
NAME
perlunicode - Unicode support in Perl

DESCRIPTION
If you haven’t already, before reading this document, you should become familiar with both perlunitut

and perluniintro.

Unicode aims to UNI-fy the en-CODE-ings of all the world’s character sets into a single Standard.

For quite a few of the various coding standards that existed when Unicode was first created, converting

from each to Unicode essentially meant adding a constant to each code point in the original standard,

and converting back meant just subtracting that same constant. For ASCII and ISO-8859-1, the

constant is 0. For ISO-8859-5, (Cyrillic) the constant is 864; for Hebrew (ISO-8859-8), it’s 1488; Thai

(ISO-8859-11), 3424; and so forth. This made it easy to do the conversions, and facilitated the

adoption of Unicode.

And it worked; nowadays, those legacy standards are rarely used. Most everyone uses Unicode.

Unicode is a comprehensive standard. It specifies many things outside the scope of Perl, such as how

to display sequences of characters. For a full discussion of all aspects of Unicode, see

<https://www.unicode.org>.

Important Caveats
Even though some of this section may not be understandable to you on first reading, we think it’s

important enough to highlight some of the gotchas before delving further, so here goes:

Unicode support is an extensive requirement. While Perl does not implement the Unicode standard or

the accompanying technical reports from cover to cover, Perl does support many Unicode features.

Also, the use of Unicode may present security issues that aren’t obvious, see "Security Implications of

Unicode" below.

Safest if you "use feature ’unicode_strings’"

In order to preserve backward compatibility, Perl does not turn on full internal Unicode support

unless the pragma "use feature ’unicode_strings’" is specified. (This is automatically selected if

you "use 5.012" or higher.) Failure to do this can trigger unexpected surprises. See "The

"Unicode Bug"" below.

This pragma doesn’t affect I/O. Nor does it change the internal representation of strings, only

their interpretation. There are still several places where Unicode isn’t fully supported, such as in

filenames.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Input and Output Layers

Use the ":encoding(...)" layer to read from and write to filehandles using the specified encoding.

(See open.)

You must convert your non-ASCII, non-UTF-8 Perl scripts to be UTF-8.

The encoding module has been deprecated since perl 5.18 and the perl internals it requires have

been removed with perl 5.26.

"use utf8" still needed to enable UTF-8 in scripts

If your Perl script is itself encoded in UTF-8, the "use utf8" pragma must be explicitly included to

enable recognition of that (in string or regular expression literals, or in identifier names). This is
the only time when an explicit "use utf8" is needed. (See utf8).

If a Perl script begins with the bytes that form the UTF-8 encoding of the Unicode BYTE ORDER

MARK ("BOM", see "Unicode Encodings"), those bytes are completely ignored.

UTF-16 scripts autodetected

If a Perl script begins with the Unicode "BOM" (UTF-16LE, UTF16-BE), or if the script looks

like non-"BOM"-marked UTF-16 of either endianness, Perl will correctly read in the script as the

appropriate Unicode encoding.

Byte and Character Semantics
Before Unicode, most encodings used 8 bits (a single byte) to encode each character. Thus a character

was a byte, and a byte was a character, and there could be only 256 or fewer possible characters. "Byte

Semantics" in the title of this section refers to this behavior. There was no need to distinguish between

"Byte" and "Character".

Then along comes Unicode which has room for over a million characters (and Perl allows for even

more). This means that a character may require more than a single byte to represent it, and so the two

terms are no longer equivalent. What matter are the characters as whole entities, and not usually the

bytes that comprise them. That’s what the term "Character Semantics" in the title of this section refers

to.

Perl had to change internally to decouple "bytes" from "characters". It is important that you too change

your ideas, if you haven’t already, so that "byte" and "character" no longer mean the same thing in your

mind.

The basic building block of Perl strings has always been a "character". The changes basically come

down to that the implementation no longer thinks that a character is always just a single byte.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

There are various things to note:

+o String handling functions, for the most part, continue to operate in terms of characters. "length()",

for example, returns the number of characters in a string, just as before. But that number no

longer is necessarily the same as the number of bytes in the string (there may be more bytes than

characters). The other such functions include "chop()", "chomp()", "substr()", "pos()", "index()",

"rindex()", "sort()", "sprintf()", and "write()".

