
NAME
perlrun - how to execute the Perl interpreter

SYNOPSIS
perl [-sTtuUWX] [-hv] [-V[:configvar]] [-cw] [-d[t][:debugger]] [-D[number/list]]

[-pna] [-Fpattern] [-l[octal]] [-0[octal/hexadecimal]]

[-Idir] [-m[-]module] [-M[-]’module...’] [-f] [-C [number/list]] [-S]

[-x[dir]] [-i[extension]] [[-e|-E] ’command’] [--] [programfile] [argument]...

DESCRIPTION
The normal way to run a Perl program is by making it directly executable, or else by passing the name

of the source file as an argument on the command line. (An interactive Perl environment is also

possible--see perldebug for details on how to do that.) Upon startup, Perl looks for your program in

one of the following places:

1. Specified line by line via -e or -E switches on the command line.

2. Contained in the file specified by the first filename on the command line. (Note that systems

supporting the "#!" notation invoke interpreters this way. See "Location of Perl".)

3. Passed in implicitly via standard input. This works only if there are no filename arguments--to

pass arguments to a STDIN-read program you must explicitly specify a "-" for the program name.

With methods 2 and 3, Perl starts parsing the input file from the beginning, unless you’ve specified a

"-x" switch, in which case it scans for the first line starting with "#!" and containing the word "perl",

and starts there instead. This is useful for running a program embedded in a larger message. (In this

case you would indicate the end of the program using the "__END__" token.)

The "#!" line is always examined for switches as the line is being parsed. Thus, if you’re on a machine

that allows only one argument with the "#!" line, or worse, doesn’t even recognize the "#!" line, you

still can get consistent switch behaviour regardless of how Perl was invoked, even if "-x" was used to

find the beginning of the program.

Because historically some operating systems silently chopped off kernel interpretation of the "#!" line

after 32 characters, some switches may be passed in on the command line, and some may not; you

could even get a "-" without its letter, if you’re not careful. You probably want to make sure that all

your switches fall either before or after that 32-character boundary. Most switches don’t actually care

if they’re processed redundantly, but getting a "-" instead of a complete switch could cause Perl to try

to execute standard input instead of your program. And a partial -I switch could also cause odd results.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

Some switches do care if they are processed twice, for instance combinations of -l and -0. Either put

all the switches after the 32-character boundary (if applicable), or replace the use of -0digits by

"BEGIN{ $/ = "\0digits"; }".

Parsing of the "#!" switches starts wherever "perl" is mentioned in the line. The sequences "-*" and "-

" are specifically ignored so that you could, if you were so inclined, say

#!/bin/sh

#! -*- perl -*- -p

eval ’exec perl -x -wS $0 ${1+"$@"}’

if 0;

to let Perl see the "-p" switch.

A similar trick involves the env program, if you have it.

#!/usr/bin/env perl

The examples above use a relative path to the perl interpreter, getting whatever version is first in the

user’s path. If you want a specific version of Perl, say, perl5.14.1, you should place that directly in the

"#!" line’s path.

If the "#!" line does not contain the word "perl" nor the word "indir", the program named after the "#!"

is executed instead of the Perl interpreter. This is slightly bizarre, but it helps people on machines that

don’t do "#!", because they can tell a program that their SHELL is /usr/bin/perl, and Perl will then

dispatch the program to the correct interpreter for them.

After locating your program, Perl compiles the entire program to an internal form. If there are any

compilation errors, execution of the program is not attempted. (This is unlike the typical shell script,

which might run part-way through before finding a syntax error.)

If the program is syntactically correct, it is executed. If the program runs off the end without hitting an

exit() or die() operator, an implicit exit(0) is provided to indicate successful completion.

#! and quoting on non-Unix systems
Unix’s "#!" technique can be simulated on other systems:

OS/2

Put

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

extproc perl -S -your_switches

as the first line in "*.cmd" file ("-S" due to a bug in cmd.exe’s ‘extproc’ handling).

MS-DOS

Create a batch file to run your program, and codify it in "ALTERNATE_SHEBANG" (see the

dosish.h file in the source distribution for more information).

Win95/NT

The Win95/NT installation, when using the ActiveState installer for Perl, will modify the Registry

to associate the .pl extension with the perl interpreter. If you install Perl by other means

(including building from the sources), you may have to modify the Registry yourself. Note that

this means you can no longer tell the difference between an executable Perl program and a Perl

library file.

VMS

Put

$ perl -mysw ’f$env("procedure")’ ’p1’ ’p2’ ’p3’ ’p4’ ’p5’ ’p6’ ’p7’ ’p8’ !

$ exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, where -mysw are any command line switches you want to pass to Perl.

You can now invoke the program directly, by saying "perl program", or as a DCL procedure, by

saying @program (or implicitly via DCL$PATH by just using the name of the program).

This incantation is a bit much to remember, but Perl will display it for you if you say "perl

"-V:startperl"".

Command-interpreters on non-Unix systems have rather different ideas on quoting than Unix shells.

You’ll need to learn the special characters in your command-interpreter ("*", "\" and """ are common)

and how to protect whitespace and these characters to run one-liners (see -e below).

On some systems, you may have to change single-quotes to double ones, which you must not do on

Unix or Plan 9 systems. You might also have to change a single % to a %%.

For example:

Unix

perl -e ’print "Hello world\n"’

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

MS-DOS, etc.

perl -e "print \"Hello world\n\""

VMS

perl -e "print ""Hello world\n"""

The problem is that none of this is reliable: it depends on the command and it is entirely possible

neither works. If 4DOS were the command shell, this would probably work better:

perl -e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

CMD.EXE in Windows NT slipped a lot of standard Unix functionality in when nobody was looking,

but just try to find documentation for its quoting rules.

There is no general solution to all of this. It’s just a mess.

