
NAME
perlstyle - Perl style guide

DESCRIPTION
Each programmer will, of course, have his or her own preferences in regards to formatting, but there

are some general guidelines that will make your programs easier to read, understand, and maintain.

The most important thing is to use strict and warnings in all your code or know the reason why not to.

You may turn them off explicitly for particular portions of code via "no warnings" or "no strict", and

this can be limited to the specific warnings or strict features you wish to disable. The -w flag and $^W

variable should not be used for this purpose since they can affect code you use but did not write, such

as modules from core or CPAN.

Regarding aesthetics of code lay out, about the only thing Larry cares strongly about is that the closing

curly bracket of a multi-line BLOCK should line up with the keyword that started the construct.

Beyond that, he has other preferences that aren’t so strong:

+o 4-column indent.

+o Opening curly on same line as keyword, if possible, otherwise line up.

+o Space before the opening curly of a multi-line BLOCK.

+o One-line BLOCK may be put on one line, including curlies.

+o No space before the semicolon.

+o Semicolon omitted in "short" one-line BLOCK.

+o Space around most operators.

+o Space around a "complex" subscript (inside brackets).

+o Blank lines between chunks that do different things.

+o Uncuddled elses.

+o No space between function name and its opening parenthesis.

+o Space after each comma.

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

perl v5.34.3 2023-11-28 PERLSTYLE(1)

+o Long lines broken after an operator (except "and" and "or").

+o Space after last parenthesis matching on current line.

+o Line up corresponding items vertically.

+o Omit redundant punctuation as long as clarity doesn’t suffer.

Larry has his reasons for each of these things, but he doesn’t claim that everyone else’s mind works the

same as his does.

Here are some other more substantive style issues to think about:

+o Just because you CAN do something a particular way doesn’t mean that you SHOULD do it that

way. Perl is designed to give you several ways to do anything, so consider picking the most

readable one. For instance

open(my $fh, ’<’, $foo) || die "Can’t open $foo: $!";

is better than

die "Can’t open $foo: $!" unless open(my $fh, ’<’, $foo);

because the second way hides the main point of the statement in a modifier. On the other hand

print "Starting analysis\n" if $verbose;

is better than

$verbose && print "Starting analysis\n";

because the main point isn’t whether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments doesn’t mean that you have

to make use of the defaults. The defaults are there for lazy systems programmers writing one-shot

programs. If you want your program to be readable, consider supplying the argument.

Along the same lines, just because you CAN omit parentheses in many places doesn’t mean that

you ought to:

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

perl v5.34.3 2023-11-28 PERLSTYLE(1)

return print reverse sort num values %array;

return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the % key

in vi.

Even if you aren’t in doubt, consider the mental welfare of the person who has to maintain the

code after you, and who will probably put parentheses in the wrong place.

+o Don’t go through silly contortions to exit a loop at the top or the bottom, when Perl provides the

"last" operator so you can exit in the middle. Just "outdent" it a little to make it more visible:

LINE:

for (;;) {

statements;

last LINE if $foo;

next LINE if /^#/;

statements;

}

+o Don’t be afraid to use loop labels--they’re there to enhance readability as well as to allow

multilevel loop breaks. See the previous example.

+o Avoid using "grep()" (or "map()") or ‘backticks‘ in a void context, that is, when you just throw

away their return values. Those functions all have return values, so use them. Otherwise use a

"foreach()" loop or the "system()" function instead.

+o For portability, when using features that may not be implemented on every machine, test the

construct in an eval to see if it fails. If you know what version or patchlevel a particular feature

was implemented, you can test $] ($PERL_VERSION in "English") to see if it will be there. The

"Config" module will also let you interrogate values determined by the Configure program when

Perl was installed.

+o Choose mnemonic identifiers. If you can’t remember what mnemonic means, you’ve got a

problem.

+o While short identifiers like $gotit are probably ok, use underscores to separate words in longer

identifiers. It is generally easier to read $var_names_like_this than $VarNamesLikeThis,

especially for non-native speakers of English. It’s also a simple rule that works consistently with

"VAR_NAMES_LIKE_THIS".

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

perl v5.34.3 2023-11-28 PERLSTYLE(1)

Package names are sometimes an exception to this rule. Perl informally reserves lowercase

module names for "pragma" modules like "integer" and "strict". Other modules should begin with

a capital letter and use mixed case, but probably without underscores due to limitations in

primitive file systems’ representations of module names as files that must fit into a few sparse

bytes.

+o You may find it helpful to use letter case to indicate the scope or nature of a variable. For

example:

$ALL_CAPS_HERE constants only (beware clashes with perl vars!)

$Some_Caps_Here package-wide global/static

$no_caps_here function scope my() or local() variables

Function and method names seem to work best as all lowercase. E.g., "$obj->as_string()".

You can use a leading underscore to indicate that a variable or function should not be used outside

the package that defined it.

+o If you have a really hairy regular expression, use the "/x" or "/xx" modifiers and put in some

whitespace to make it look a little less like line noise. Don’t use slash as a delimiter when your

regexp has slashes or backslashes.

+o Use the new "and" and "or" operators to avoid having to parenthesize list operators so much, and

to reduce the incidence of punctuation operators like "&&" and "||". Call your subroutines as if

they were functions or list operators to avoid excessive ampersands and parentheses.

+o Use here documents instead of repeated "print()" statements.

+o Line up corresponding things vertically, especially if it’d be too long to fit on one line anyway.

$IDX = $ST_MTIME;

$IDX = $ST_ATIME if $opt_u;

$IDX = $ST_CTIME if $opt_c;

$IDX = $ST_SIZE if $opt_s;

mkdir $tmpdir, 0700 or die "can’t mkdir $tmpdir: $!";

chdir($tmpdir) or die "can’t chdir $tmpdir: $!";

mkdir ’tmp’, 0777 or die "can’t mkdir $tmpdir/tmp: $!";

+o Always check the return codes of system calls. Good error messages should go to "STDERR",

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

perl v5.34.3 2023-11-28 PERLSTYLE(1)

include which program caused the problem, what the failed system call and arguments were, and

(VERY IMPORTANT) should contain the standard system error message for what went wrong.

Here’s a simple but sufficient example:

opendir(my $dh, $dir) or die "can’t opendir $dir: $!";

+o Line up your transliterations when it makes sense:

tr [abc]

[xyz];

+o Think about reusability. Why waste brainpower on a one-shot when you might want to do

something like it again? Consider generalizing your code. Consider writing a module or object

class. Consider making your code run cleanly with "use strict" and "use warnings" in effect.

Consider giving away your code. Consider changing your whole world view. Consider... oh,

never mind.

+o Try to document your code and use Pod formatting in a consistent way. Here are commonly

expected conventions:

+o use "C<>" for function, variable and module names (and more generally anything that can be

considered part of code, like filehandles or specific values). Note that function names are

considered more readable with parentheses after their name, that is "function()".

+o use "B<>" for commands names like cat or grep.

+o use "F<>" or "C<>" for file names. "F<>" should be the only Pod code for file names, but as

most Pod formatters render it as italic, Unix and Windows paths with their slashes and

backslashes may be less readable, and better rendered with "C<>".

+o Be consistent.

+o Be nice.

PERLSTYLE(1) Perl Programmers Reference Guide PERLSTYLE(1)

perl v5.34.3 2023-11-28 PERLSTYLE(1)