The exceptions are:

+o the bit-oriented "vec"

+o the byte-oriented "pack"/"unpack" "C" format

However, the "W" specifier does operate on whole characters, as does the "U" specifier.

+o some operators that interact with the platform’s operating system

Operators dealing with filenames are examples.

+o when the functions are called from within the scope of the "use bytes" pragma

Likely, you should use this only for debugging anyway.

+o Strings--including hash keys--and regular expression patterns may contain characters that have

ordinal values larger than 255.

If you use a Unicode editor to edit your program, Unicode characters may occur directly within

the literal strings in UTF-8 encoding, or UTF-16. (The former requires a "use utf8", the latter may

require a "BOM".)

"Creating Unicode" in perluniintro gives other ways to place non-ASCII characters in your strings.

+o The "chr()" and "ord()" functions work on whole characters.

+o Regular expressions match whole characters. For example, "." matches a whole character instead

of only a single byte.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

+o The "tr///" operator translates whole characters. (Note that the "tr///CU" functionality has been

removed. For similar functionality to that, see "pack(’U0’, ...)" and "pack(’C0’, ...)").

+o "scalar reverse()" reverses by character rather than by byte.

+o The bit string operators, "& | ^ ~" and (starting in v5.22) "&. |. ^. ~." can operate on bit strings

encoded in UTF-8, but this can give unexpected results if any of the strings contain code points

above 0xFF. Starting in v5.28, it is a fatal error to have such an operand. Otherwise, the

operation is performed on a non-UTF-8 copy of the operand. If you’re not sure about the

encoding of a string, downgrade it before using any of these operators; you can use

"utf8::utf8_downgrade()".

The bottom line is that Perl has always practiced "Character Semantics", but with the advent of

Unicode, that is now different than "Byte Semantics".

ASCII Rules versus Unicode Rules
Before Unicode, when a character was a byte was a character, Perl knew only about the 128 characters

defined by ASCII, code points 0 through 127 (except for under "use locale"). That left the code points

128 to 255 as unassigned, and available for whatever use a program might want. The only semantics

they have is their ordinal numbers, and that they are members of none of the non-negative character

classes. None are considered to match "\w" for example, but all match "\W".

Unicode, of course, assigns each of those code points a particular meaning (along with ones above

255). To preserve backward compatibility, Perl only uses the Unicode meanings when there is some

indication that Unicode is what is intended; otherwise the non-ASCII code points remain treated as if

they are unassigned.

Here are the ways that Perl knows that a string should be treated as Unicode:

+o Within the scope of "use utf8"

If the whole program is Unicode (signified by using 8-bit Unicode Transformation Format), then

all literal strings within it must be Unicode.

+o Within the scope of "use feature ’unicode_strings’"

This pragma was created so you can explicitly tell Perl that operations executed within its scope

are to use Unicode rules. More operations are affected with newer perls. See "The "Unicode

Bug"".

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

+o Within the scope of "use 5.012" or higher

This implicitly turns on "use feature ’unicode_strings’".

+o Within the scope of "use locale ’not_characters’", or "use locale" and the current locale is a UTF-8

locale.

The former is defined to imply Unicode handling; and the latter indicates a Unicode locale, hence

a Unicode interpretation of all strings within it.

+o When the string contains a Unicode-only code point

Perl has never accepted code points above 255 without them being Unicode, so their use implies

Unicode for the whole string.

+o When the string contains a Unicode named code point "\N{...}"

The "\N{...}" construct explicitly refers to a Unicode code point, even if it is one that is also in

ASCII. Therefore the string containing it must be Unicode.

+o When the string has come from an external source marked as Unicode

The "-C" command line option can specify that certain inputs to the program are Unicode, and the

values of this can be read by your Perl code, see "${^UNICODE}" in perlvar.