Location of Perl
It may seem obvious to say, but Perl is useful only when users can easily find it. When possible, it’s

good for both /usr/bin/perl and /usr/local/bin/perl to be symlinks to the actual binary. If that can’t be

done, system administrators are strongly encouraged to put (symlinks to) perl and its accompanying

utilities into a directory typically found along a user’s PATH, or in some other obvious and convenient

place.

In this documentation, "#!/usr/bin/perl" on the first line of the program will stand in for whatever

method works on your system. You are advised to use a specific path if you care about a specific

version.

#!/usr/local/bin/perl5.14

or if you just want to be running at least version, place a statement like this at the top of your program:

use 5.014;

Command Switches
As with all standard commands, a single-character switch may be clustered with the following switch,

if any.

#!/usr/bin/perl -spi.orig # same as -s -p -i.orig

A "--" signals the end of options and disables further option processing. Any arguments after the "--"

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

are treated as filenames and arguments.

Switches include:

-0[octal/hexadecimal]

specifies the input record separator ($/) as an octal or hexadecimal number. If there are no digits,

the null character is the separator. Other switches may precede or follow the digits. For

example, if you have a version of find which can print filenames terminated by the null

character, you can say this:

find . -name ’*.orig’ -print0 | perl -n0e unlink

The special value 00 will cause Perl to slurp files in paragraph mode. Any value 0400 or above

will cause Perl to slurp files whole, but by convention the value 0777 is the one normally used

for this purpose.

You can also specify the separator character using hexadecimal notation: -0xHHH..., where the

"H" are valid hexadecimal digits. Unlike the octal form, this one may be used to specify any

Unicode character, even those beyond 0xFF. So if you really want a record separator of 0777,

specify it as -0x1FF. (This means that you cannot use the "-x" option with a directory name that

consists of hexadecimal digits, or else Perl will think you have specified a hex number to -0.)

-a turns on autosplit mode when used with a "-n" or "-p". An implicit split command to the @F

array is done as the first thing inside the implicit while loop produced by the "-n" or "-p".

perl -ane ’print pop(@F), "\n";’

is equivalent to

while (<>) {

@F = split(’ ’);

print pop(@F), "\n";

}

An alternate delimiter may be specified using -F.

-a implicitly sets "-n".

-C [number/list]
The -C flag controls some of the Perl Unicode features.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

As of 5.8.1, the -C can be followed either by a number or a list of option letters. The letters, their

numeric values, and effects are as follows; listing the letters is equal to summing the numbers.

I 1 STDIN is assumed to be in UTF-8

O 2 STDOUT will be in UTF-8

E 4 STDERR will be in UTF-8

S 7 I + O + E

i 8 UTF-8 is the default PerlIO layer for input streams

o 16 UTF-8 is the default PerlIO layer for output streams

D 24 i + o

A 32 the @ARGV elements are expected to be strings encoded

in UTF-8

L 64 normally the "IOEioA" are unconditional, the L makes

them conditional on the locale environment variables

(the LC_ALL, LC_CTYPE, and LANG, in the order of

decreasing precedence) -- if the variables indicate

UTF-8, then the selected "IOEioA" are in effect

a 256 Set ${^UTF8CACHE} to -1, to run the UTF-8 caching

code in debugging mode.

For example, -COE and -C6 will both turn on UTF-8-ness on both STDOUT and STDERR.

Repeating letters is just redundant, not cumulative nor toggling.

The "io" options mean that any subsequent open() (or similar I/O operations) in main program

scope will have the ":utf8" PerlIO layer implicitly applied to them, in other words, UTF-8 is

expected from any input stream, and UTF-8 is produced to any output stream. This is just the

default set via "${^OPEN}", with explicit layers in open() and with binmode() one can

manipulate streams as usual. This has no effect on code run in modules.

-C on its own (not followed by any number or option list), or the empty string "" for the

"PERL_UNICODE" environment variable, has the same effect as -CSDL. In other words, the

standard I/O handles and the default "open()" layer are UTF-8-fied but only if the locale

environment variables indicate a UTF-8 locale. This behaviour follows the implicit (and

problematic) UTF-8 behaviour of Perl 5.8.0. (See "UTF-8 no longer default under UTF-8

locales" in perl581delta.)

You can use -C0 (or "0" for "PERL_UNICODE") to explicitly disable all the above Unicode

features.

The read-only magic variable "${^UNICODE}" reflects the numeric value of this setting. This

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

variable is set during Perl startup and is thereafter read-only. If you want runtime effects, use the

three-arg open() (see "open" in perlfunc), the two-arg binmode() (see "binmode" in perlfunc),

and the "open" pragma (see open).

(In Perls earlier than 5.8.1 the -C switch was a Win32-only switch that enabled the use of

Unicode-aware "wide system call" Win32 APIs. This feature was practically unused, however,

and the command line switch was therefore "recycled".)

Note: Since perl 5.10.1, if the -C option is used on the "#!" line, it must be specified on the

command line as well, since the standard streams are already set up at this point in the execution

of the perl interpreter. You can also use binmode() to set the encoding of an I/O stream.

-c causes Perl to check the syntax of the program and then exit without executing it. Actually, it

will execute any "BEGIN", "UNITCHECK", or "CHECK" blocks and any "use" statements:

these are considered as occurring outside the execution of your program. "INIT" and "END"

blocks, however, will be skipped.

-d
-dt runs the program under the Perl debugger. See perldebug. If t is specified, it indicates to the

debugger that threads will be used in the code being debugged.

-d:MOD[=bar,baz]

-dt:MOD[=bar,baz]

runs the program under the control of a debugging, profiling, or tracing module installed as

"Devel::MOD". E.g., -d:DProf executes the program using the "Devel::DProf" profiler. As with

the -M flag, options may be passed to the "Devel::MOD" package where they will be received

and interpreted by the "Devel::MOD::import" routine. Again, like -M, use --d:-MOD to call

"Devel::MOD::unimport" instead of import. The comma-separated list of options must follow a

"=" character. If t is specified, it indicates to the debugger that threads will be used in the code

being debugged. See perldebug.

