the vertical tab

("\cK").

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

upper Any uppercase character (e.g., [A-Z]).

word A Perl extension (e.g., [A-Za-z0-9_]), equivalent to "\w".

xdigit Any hexadecimal digit (e.g., [0-9a-fA-F]). Note [7].

Like the Unicode properties, most of the POSIX properties match the same regardless of whether case-

insensitive ("/i") matching is in effect or not. The two exceptions are "[:upper:]" and "[:lower:]".

Under "/i", they each match the union of "[:upper:]" and "[:lower:]".

Most POSIX character classes have two Unicode-style "\p" property counterparts. (They are not

official Unicode properties, but Perl extensions derived from official Unicode properties.) The table

below shows the relation between POSIX character classes and these counterparts.

One counterpart, in the column labelled "ASCII-range Unicode" in the table, matches only characters

in the ASCII character set.

The other counterpart, in the column labelled "Full-range Unicode", matches any appropriate characters

in the full Unicode character set. For example, "\p{Alpha}" matches not just the ASCII alphabetic

characters, but any character in the entire Unicode character set considered alphabetic. An entry in the

column labelled "backslash sequence" is a (short) equivalent.

[[:...:]] ASCII-range Full-range backslash Note

Unicode Unicode sequence

alpha \p{PosixAlpha} \p{XPosixAlpha}

alnum \p{PosixAlnum} \p{XPosixAlnum}

ascii \p{ASCII}

blank \p{PosixBlank} \p{XPosixBlank} \h [1]

or \p{HorizSpace} [1]

cntrl \p{PosixCntrl} \p{XPosixCntrl} [2]

digit \p{PosixDigit} \p{XPosixDigit} \d

graph \p{PosixGraph} \p{XPosixGraph} [3]

lower \p{PosixLower} \p{XPosixLower}

print \p{PosixPrint} \p{XPosixPrint} [4]

punct \p{PosixPunct} \p{XPosixPunct} [5]

\p{PerlSpace} \p{XPerlSpace} \s [6]

space \p{PosixSpace} \p{XPosixSpace} [6]

upper \p{PosixUpper} \p{XPosixUpper}

word \p{PosixWord} \p{XPosixWord} \w

xdigit \p{PosixXDigit} \p{XPosixXDigit} [7]

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

[1] "\p{Blank}" and "\p{HorizSpace}" are synonyms.

[2] Control characters don’t produce output as such, but instead usually control the terminal

somehow: for example, newline and backspace are control characters. On ASCII platforms, in the

ASCII range, characters whose code points are between 0 and 31 inclusive, plus 127 ("DEL") are

control characters; on EBCDIC platforms, their counterparts are control characters.

[3] Any character that is graphical, that is, visible. This class consists of all alphanumeric characters

and all punctuation characters.

[4] All printable characters, which is the set of all graphical characters plus those whitespace

characters which are not also controls.

[5] "\p{PosixPunct}" and "[[:punct:]]" in the ASCII range match all non-controls, non-alphanumeric,

non-space characters: "[-!"#$%&’()*+,./:;<=>?@[\\\]^_‘{|}~]" (although if a locale is in effect, it

could alter the behavior of "[[:punct:]]").

The similarly named property, "\p{Punct}", matches a somewhat different set in the ASCII range,

namely "[-!"#%&’()*,./:;?@[\\\]_{}]". That is, it is missing the nine characters "[$+<=>^‘|~]".

This is because Unicode splits what POSIX considers to be punctuation into two categories,

Punctuation and Symbols.

"\p{XPosixPunct}" and (under Unicode rules) "[[:punct:]]", match what "\p{PosixPunct}"

matches in the ASCII range, plus what "\p{Punct}" matches. This is different than strictly

matching according to "\p{Punct}". Another way to say it is that if Unicode rules are in effect,

"[[:punct:]]" matches all characters that Unicode considers punctuation, plus all ASCII-range

characters that Unicode considers symbols.

[6] "\p{XPerlSpace}" and "\p{Space}" match identically starting with Perl v5.18. In earlier versions,

these differ only in that in non-locale matching, "\p{XPerlSpace}" did not match the vertical tab,

"\cK". Same for the two ASCII-only range forms.