+o When the string has been upgraded to UTF-8

The function "utf8::utf8_upgrade()" can be explicitly used to permanently (unless a subsequent

"utf8::utf8_downgrade()" is called) cause a string to be treated as Unicode.

+o There are additional methods for regular expression patterns

A pattern that is compiled with the "/u" or "/a" modifiers is treated as Unicode (though there are

some restrictions with "/a"). Under the "/d" and "/l" modifiers, there are several other indications

for Unicode; see "Character set modifiers" in perlre.

Note that all of the above are overridden within the scope of "use bytes"; but you should be using this

pragma only for debugging.

Note also that some interactions with the platform’s operating system never use Unicode rules.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

When Unicode rules are in effect:

+o Case translation operators use the Unicode case translation tables.

Note that "uc()", or "\U" in interpolated strings, translates to uppercase, while "ucfirst", or "\u" in

interpolated strings, translates to titlecase in languages that make the distinction (which is

equivalent to uppercase in languages without the distinction).

There is a CPAN module, "Unicode::Casing", which allows you to define your own mappings to

be used in "lc()", "lcfirst()", "uc()", "ucfirst()", and "fc" (or their double-quoted string inlined

versions such as "\U"). (Prior to Perl 5.16, this functionality was partially provided in the Perl

core, but suffered from a number of insurmountable drawbacks, so the CPAN module was written

instead.)

+o Character classes in regular expressions match based on the character properties specified in the

Unicode properties database.

"\w" can be used to match a Japanese ideograph, for instance; and "[[:digit:]]" a Bengali number.

+o Named Unicode properties, scripts, and block ranges may be used (like bracketed character

classes) by using the "\p{}" "matches property" construct and the "\P{}" negation, "doesn’t match

property".

See "Unicode Character Properties" for more details.

You can define your own character properties and use them in the regular expression with the

"\p{}" or "\P{}" construct. See "User-Defined Character Properties" for more details.

Extended Grapheme Clusters (Logical characters)
Consider a character, say "H". It could appear with various marks around it, such as an acute accent, or

a circumflex, or various hooks, circles, arrows, etc., above, below, to one side or the other, etc. There

are many possibilities among the world’s languages. The number of combinations is astronomical, and

if there were a character for each combination, it would soon exhaust Unicode’s more than a million

possible characters. So Unicode took a different approach: there is a character for the base "H", and a

character for each of the possible marks, and these can be variously combined to get a final logical

character. So a logical character--what appears to be a single character--can be a sequence of more

than one individual characters. The Unicode standard calls these "extended grapheme clusters" (which

is an improved version of the no-longer much used "grapheme cluster"); Perl furnishes the "\X" regular

expression construct to match such sequences in their entirety.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

But Unicode’s intent is to unify the existing character set standards and practices, and several pre-

existing standards have single characters that mean the same thing as some of these combinations, like

ISO-8859-1, which has quite a few of them. For example, "LATIN CAPITAL LETTER E WITH

ACUTE" was already in this standard when Unicode came along. Unicode therefore added it to its

repertoire as that single character. But this character is considered by Unicode to be equivalent to the

sequence consisting of the character "LATIN CAPITAL LETTER E" followed by the character

"COMBINING ACUTE ACCENT".

"LATIN CAPITAL LETTER E WITH ACUTE" is called a "pre-composed" character, and its

equivalence with the "E" and the "COMBINING ACCENT" sequence is called canonical equivalence.

All pre-composed characters are said to have a decomposition (into the equivalent sequence), and the

decomposition type is also called canonical. A string may be comprised as much as possible of

precomposed characters, or it may be comprised of entirely decomposed characters. Unicode calls

these respectively, "Normalization Form Composed" (NFC) and "Normalization Form Decomposed".

The "Unicode::Normalize" module contains functions that convert between the two. A string may also

have both composed characters and decomposed characters; this module can be used to make it all one

or the other.

You may be presented with strings in any of these equivalent forms. There is currently nothing in Perl

5 that ignores the differences. So you’ll have to specially handle it. The usual advice is to convert

your inputs to "NFD" before processing further.