-Dletters

-Dnumber

sets debugging flags. This switch is enabled only if your perl binary has been built with

debugging enabled: normal production perls won’t have been.

For example, to watch how perl executes your program, use -Dtls. Another nice value is -Dx,

which lists your compiled syntax tree, and -Dr displays compiled regular expressions; the format

of the output is explained in perldebguts.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

As an alternative, specify a number instead of list of letters (e.g., -D14 is equivalent to -Dtls):

1 p Tokenizing and parsing (with v, displays parse

stack)

2 s Stack snapshots (with v, displays all stacks)

4 l Context (loop) stack processing

8 t Trace execution

16 o Method and overloading resolution

32 c String/numeric conversions

64 P Print profiling info, source file input state

128 m Memory and SV allocation

256 f Format processing

512 r Regular expression parsing and execution

1024 x Syntax tree dump

2048 u Tainting checks

4096 U Unofficial, User hacking (reserved for private,

unreleased use)

16384 X Scratchpad allocation

32768 D Cleaning up

65536 S Op slab allocation

131072 T Tokenizing

262144 R Include reference counts of dumped variables

(eg when using -Ds)

524288 J show s,t,P-debug (don’t Jump over) on opcodes within

package DB

1048576 v Verbose: use in conjunction with other flags to

increase the verbosity of the output. Is a no-op on

many of the other flags

2097152 C Copy On Write

4194304 A Consistency checks on internal structures

8388608 q quiet - currently only suppresses the "EXECUTING"

message

16777216 M trace smart match resolution

33554432 B dump suBroutine definitions, including special

Blocks like BEGIN

67108864 L trace Locale-related info; what gets output is very

subject to change

134217728 i trace PerlIO layer processing. Set PERLIO_DEBUG to

the filename to trace to.

268435456 y trace y///, tr/// compilation and execution

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

All these flags require -DDEBUGGING when you compile the Perl executable (but see ":opd" in

Devel::Peek or "’debug’ mode" in re which may change this). See the INSTALL file in the Perl

source distribution for how to do this.

If you’re just trying to get a print out of each line of Perl code as it executes, the way that "sh -x"

provides for shell scripts, you can’t use Perl’s -D switch. Instead do this

If you have "env" utility

env PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

Bourne shell syntax

$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl -dS program

csh syntax

% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl -dS program)

See perldebug for details and variations.

-e commandline

may be used to enter one line of program. If -e is given, Perl will not look for a filename in the

argument list. Multiple -e commands may be given to build up a multi-line script. Make sure to

use semicolons where you would in a normal program.

-E commandline

behaves just like -e, except that it implicitly enables all optional features (in the main

compilation unit). See feature.

-f Disable executing $Config{sitelib}/sitecustomize.pl at startup.

Perl can be built so that it by default will try to execute $Config{sitelib}/sitecustomize.pl at

startup (in a BEGIN block). This is a hook that allows the sysadmin to customize how Perl

behaves. It can for instance be used to add entries to the @INC array to make Perl find modules

in non-standard locations.

Perl actually inserts the following code:

BEGIN {

do { local $!; -f "$Config{sitelib}/sitecustomize.pl"; }

&& do "$Config{sitelib}/sitecustomize.pl";

}

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

Since it is an actual "do" (not a "require"), sitecustomize.pl doesn’t need to return a true value.

The code is run in package "main", in its own lexical scope. However, if the script dies, $@ will

not be set.

The value of $Config{sitelib} is also determined in C code and not read from "Config.pm",

which is not loaded.

The code is executed very early. For example, any changes made to @INC will show up in the

output of ‘perl -V‘. Of course, "END" blocks will be likewise executed very late.

To determine at runtime if this capability has been compiled in your perl, you can check the

value of $Config{usesitecustomize}.

-Fpattern

specifies the pattern to split on for "-a". The pattern may be surrounded by "//", "", or ’’,

otherwise it will be put in single quotes. You can’t use literal whitespace or NUL characters in

the pattern.

-F implicitly sets both "-a" and "-n".

-h prints a summary of the options.

-i[extension]

specifies that files processed by the "<>" construct are to be edited in-place. It does this by

renaming the input file, opening the output file by the original name, and selecting that output

file as the default for print() statements. The extension, if supplied, is used to modify the name

of the old file to make a backup copy, following these rules:

If no extension is supplied, and your system supports it, the original file is kept open without a

name while the output is redirected to a new file with the original filename. When perl exits,

cleanly or not, the original file is unlinked.

If the extension doesn’t contain a "*", then it is appended to the end of the current filename as a

suffix. If the extension does contain one or more "*" characters, then each "*" is replaced with

the current filename. In Perl terms, you could think of this as:

($backup = $extension) =~ s/*/$file_name/g;

This allows you to add a prefix to the backup file, instead of (or in addition to) a suffix:

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

$ perl -pi’orig_*’ -e ’s/bar/baz/’ fileA # backup to

’orig_fileA’

Or even to place backup copies of the original files into another directory (provided the directory

already exists):

$ perl -pi’old/*.orig’ -e ’s/bar/baz/’ fileA # backup to

’old/fileA.orig’

These sets of one-liners are equivalent:

$ perl -pi -e ’s/bar/baz/’ fileA # overwrite current file

$ perl -pi’*’ -e ’s/bar/baz/’ fileA # overwrite current file

$ perl -pi’.orig’ -e ’s/bar/baz/’ fileA # backup to ’fileA.orig’

$ perl -pi’*.orig’ -e ’s/bar/baz/’ fileA # backup to ’fileA.orig’

From the shell, saying

$ perl -p -i.orig -e "s/foo/bar/; ... "

is the same as using the program:

#!/usr/bin/perl -pi.orig

s/foo/bar/;

which is equivalent to

#!/usr/bin/perl

$extension = ’.orig’;

LINE: while (<>) {

if ($ARGV ne $oldargv) {

if ($extension !~ /*/) {

$backup = $ARGV . $extension;

}

else {

($backup = $extension) =~ s/*/$ARGV/g;

}

rename($ARGV, $backup);

open(ARGVOUT, ">$ARGV");

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

select(ARGVOUT);

$oldargv = $ARGV;

}

s/foo/bar/;

}

continue {

print; # this prints to original filename

}

select(STDOUT);

except that the -i form doesn’t need to compare $ARGV to $oldargv to know when the filename

has changed. It does, however, use ARGVOUT for the selected filehandle. Note that STDOUT

is restored as the default output filehandle after the loop.