[7] Unlike "[[:digit:]]" which matches digits in many writing systems, such as Thai and Devanagari,

there are currently only two sets of hexadecimal digits, and it is unlikely that more will be added.

This is because you not only need the ten digits, but also the six "[A-F]" (and "[a-f]") to

correspond. That means only the Latin script is suitable for these, and Unicode has only two sets

of these, the familiar ASCII set, and the fullwidth forms starting at U+FF10 (FULLWIDTH

DIGIT ZERO).

There are various other synonyms that can be used besides the names listed in the table. For example,

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

"\p{XPosixAlpha}" can be written as "\p{Alpha}". All are listed in "Properties accessible through \p{}

and \P{}" in perluniprops.

Both the "\p" counterparts always assume Unicode rules are in effect. On ASCII platforms, this means

they assume that the code points from 128 to 255 are Latin-1, and that means that using them under

locale rules is unwise unless the locale is guaranteed to be Latin-1 or UTF-8. In contrast, the POSIX

character classes are useful under locale rules. They are affected by the actual rules in effect, as

follows:

If the "/a" modifier, is in effect ...

Each of the POSIX classes matches exactly the same as their ASCII-range counterparts.

otherwise ...

For code points above 255 ...

The POSIX class matches the same as its Full-range counterpart.

For code points below 256 ...

if locale rules are in effect ...

The POSIX class matches according to the locale, except:

"word"

also includes the platform’s native underscore character, no matter what the locale

is.

"ascii"

on platforms that don’t have the POSIX "ascii" extension, this matches just the

platform’s native ASCII-range characters.

"blank"

on platforms that don’t have the POSIX "blank" extension, this matches just the

platform’s native tab and space characters.

if, instead, Unicode rules are in effect ...

The POSIX class matches the same as the Full-range counterpart.

otherwise ...

The POSIX class matches the same as the ASCII range counterpart.

Which rules apply are determined as described in "Which character set modifier is in effect?" in perlre.

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

Negation of POSIX character classes

A Perl extension to the POSIX character class is the ability to negate it. This is done by prefixing the

class name with a caret ("^"). Some examples:

POSIX ASCII-range Full-range backslash

Unicode Unicode sequence

[[:^digit:]] \P{PosixDigit} \P{XPosixDigit} \D

[[:^space:]] \P{PosixSpace} \P{XPosixSpace}

\P{PerlSpace} \P{XPerlSpace} \S

[[:^word:]] \P{PerlWord} \P{XPosixWord} \W

The backslash sequence can mean either ASCII- or Full-range Unicode, depending on various factors

as described in "Which character set modifier is in effect?" in perlre.

[= =] and [. .]

Perl recognizes the POSIX character classes "[=class=]" and "[.class.]", but does not (yet?) support

them. Any attempt to use either construct raises an exception.

Examples

/[[:digit:]]/ # Matches a character that is a digit.

/[01[:lower:]]/ # Matches a character that is either a

lowercase letter, or ’0’ or ’1’.

/[[:digit:][:^xdigit:]]/ # Matches a character that can be anything

except the letters ’a’ to ’f’ and ’A’ to

’F’. This is because the main character

class is composed of two POSIX character

classes that are ORed together, one that

matches any digit, and the other that

matches anything that isn’t a hex digit.

The OR adds the digits, leaving only the

letters ’a’ to ’f’ and ’A’ to ’F’ excluded.

Extended Bracketed Character Classes

This is a fancy bracketed character class that can be used for more readable and less error-prone

classes, and to perform set operations, such as intersection. An example is

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

/(?[\p{Thai} & \p{Digit}])/

This will match all the digit characters that are in the Thai script.

This feature became available in Perl 5.18, as experimental; accepted in 5.36.

The rules used by "use re ’strict" apply to this construct.

We can extend the example above:

/(?[(\p{Thai} + \p{Lao}) & \p{Digit}])/

This matches digits that are in either the Thai or Laotian scripts.

Notice the white space in these examples. This construct always has the "/xx" modifier turned on

within it.

The available binary operators are:

& intersection

+ union

| another name for ’+’, hence means union

- subtraction (the result matches the set consisting of those

code points matched by the first operand, excluding any that

are also matched by the second operand)

^ symmetric difference (the union minus the intersection). This

is like an exclusive or, in that the result is the set of code

points that are matched by either, but not both, of the

operands.