For more detailed information, see <http://unicode.org/reports/tr15/>.

Unicode Character Properties
(The only time that Perl considers a sequence of individual code points as a single logical character is

in the "\X" construct, already mentioned above. Therefore "character" in this discussion means a

single Unicode code point.)

Very nearly all Unicode character properties are accessible through regular expressions by using the

"\p{}" "matches property" construct and the "\P{}" "doesn’t match property" for its negation.

For instance, "\p{Uppercase}" matches any single character with the Unicode "Uppercase" property,

while "\p{L}" matches any character with a "General_Category" of "L" (letter) property (see

"General_Category" below). Brackets are not required for single letter property names, so "\p{L}" is

equivalent to "\pL".

More formally, "\p{Uppercase}" matches any single character whose Unicode "Uppercase" property

value is "True", and "\P{Uppercase}" matches any character whose "Uppercase" property value is

"False", and they could have been written as "\p{Uppercase=True}" and "\p{Uppercase=False}",

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

respectively.

This formality is needed when properties are not binary; that is, if they can take on more values than

just "True" and "False". For example, the "Bidi_Class" property (see "Bidirectional Character Types"

below), can take on several different values, such as "Left", "Right", "Whitespace", and others. To

match these, one needs to specify both the property name ("Bidi_Class"), AND the value being

matched against ("Left", "Right", etc.). This is done, as in the examples above, by having the two

components separated by an equal sign (or interchangeably, a colon), like "\p{Bidi_Class: Left}".

All Unicode-defined character properties may be written in these compound forms of

"\p{property=value}" or "\p{property:value}", but Perl provides some additional properties that are

written only in the single form, as well as single-form short-cuts for all binary properties and certain

others described below, in which you may omit the property name and the equals or colon separator.

Most Unicode character properties have at least two synonyms (or aliases if you prefer): a short one

that is easier to type and a longer one that is more descriptive and hence easier to understand. Thus the

"L" and "Letter" properties above are equivalent and can be used interchangeably. Likewise, "Upper"

is a synonym for "Uppercase", and we could have written "\p{Uppercase}" equivalently as

"\p{Upper}". Also, there are typically various synonyms for the values the property can be. For

binary properties, "True" has 3 synonyms: "T", "Yes", and "Y"; and "False" has correspondingly "F",

"No", and "N". But be careful. A short form of a value for one property may not mean the same thing

as the short form spelled the same for another. Thus, for the "General_Category" property, "L" means

"Letter", but for the "Bidi_Class" property, "L" means "Left". A complete list of properties and

synonyms is in perluniprops.

Upper/lower case differences in property names and values are irrelevant; thus "\p{Upper}" means the

same thing as "\p{upper}" or even "\p{UpPeR}". Similarly, you can add or subtract underscores

anywhere in the middle of a word, so that these are also equivalent to "\p{U_p_p_e_r}". And white

space is generally irrelevant adjacent to non-word characters, such as the braces and the equals or colon

separators, so "\p{ Upper }" and "\p{ Upper_case : Y }" are equivalent to these as well. In fact, white

space and even hyphens can usually be added or deleted anywhere. So even "\p{ Up-per case = Yes}"

is equivalent. All this is called "loose-matching" by Unicode. The "name" property has some

restrictions on this due to a few outlier names. Full details are given in

<https://www.unicode.org/reports/tr44/tr44-24.html#UAX44-LM2>.

The few places where stricter matching is used is in the middle of numbers, the "name" property, and in

the Perl extension properties that begin or end with an underscore. Stricter matching cares about white

space (except adjacent to non-word characters), hyphens, and non-interior underscores.

You can also use negation in both "\p{}" and "\P{}" by introducing a caret ("^") between the first brace

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

and the property name: "\p{^Tamil}" is equal to "\P{Tamil}".