As shown above, Perl creates the backup file whether or not any output is actually changed. So

this is just a fancy way to copy files:

$ perl -p -i’/some/file/path/*’ -e 1 file1 file2 file3...

or

$ perl -p -i’.orig’ -e 1 file1 file2 file3...

You can use "eof" without parentheses to locate the end of each input file, in case you want to

append to each file, or reset line numbering (see example in "eof" in perlfunc).

If, for a given file, Perl is unable to create the backup file as specified in the extension then it will

skip that file and continue on with the next one (if it exists).

For a discussion of issues surrounding file permissions and -i, see "Why does Perl let me delete

read-only files? Why does -i clobber protected files? Isn’t this a bug in Perl?" in perlfaq5.

You cannot use -i to create directories or to strip extensions from files.

Perl does not expand "~" in filenames, which is good, since some folks use it for their backup

files:

$ perl -pi~ -e ’s/foo/bar/’ file1 file2 file3...

Note that because -i renames or deletes the original file before creating a new file of the same

name, Unix-style soft and hard links will not be preserved.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

Finally, the -i switch does not impede execution when no files are given on the command line.

In this case, no backup is made (the original file cannot, of course, be determined) and

processing proceeds from STDIN to STDOUT as might be expected.

-Idirectory

Directories specified by -I are prepended to the search path for modules (@INC).

-l[octnum]

enables automatic line-ending processing. It has two separate effects. First, it automatically

chomps $/ (the input record separator) when used with "-n" or "-p". Second, it assigns "$\" (the

output record separator) to have the value of octnum so that any print statements will have that

separator added back on. If octnum is omitted, sets "$\" to the current value of $/. For instance,

to trim lines to 80 columns:

perl -lpe ’substr($_, 80) = ""’

Note that the assignment "$\ = $/" is done when the switch is processed, so the input record

separator can be different than the output record separator if the -l switch is followed by a -0

switch:

gnufind / -print0 | perl -ln0e ’print "found $_" if -p’

This sets "$\" to newline and then sets $/ to the null character.

-m[-]module

-M[-]module

-M[-]’module ...’

-[mM][-]module=arg[,arg]...

-mmodule executes "use" module "();" before executing your program. This loads the module,

but does not call its "import" method, so does not import subroutines and does not give effect to

a pragma.

-Mmodule executes "use" module ";" before executing your program. This loads the module and

calls its "import" method, causing the module to have its default effect, typically importing

subroutines or giving effect to a pragma. You can use quotes to add extra code after the module

name, e.g., ’-MMODULE qw(foo bar)’.

If the first character after the -M or -m is a dash (-) then the ’use’ is replaced with ’no’. This

makes no difference for -m.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

A little builtin syntactic sugar means you can also say -mMODULE=foo,bar or

-MMODULE=foo,bar as a shortcut for ’-MMODULE qw(foo bar)’. This avoids the need to use

quotes when importing symbols. The actual code generated by -MMODULE=foo,bar is "use

module split(/,/,q{foo,bar})". Note that the "=" form removes the distinction between -m and

-M; that is, -mMODULE=foo,bar is the same as -MMODULE=foo,bar.

A consequence of the "split" formulation is that -MMODULE=number never does a version

check, unless "MODULE::import()" itself is set up to do a version check, which could happen

for example if MODULE inherits from Exporter.

-n causes Perl to assume the following loop around your program, which makes it iterate over

filename arguments somewhat like sed -n or awk:

LINE:

while (<>) {

... # your program goes here

}

Note that the lines are not printed by default. See "-p" to have lines printed. If a file named by

an argument cannot be opened for some reason, Perl warns you about it and moves on to the next

file.

Also note that "<>" passes command line arguments to "open" in perlfunc, which doesn’t

necessarily interpret them as file names. See perlop for possible security implications.

Here is an efficient way to delete all files that haven’t been modified for at least a week:

find . -mtime +7 -print | perl -nle unlink

This is faster than using the -exec switch of find because you don’t have to start a process on

every filename found (but it’s not faster than using the -delete switch available in newer versions

of find. It does suffer from the bug of mishandling newlines in pathnames, which you can fix if

you follow the example under -0.

"BEGIN" and "END" blocks may be used to capture control before or after the implicit program

loop, just as in awk.

-p causes Perl to assume the following loop around your program, which makes it iterate over

filename arguments somewhat like sed:

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

LINE:

while (<>) {

... # your program goes here

} continue {

print or die "-p destination: $!\n";

}

If a file named by an argument cannot be opened for some reason, Perl warns you about it, and

moves on to the next file. Note that the lines are printed automatically. An error occurring

during printing is treated as fatal. To suppress printing use the "-n" switch. A -p overrides a -n
switch.

"BEGIN" and "END" blocks may be used to capture control before or after the implicit loop, just

as in awk.

-s enables rudimentary switch parsing for switches on the command line after the program name

but before any filename arguments (or before an argument of --). Any switch found there is

removed from @ARGV and sets the corresponding variable in the Perl program. The following

program prints "1" if the program is invoked with a -xyz switch, and "abc" if it is invoked with

-xyz=abc.