There is one unary operator:

! complement

All the binary operators left associate; "&" is higher precedence than the others, which all have equal

precedence. The unary operator right associates, and has highest precedence. Thus this follows the

normal Perl precedence rules for logical operators. Use parentheses to override the default precedence

and associativity.

The main restriction is that everything is a metacharacter. Thus, you cannot refer to single characters

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

by doing something like this:

/(?[a + b])/ # Syntax error!

The easiest way to specify an individual typable character is to enclose it in brackets:

/(?[[a] + [b]])/

(This is the same thing as "[ab]".) You could also have said the equivalent:

/(?[[a b]])/

(You can, of course, specify single characters by using, "\x{...}", "\N{...}", etc.)

This last example shows the use of this construct to specify an ordinary bracketed character class

without additional set operations. Note the white space within it. This is allowed because "/xx" is

automatically turned on within this construct.

All the other escapes accepted by normal bracketed character classes are accepted here as well.

Because this construct compiles under "use re ’strict", unrecognized escapes that generate warnings in

normal classes are fatal errors here, as well as all other warnings from these class elements, as well as

some practices that don’t currently warn outside "re ’strict’". For example you cannot say

/(?[[\xF]])/ # Syntax error!

You have to have two hex digits after a braceless "\x" (use a leading zero to make two). These

restrictions are to lower the incidence of typos causing the class to not match what you thought it

would.

If a regular bracketed character class contains a "\p{}" or "\P{}" and is matched against a non-Unicode

code point, a warning may be raised, as the result is not Unicode-defined. No such warning will come

when using this extended form.

The final difference between regular bracketed character classes and these, is that it is not possible to

get these to match a multi-character fold. Thus,

/(?[[\xDF]])/iu

does not match the string "ss".

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

You don’t have to enclose POSIX class names inside double brackets, hence both of the following

work:

/(?[[:word:] - [:lower:]])/

/(?[[[:word:]] - [[:lower:]]])/

Any contained POSIX character classes, including things like "\w" and "\D" respect the "/a" (and "/aa")

modifiers.

Note that "(?[])" is a regex-compile-time construct. Any attempt to use something which isn’t

knowable at the time the containing regular expression is compiled is a fatal error. In practice, this

means just three limitations:

1. When compiled within the scope of "use locale" (or the "/l" regex modifier), this construct

assumes that the execution-time locale will be a UTF-8 one, and the generated pattern always uses

Unicode rules. What gets matched or not thus isn’t dependent on the actual runtime locale, so

tainting is not enabled. But a "locale" category warning is raised if the runtime locale turns out to

not be UTF-8.

2. Any user-defined property used must be already defined by the time the regular expression is

compiled (but note that this construct can be used instead of such properties).

3. A regular expression that otherwise would compile using "/d" rules, and which uses this construct

will instead use "/u". Thus this construct tells Perl that you don’t want "/d" rules for the entire

regular expression containing it.

Note that skipping white space applies only to the interior of this construct. There must not be any

space between any of the characters that form the initial "(?[". Nor may there be space between the

closing "])" characters.

Just as in all regular expressions, the pattern can be built up by including variables that are interpolated

at regex compilation time. But currently each such sub-component should be an already-compiled

extended bracketed character class.

my $thai_or_lao = qr/(?[\p{Thai} + \p{Lao}])/;

...

qr/(?[\p{Digit} & $thai_or_lao])/;

If you interpolate something else, the pattern may still compile (or it may die), but if it compiles, it very

well may not behave as you would expect:

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

my $thai_or_lao = ’\p{Thai} + \p{Lao}’;

qr/(?[\p{Digit} & $thai_or_lao])/;

compiles to

qr/(?[\p{Digit} & \p{Thai} + \p{Lao}])/;

This does not have the effect that someone reading the source code would likely expect, as the

intersection applies just to "\p{Thai}", excluding the Laotian.

Due to the way that Perl parses things, your parentheses and brackets may need to be balanced, even

including comments. If you run into any examples, please submit them to

<https://github.com/Perl/perl5/issues>, so that we can have a concrete example for this man page.

PERLRECHARCLASS(1) Perl Programmers Reference Guide PERLRECHARCLASS(1)

perl v5.36.3 2023-11-28 PERLRECHARCLASS(1)