Almost all properties are immune to case-insensitive matching. That is, adding a "/i" regular

expression modifier does not change what they match. There are two sets that are affected. The first

set is "Uppercase_Letter", "Lowercase_Letter", and "Titlecase_Letter", all of which match

"Cased_Letter" under "/i" matching. And the second set is "Uppercase", "Lowercase", and "Titlecase",

all of which match "Cased" under "/i" matching. This set also includes its subsets "PosixUpper" and

"PosixLower" both of which under "/i" match "PosixAlpha". (The difference between these sets is that

some things, such as Roman numerals, come in both upper and lower case so they are "Cased", but

aren’t considered letters, so they aren’t "Cased_Letter"’s.)

See "Beyond Unicode code points" for special considerations when matching Unicode properties

against non-Unicode code points.

General_Category

Every Unicode character is assigned a general category, which is the "most usual categorization of a

character" (from <https://www.unicode.org/reports/tr44>).

The compound way of writing these is like "\p{General_Category=Number}" (short: "\p{gc:n}"). But

Perl furnishes shortcuts in which everything up through the equal or colon separator is omitted. So you

can instead just write "\pN".

Here are the short and long forms of the values the "General Category" property can have:

Short Long

L Letter

LC, L& Cased_Letter (that is: [\p{Ll}\p{Lu}\p{Lt}])

Lu Uppercase_Letter

Ll Lowercase_Letter

Lt Titlecase_Letter

Lm Modifier_Letter

Lo Other_Letter

M Mark

Mn Nonspacing_Mark

Mc Spacing_Mark

Me Enclosing_Mark

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

N Number

Nd Decimal_Number (also Digit)

Nl Letter_Number

No Other_Number

P Punctuation (also Punct)

Pc Connector_Punctuation

Pd Dash_Punctuation

Ps Open_Punctuation

Pe Close_Punctuation

Pi Initial_Punctuation

(may behave like Ps or Pe depending on usage)

Pf Final_Punctuation

(may behave like Ps or Pe depending on usage)

Po Other_Punctuation

S Symbol

Sm Math_Symbol

Sc Currency_Symbol

Sk Modifier_Symbol

So Other_Symbol

Z Separator

Zs Space_Separator

Zl Line_Separator

Zp Paragraph_Separator

C Other

Cc Control (also Cntrl)

Cf Format

Cs Surrogate

Co Private_Use

Cn Unassigned

Single-letter properties match all characters in any of the two-letter sub-properties starting with the

same letter. "LC" and "L&" are special: both are aliases for the set consisting of everything matched

by "Ll", "Lu", and "Lt".

Bidirectional Character Types

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Because scripts differ in their directionality (Hebrew and Arabic are written right to left, for example)

Unicode supplies a "Bidi_Class" property. Some of the values this property can have are:

Value Meaning

L Left-to-Right

LRE Left-to-Right Embedding

LRO Left-to-Right Override

R Right-to-Left

AL Arabic Letter

RLE Right-to-Left Embedding

RLO Right-to-Left Override

PDF Pop Directional Format

EN European Number

ES European Separator

ET European Terminator

AN Arabic Number

CS Common Separator

NSM Non-Spacing Mark

BN Boundary Neutral

B Paragraph Separator

S Segment Separator

WS Whitespace

ON Other Neutrals

This property is always written in the compound form. For example, "\p{Bidi_Class:R}" matches

characters that are normally written right to left. Unlike the "General_Category" property, this property

can have more values added in a future Unicode release. Those listed above comprised the complete

set for many Unicode releases, but others were added in Unicode 6.3; you can always find what the

current ones are in perluniprops. And <https://www.unicode.org/reports/tr9/> describes how to use

them.

Scripts

The world’s languages are written in many different scripts. This sentence (unless you’re reading it in

translation) is written in Latin, while Russian is written in Cyrillic, and Greek is written in, well, Greek;

Japanese mainly in Hiragana or Katakana. There are many more.