#!/usr/bin/perl -s

if ($xyz) { print "$xyz\n" }

Do note that a switch like --help creates the variable "${-help}", which is not compliant with

"use strict "refs"". Also, when using this option on a script with warnings enabled you may get a

lot of spurious "used only once" warnings.

-S makes Perl use the "PATH" environment variable to search for the program unless the name of

the program contains path separators.

On some platforms, this also makes Perl append suffixes to the filename while searching for it.

For example, on Win32 platforms, the ".bat" and ".cmd" suffixes are appended if a lookup for the

original name fails, and if the name does not already end in one of those suffixes. If your Perl

was compiled with "DEBUGGING" turned on, using the -Dp switch to Perl shows how the

search progresses.

Typically this is used to emulate "#!" startup on platforms that don’t support "#!". It’s also

convenient when debugging a script that uses "#!", and is thus normally found by the shell’s

$PATH search mechanism.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

This example works on many platforms that have a shell compatible with Bourne shell:

#!/usr/bin/perl

eval ’exec /usr/bin/perl -wS $0 ${1+"$@"}’

if 0; # ^ Run only under a shell

The system ignores the first line and feeds the program to /bin/sh, which proceeds to try to

execute the Perl program as a shell script. The shell executes the second line as a normal shell

command, and thus starts up the Perl interpreter. On some systems $0 doesn’t always contain

the full pathname, so the "-S" tells Perl to search for the program if necessary. After Perl locates

the program, it parses the lines and ignores them because the check ’if 0’ is never true. If the

program will be interpreted by csh, you will need to replace "${1+"$@"}" with $*, even though

that doesn’t understand embedded spaces (and such) in the argument list. To start up sh rather

than csh, some systems may have to replace the "#!" line with a line containing just a colon,

which will be politely ignored by Perl. Other systems can’t control that, and need a totally

devious construct that will work under any of csh, sh, or Perl, such as the following:

eval ’(exit $?0)’ && eval ’exec perl -wS $0 ${1+"$@"}’

& eval ’exec /usr/bin/perl -wS $0 $argv:q’

if 0; # ^ Run only under a shell

If the filename supplied contains directory separators (and so is an absolute or relative

pathname), and if that file is not found, platforms that append file extensions will do so and try to

look for the file with those extensions added, one by one.

On DOS-like platforms, if the program does not contain directory separators, it will first be

searched for in the current directory before being searched for on the PATH. On Unix platforms,

the program will be searched for strictly on the PATH.

-t Like "-T", but taint checks will issue warnings rather than fatal errors. These warnings can now

be controlled normally with "no warnings qw(taint)".

Note: This is not a substitute for "-T"! This is meant to be used only as a temporary development

aid while securing legacy code: for real production code and for new secure code written from

scratch, always use the real "-T".

-T turns on "taint" so you can test them. Ordinarily these checks are done only when running setuid

or setgid. It’s a good idea to turn them on explicitly for programs that run on behalf of someone

else whom you might not necessarily trust, such as CGI programs or any internet servers you

might write in Perl. See perlsec for details. For security reasons, this option must be seen by

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

Perl quite early; usually this means it must appear early on the command line or in the "#!" line

for systems which support that construct.

-u This switch causes Perl to dump core after compiling your program. You can then in theory take

this core dump and turn it into an executable file by using the undump program (not supplied).

This speeds startup at the expense of some disk space (which you can minimize by stripping the

executable). (Still, a "hello world" executable comes out to about 200K on my machine.) If you

want to execute a portion of your program before dumping, use the "CORE::dump()" function

instead. Note: availability of undump is platform specific and may not be available for a specific

port of Perl.

-U allows Perl to do unsafe operations. Currently the only "unsafe" operations are attempting to

unlink directories while running as superuser and running setuid programs with fatal taint checks

turned into warnings. Note that warnings must be enabled along with this option to actually

generate the taint-check warnings.

-v prints the version and patchlevel of your perl executable.

-V prints summary of the major perl configuration values and the current values of @INC.

-V:configvar

Prints to STDOUT the value of the named configuration variable(s), with multiples when your

"configvar" argument looks like a regex (has non-letters). For example:

$ perl -V:libc

libc=’/lib/libc-2.2.4.so’;

$ perl -V:lib.

libs=’-lnsl -lgdbm -ldb -ldl -lm -lcrypt -lutil -lc’;

libc=’/lib/libc-2.2.4.so’;

$ perl -V:lib.*

libpth=’/usr/local/lib /lib /usr/lib’;

libs=’-lnsl -lgdbm -ldb -ldl -lm -lcrypt -lutil -lc’;

lib_ext=’.a’;

libc=’/lib/libc-2.2.4.so’;

libperl=’libperl.a’;

....

Additionally, extra colons can be used to control formatting. A trailing colon suppresses the

linefeed and terminator ";", allowing you to embed queries into shell commands. (mnemonic:

PATH separator ":".)

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

$ echo "compression-vars: " ‘perl -V:z.*: ‘ " are here !"

compression-vars: zcat=’’ zip=’zip’ are here !

A leading colon removes the "name=" part of the response, this allows you to map to the name

you need. (mnemonic: empty label)

$ echo "goodvfork="‘./perl -Ilib -V::usevfork‘

goodvfork=false;

Leading and trailing colons can be used together if you need positional parameter values without

the names. Note that in the case below, the "PERL_API" params are returned in alphabetical

order.

$ echo building_on ‘perl -V::osname: -V::PERL_API_.*:‘ now

building_on ’linux’ ’5’ ’1’ ’9’ now

-w prints warnings about dubious constructs, such as variable names mentioned only once and scalar

variables used before being set; redefined subroutines; references to undefined filehandles;

filehandles opened read-only that you are attempting to write on; values used as a number that

don’t look like numbers; using an array as though it were a scalar; if your subroutines recurse

more than 100 deep; and innumerable other things.