The Unicode "Script" and "Script_Extensions" properties give what script a given character is in. The

"Script_Extensions" property is an improved version of "Script", as demonstrated below. Either

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

property can be specified with the compound form like "\p{Script=Hebrew}" (short: "\p{sc=hebr}"), or

"\p{Script_Extensions=Javanese}" (short: "\p{scx=java}"). In addition, Perl furnishes shortcuts for all

"Script_Extensions" property names. You can omit everything up through the equals (or colon), and

simply write "\p{Latin}" or "\P{Cyrillic}". (This is not true for "Script", which is required to be

written in the compound form. Prior to Perl v5.26, the single form returned the plain old "Script"

version, but was changed because "Script_Extensions" gives better results.)

The difference between these two properties involves characters that are used in multiple scripts. For

example the digits ’0’ through ’9’ are used in many parts of the world. These are placed in a script

named "Common". Other characters are used in just a few scripts. For example, the

"KATAKANA-HIRAGANA DOUBLE HYPHEN" is used in both Japanese scripts, Katakana and

Hiragana, but nowhere else. The "Script" property places all characters that are used in multiple scripts

in the "Common" script, while the "Script_Extensions" property places those that are used in only a

few scripts into each of those scripts; while still using "Common" for those used in many scripts. Thus

both these match:

"0" =~ /\p{sc=Common}/ # Matches

"0" =~ /\p{scx=Common}/ # Matches

and only the first of these match:

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{sc=Common} # Matches

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{scx=Common} # No match

And only the last two of these match:

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{sc=Hiragana} # No match

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{sc=Katakana} # No match

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{scx=Hiragana} # Matches

"\N{KATAKANA-HIRAGANA DOUBLE HYPHEN}" =~ /\p{scx=Katakana} # Matches

"Script_Extensions" is thus an improved "Script", in which there are fewer characters in the "Common"

script, and correspondingly more in other scripts. It is new in Unicode version 6.0, and its data are

likely to change significantly in later releases, as things get sorted out. New code should probably be

using "Script_Extensions" and not plain "Script". If you compile perl with a Unicode release that

doesn’t have "Script_Extensions", the single form Perl extensions will instead refer to the plain

"Script" property. If you compile with a version of Unicode that doesn’t have the "Script" property,

these extensions will not be defined at all.

(Actually, besides "Common", the "Inherited" script, contains characters that are used in multiple

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

scripts. These are modifier characters which inherit the script value of the controlling character. Some

of these are used in many scripts, and so go into "Inherited" in both "Script" and "Script_Extensions".

Others are used in just a few scripts, so are in "Inherited" in "Script", but not in "Script_Extensions".)

It is worth stressing that there are several different sets of digits in Unicode that are equivalent to 0-9

and are matchable by "\d" in a regular expression. If they are used in a single language only, they are

in that language’s "Script" and "Script_Extensions". If they are used in more than one script, they will

be in "sc=Common", but only if they are used in many scripts should they be in "scx=Common".

The explanation above has omitted some detail; refer to UAX#24 "Unicode Script Property":

<https://www.unicode.org/reports/tr24>.

A complete list of scripts and their shortcuts is in perluniprops.

Use of the "Is" Prefix

For backward compatibility (with ancient Perl 5.6), all properties writable without using the compound

form mentioned so far may have "Is" or "Is_" prepended to their name, so "\P{Is_Lu}", for example, is

equal to "\P{Lu}", and "\p{IsScript:Arabic}" is equal to "\p{Arabic}".

Blocks

In addition to scripts, Unicode also defines blocks of characters. The difference between scripts and

blocks is that the concept of scripts is closer to natural languages, while the concept of blocks is more

of an artificial grouping based on groups of Unicode characters with consecutive ordinal values. For

example, the "Basic Latin" block is all the characters whose ordinals are between 0 and 127, inclusive;

in other words, the ASCII characters. The "Latin" script contains some letters from this as well as

several other blocks, like "Latin-1 Supplement", "Latin Extended-A", etc., but it does not contain all

the characters from those blocks. It does not, for example, contain the digits 0-9, because those digits

are shared across many scripts, and hence are in the "Common" script.