This switch really just enables the global $^W variable; normally, the lexically scoped "use

warnings" pragma is preferred. You can disable or promote into fatal errors specific warnings

using "__WARN__" hooks, as described in perlvar and "warn" in perlfunc. See also perldiag

and perltrap. A fine-grained warning facility is also available if you want to manipulate entire

classes of warnings; see warnings.

-W Enables all warnings regardless of "no warnings" or $^W. See warnings.

-X Disables all warnings regardless of "use warnings" or $^W. See warnings.

Forbidden in "PERL5OPT".

-x
-xdirectory

tells Perl that the program is embedded in a larger chunk of unrelated text, such as in a mail

message. Leading garbage will be discarded until the first line that starts with "#!" and contains

the string "perl". Any meaningful switches on that line will be applied.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

All references to line numbers by the program (warnings, errors, ...) will treat the "#!" line as the

first line. Thus a warning on the 2nd line of the program, which is on the 100th line in the file

will be reported as line 2, not as line 100. This can be overridden by using the "#line" directive.

(See "Plain Old Comments (Not!)" in perlsyn)

If a directory name is specified, Perl will switch to that directory before running the program.

The -x switch controls only the disposal of leading garbage. The program must be terminated

with "__END__" if there is trailing garbage to be ignored; the program can process any or all of

the trailing garbage via the "DATA" filehandle if desired.

The directory, if specified, must appear immediately following the -x with no intervening

whitespace.

ENVIRONMENT
HOME Used if "chdir" has no argument.

LOGDIR Used if "chdir" has no argument and "HOME" is not set.

PATH Used in executing subprocesses, and in finding the program if "-S" is used.

PERL5LIB A list of directories in which to look for Perl library files before looking in the standard

library. Any architecture-specific and version-specific directories, such as

version/archname/, version/, or archname/ under the specified locations are

automatically included if they exist, with this lookup done at interpreter startup time. In

addition, any directories matching the entries in $Config{inc_version_list} are added.

(These typically would be for older compatible perl versions installed in the same

directory tree.)

If PERL5LIB is not defined, "PERLLIB" is used. Directories are separated (like in

PATH) by a colon on Unixish platforms and by a semicolon on Windows (the proper

path separator being given by the command "perl -V:path_sep").

When running taint checks, either because the program was running setuid or setgid, or

the "-T" or "-t" switch was specified, neither PERL5LIB nor "PERLLIB" is consulted.

The program should instead say:

use lib "/my/directory";

PERL5OPT Command-line options (switches). Switches in this variable are treated as if they were

on every Perl command line. Only the -[CDIMTUWdmtw] switches are allowed.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

When running taint checks (either because the program was running setuid or setgid, or

because the "-T" or "-t" switch was used), this variable is ignored. If PERL5OPT begins

with -T, tainting will be enabled and subsequent options ignored. If PERL5OPT begins

with -t, tainting will be enabled, a writable dot removed from @INC, and subsequent

options honored.

PERLIO A space (or colon) separated list of PerlIO layers. If perl is built to use PerlIO system for

IO (the default) these layers affect Perl’s IO.

It is conventional to start layer names with a colon (for example, ":perlio") to emphasize

their similarity to variable "attributes". But the code that parses layer specification

strings, which is also used to decode the PERLIO environment variable, treats the colon

as a separator.

An unset or empty PERLIO is equivalent to the default set of layers for your platform;

for example, ":unix:perlio" on Unix-like systems and ":unix:crlf" on Windows and other

DOS-like systems.

The list becomes the default for all Perl’s IO. Consequently only built-in layers can

appear in this list, as external layers (such as ":encoding()") need IO in order to load

them! See "open pragma" for how to add external encodings as defaults.

Layers it makes sense to include in the PERLIO environment variable are briefly

summarized below. For more details see PerlIO.

:crlf A layer which does CRLF to "\n" translation distinguishing "text" and

"binary" files in the manner of MS-DOS and similar operating systems, and

also provides buffering similar to ":perlio" on these architectures.

:perlio This is a re-implementation of stdio-like buffering written as a PerlIO layer.

As such it will call whatever layer is below it for its operations, typically

":unix".

:stdio This layer provides a PerlIO interface by wrapping system’s ANSI C "stdio"

library calls. The layer provides both buffering and IO. Note that the ":stdio"

layer does not do CRLF translation even if that is the platform’s normal

behaviour. You will need a ":crlf" layer above it to do that.

:unix Low-level layer that calls "read", "write", "lseek", etc.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

:win32 On Win32 platforms this experimental layer uses native "handle" IO rather

than a Unix-like numeric file descriptor layer. Known to be buggy in this

release (5.30).

The default set of layers should give acceptable results on all platforms.

For Unix platforms that will be the equivalent of ":unix:perlio" or ":stdio". Configure is

set up to prefer the ":stdio" implementation if the system’s library provides for fast

access to the buffer (not common on modern architectures); otherwise, it uses the

":unix:perlio" implementation.

On Win32 the default in this release (5.30) is ":unix:crlf". Win32’s ":stdio" has a

number of bugs/mis-features for Perl IO which are somewhat depending on the version

and vendor of the C compiler. Using our own ":crlf" layer as the buffer avoids those

issues and makes things more uniform.

This release (5.30) uses ":unix" as the bottom layer on Win32, and so still uses the C

compiler’s numeric file descriptor routines. There is an experimental native ":win32"

layer, which is expected to be enhanced and may eventually become the default under

Win32.

The PERLIO environment variable is completely ignored when Perl is run in taint

mode.

PERLIO_DEBUG

If set to the name of a file or device when Perl is run with the -Di command-line switch,

the logging of certain operations of the PerlIO subsystem will be redirected to the

specified file rather than going to stderr, which is the default. The file is opened in

append mode. Typical uses are in Unix:

% env PERLIO_DEBUG=/tmp/perlio.log perl -Di script ...

and under Win32, the approximately equivalent:

> set PERLIO_DEBUG=CON

perl -Di script ...

This functionality is disabled for setuid scripts, for scripts run with "-T", and for scripts

run on a Perl built without "-DDEBUGGING" support.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

PERLLIB A list of directories in which to look for Perl library files before looking in the standard

library. If "PERL5LIB" is defined, PERLLIB is not used.

The PERLLIB environment variable is completely ignored when Perl is run in taint

mode.

PERL5DB The command used to load the debugger code. The default is:

BEGIN { require "perl5db.pl" }

The PERL5DB environment variable is only used when Perl is started with a bare "-d"

switch.

PERL5DB_THREADED

If set to a true value, indicates to the debugger that the code being debugged uses

threads.

PERL5SHELL (specific to the Win32 port)

On Win32 ports only, may be set to an alternative shell that Perl must use internally for

executing "backtick" commands or system(). Default is "cmd.exe /x/d/c" on

WindowsNT and "command.com /c" on Windows95. The value is considered space-

separated. Precede any character that needs to be protected, like a space or backslash,

with another backslash.

Note that Perl doesn’t use COMSPEC for this purpose because COMSPEC has a high

degree of variability among users, leading to portability concerns. Besides, Perl can use

a shell that may not be fit for interactive use, and setting COMSPEC to such a shell may

interfere with the proper functioning of other programs (which usually look in

COMSPEC to find a shell fit for interactive use).

Before Perl 5.10.0 and 5.8.8, PERL5SHELL was not taint checked when running

external commands. It is recommended that you explicitly set (or delete)

$ENV{PERL5SHELL} when running in taint mode under Windows.

PERL_ALLOW_NON_IFS_LSP (specific to the Win32 port)

Set to 1 to allow the use of non-IFS compatible LSPs (Layered Service Providers). Perl

normally searches for an IFS-compatible LSP because this is required for its emulation

of Windows sockets as real filehandles. However, this may cause problems if you have

a firewall such as McAfee Guardian, which requires that all applications use its LSP but

which is not IFS-compatible, because clearly Perl will normally avoid using such an

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

LSP.

Setting this environment variable to 1 means that Perl will simply use the first suitable

LSP enumerated in the catalog, which keeps McAfee Guardian happy--and in that

particular case Perl still works too because McAfee Guardian’s LSP actually plays other

games which allow applications requiring IFS compatibility to work.

PERL_DEBUG_MSTATS

Relevant only if Perl is compiled with the "malloc" included with the Perl distribution;

that is, if "perl -V:d_mymalloc" is "define".

If set, this dumps out memory statistics after execution. If set to an integer greater than

one, also dumps out memory statistics after compilation.

PERL_DESTRUCT_LEVEL

Controls the behaviour of global destruction of objects and other references. See

"PERL_DESTRUCT_LEVEL" in perlhacktips for more information.

PERL_DL_NONLAZY

Set to "1" to have Perl resolve all undefined symbols when it loads a dynamic library.

The default behaviour is to resolve symbols when they are used. Setting this variable is

useful during testing of extensions, as it ensures that you get an error on misspelled

function names even if the test suite doesn’t call them.

PERL_ENCODING

If using the "use encoding" pragma without an explicit encoding name, the

PERL_ENCODING environment variable is consulted for an encoding name.

PERL_HASH_SEED

(Since Perl 5.8.1, new semantics in Perl 5.18.0) Used to override the randomization of

Perl’s internal hash function. The value is expressed in hexadecimal, and may include a

leading 0x. Truncated patterns are treated as though they are suffixed with sufficient 0’s

as required.

If the option is provided, and "PERL_PERTURB_KEYS" is NOT set, then a value of

’0’ implies "PERL_PERTURB_KEYS=0" and any other value implies

"PERL_PERTURB_KEYS=2".

PLEASE NOTE: The hash seed is sensitive information. Hashes are randomized to

protect against local and remote attacks against Perl code. By manually setting a seed,

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

this protection may be partially or completely lost.

See "Algorithmic Complexity Attacks" in perlsec, "PERL_PERTURB_KEYS", and

"PERL_HASH_SEED_DEBUG" for more information.

PERL_PERTURB_KEYS

(Since Perl 5.18.0) Set to "0" or "NO" then traversing keys will be repeatable from run

to run for the same "PERL_HASH_SEED". Insertion into a hash will not change the

order, except to provide for more space in the hash. When combined with setting

PERL_HASH_SEED this mode is as close to pre 5.18 behavior as you can get.

When set to "1" or "RANDOM" then traversing keys will be randomized. Every time a

hash is inserted into the key order will change in a random fashion. The order may not

be repeatable in a following program run even if the PERL_HASH_SEED has been

specified. This is the default mode for perl.

When set to "2" or "DETERMINISTIC" then inserting keys into a hash will cause the

key order to change, but in a way that is repeatable from program run to program run.

NOTE: Use of this option is considered insecure, and is intended only for debugging

non-deterministic behavior in Perl’s hash function. Do not use it in production.

See "Algorithmic Complexity Attacks" in perlsec and "PERL_HASH_SEED" and

"PERL_HASH_SEED_DEBUG" for more information. You can get and set the key

traversal mask for a specific hash by using the "hash_traversal_mask()" function from

Hash::Util.

PERL_HASH_SEED_DEBUG

(Since Perl 5.8.1.) Set to "1" to display (to STDERR) information about the hash

function, seed, and what type of key traversal randomization is in effect at the beginning

of execution. This, combined with "PERL_HASH_SEED" and

"PERL_PERTURB_KEYS" is intended to aid in debugging nondeterministic behaviour

caused by hash randomization.

Note that any information about the hash function, especially the hash seed is sensitive
information: by knowing it, one can craft a denial-of-service attack against Perl code,

even remotely; see "Algorithmic Complexity Attacks" in perlsec for more information.

Do not disclose the hash seed to people who don’t need to know it. See also

"hash_seed()" and "hash_traversal_mask()".

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

An example output might be:

HASH_FUNCTION = ONE_AT_A_TIME_HARD HASH_SEED = 0x652e9b9349a7a032 PERTURB_KEYS

PERL_MEM_LOG

If your Perl was configured with -Accflags=-DPERL_MEM_LOG, setting the

environment variable "PERL_MEM_LOG" enables logging debug messages. The value

has the form "<number>[m][s][t]", where "number" is the file descriptor number you

want to write to (2 is default), and the combination of letters specifies that you want

information about (m)emory and/or (s)v, optionally with (t)imestamps. For example,

"PERL_MEM_LOG=1mst" logs all information to stdout. You can write to other

opened file descriptors in a variety of ways:

$ 3>foo3 PERL_MEM_LOG=3m perl ...

PERL_ROOT (specific to the VMS port)

A translation-concealed rooted logical name that contains Perl and the logical device for

the @INC path on VMS only. Other logical names that affect Perl on VMS include

PERLSHR, PERL_ENV_TABLES, and SYS$TIMEZONE_DIFFERENTIAL, but are

optional and discussed further in perlvms and in README.vms in the Perl source

distribution.

PERL_SIGNALS

Available in Perls 5.8.1 and later. If set to "unsafe", the pre-Perl-5.8.0 signal behaviour

(which is immediate but unsafe) is restored. If set to "safe", then safe (but deferred)

signals are used. See "Deferred Signals (Safe Signals)" in perlipc.

PERL_UNICODE

Equivalent to the -C command-line switch. Note that this is not a boolean variable.

Setting this to "1" is not the right way to "enable Unicode" (whatever that would mean).

You can use "0" to "disable Unicode", though (or alternatively unset PERL_UNICODE

in your shell before starting Perl). See the description of the -C switch for more

information.

PERL_USE_UNSAFE_INC

If perl has been configured to not have the current directory in @INC by default, this

variable can be set to "1" to reinstate it. It’s primarily intended for use while building

and testing modules that have not been updated to deal with "." not being in @INC and

should not be set in the environment for day-to-day use.

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

SYS$LOGIN (specific to the VMS port)

Used if chdir has no argument and "HOME" and "LOGDIR" are not set.

PERL_INTERNAL_RAND_SEED

Set to a non-negative integer to seed the random number generator used internally by

perl for a variety of purposes.

Ignored if perl is run setuid or setgid. Used only for some limited startup randomization

(hash keys) if "-T" or "-t" perl is started with tainting enabled.

Perl may be built to ignore this variable.

Perl also has environment variables that control how Perl handles data specific to particular natural

languages; see perllocale.

Perl and its various modules and components, including its test frameworks, may sometimes make use

of certain other environment variables. Some of these are specific to a particular platform. Please

consult the appropriate module documentation and any documentation for your platform (like

perlsolaris, perllinux, perlmacosx, perlwin32, etc) for variables peculiar to those specific situations.

Perl makes all environment variables available to the program being executed, and passes these along

to any child processes it starts. However, programs running setuid would do well to execute the

following lines before doing anything else, just to keep people honest:

$ENV{PATH} = "/bin:/usr/bin"; # or whatever you need

$ENV{SHELL} = "/bin/sh" if exists $ENV{SHELL};

delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

ORDER OF APPLICATION
Some options, in particular "-I", "-M", "PERL5LIB" and "PERL5OPT" can interact, and the order in

which they are applied is important.

Note that this section does not document what actually happens inside the perl interpreter, it documents

what effectively happens.

-I The effect of multiple "-I" options is to "unshift" them onto @INC from right to left. So for

example:

perl -I 1 -I 2 -I 3

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

will first prepend 3 onto the front of @INC, then prepend 2, and then prepend 1. The result is that

@INC begins with:

qw(1 2 3)

-M Multiple "-M" options are processed from left to right. So this:

perl -Mlib=1 -Mlib=2 -Mlib=3

will first use the lib pragma to prepend 1 to @INC, then it will prepend 2, then it will prepend 3,

resulting in an @INC that begins with:

qw(3 2 1)

the PERL5LIB environment variable

This contains a list of directories, separated by colons. The entire list is prepended to @INC in one

go. This:

PERL5LIB=1:2:3 perl

will result in an @INC that begins with:

qw(1 2 3)

combinations of -I, -M and PERL5LIB

"PERL5LIB" is applied first, then all the "-I" arguments, then all the "-M" arguments. This:

PERL5LIB=e1:e2 perl -I i1 -Mlib=m1 -I i2 -Mlib=m2

will result in an @INC that begins with:

qw(m2 m1 i1 i2 e1 e2)

the PERL5OPT environment variable

This contains a space separated list of switches. We only consider the effects of "-M" and "-I" in

this section.

After normal processing of "-I" switches from the command line, all the "-I" switches in

"PERL5OPT" are extracted. They are processed from left to right instead of from right to left.

Also note that while whitespace is allowed between a "-I" and its directory on the command line,

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

it is not allowed in "PERL5OPT".

After normal processing of "-M" switches from the command line, all the "-M" switches in

"PERL5OPT" are extracted. They are processed from left to right, i.e. the same as those on the

command line.

An example may make this clearer:

export PERL5OPT="-Mlib=optm1 -Iopti1 -Mlib=optm2 -Iopti2"

export PERL5LIB=e1:e2

perl -I i1 -Mlib=m1 -I i2 -Mlib=m2

will result in an @INC that begins with:

qw(

optm2

optm1

m2

m1

opti2

opti1

i1

i2

e1

e2

)

Other complications

There are some complications that are ignored in the examples above:

arch and version subdirs

All of "-I", "PERL5LIB" and "use lib" will also prepend arch and version subdirs if they are

present

sitecustomize.pl

PERLRUN(1) Perl Programmers Reference Guide PERLRUN(1)

perl v5.34.3 2023-11-28 PERLRUN(1)