For more about scripts versus blocks, see UAX#24 "Unicode Script Property":

<https://www.unicode.org/reports/tr24>

The "Script_Extensions" or "Script" properties are likely to be the ones you want to use when

processing natural language; the "Block" property may occasionally be useful in working with the nuts

and bolts of Unicode.

Block names are matched in the compound form, like "\p{Block: Arrows}" or "\p{Blk=Hebrew}".

Unlike most other properties, only a few block names have a Unicode-defined short name.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Perl also defines single form synonyms for the block property in cases where these do not conflict with

something else. But don’t use any of these, because they are unstable. Since these are Perl extensions,

they are subordinate to official Unicode property names; Unicode doesn’t know nor care about Perl’s

extensions. It may happen that a name that currently means the Perl extension will later be changed

without warning to mean a different Unicode property in a future version of the perl interpreter that

uses a later Unicode release, and your code would no longer work. The extensions are mentioned here

for completeness: Take the block name and prefix it with one of: "In" (for example "\p{Blk=Arrows}"

can currently be written as "\p{In_Arrows}"); or sometimes "Is" (like "\p{Is_Arrows}"); or sometimes

no prefix at all ("\p{Arrows}"). As of this writing (Unicode 9.0) there are no conflicts with using the

"In_" prefix, but there are plenty with the other two forms. For example, "\p{Is_Hebrew}" and

"\p{Hebrew}" mean "\p{Script_Extensions=Hebrew}" which is NOT the same thing as

"\p{Blk=Hebrew}". Our advice used to be to use the "In_" prefix as a single form way of specifying a

block. But Unicode 8.0 added properties whose names begin with "In", and it’s now clear that it’s only

luck that’s so far prevented a conflict. Using "In" is only marginally less typing than "Blk:", and the

latter’s meaning is clearer anyway, and guaranteed to never conflict. So don’t take chances. Use

"\p{Blk=foo}" for new code. And be sure that block is what you really really want to do. In most

cases scripts are what you want instead.

A complete list of blocks is in perluniprops.

Other Properties

There are many more properties than the very basic ones described here. A complete list is in

perluniprops.

Unicode defines all its properties in the compound form, so all single-form properties are Perl

extensions. Most of these are just synonyms for the Unicode ones, but some are genuine extensions,

including several that are in the compound form. And quite a few of these are actually recommended

by Unicode (in <https://www.unicode.org/reports/tr18>).

This section gives some details on all extensions that aren’t just synonyms for compound-form

Unicode properties (for those properties, you’ll have to refer to the Unicode Standard

<https://www.unicode.org/reports/tr44>.

"\p{All}"
This matches every possible code point. It is equivalent to "qr/./s". Unlike all the other non-user-

defined "\p{}" property matches, no warning is ever generated if this is property is matched

against a non-Unicode code point (see "Beyond Unicode code points" below).

"\p{Alnum}"

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

This matches any "\p{Alphabetic}" or "\p{Decimal_Number}" character.

"\p{Any}"
This matches any of the 1_114_112 Unicode code points. It is a synonym for "\p{Unicode}".

"\p{ASCII}"
This matches any of the 128 characters in the US-ASCII character set, which is a subset of

Unicode.

"\p{Assigned}"
This matches any assigned code point; that is, any code point whose general category is not

"Unassigned" (or equivalently, not "Cn").

"\p{Blank}"
This is the same as "\h" and "\p{HorizSpace}": A character that changes the spacing horizontally.

"\p{Decomposition_Type: Non_Canonical}" (Short: "\p{Dt=NonCanon}")

Matches a character that has a non-canonical decomposition.

The "Extended Grapheme Clusters (Logical characters)" section above talked about canonical

decompositions. However, many more characters have a different type of decomposition, a

"compatible" or "non-canonical" decomposition. The sequences that form these decompositions

are not considered canonically equivalent to the pre-composed character. An example is the

"SUPERSCRIPT ONE". It is somewhat like a regular digit 1, but not exactly; its decomposition

into the digit 1 is called a "compatible" decomposition, specifically a "super" decomposition.

There are several such compatibility decompositions (see

<https://www.unicode.org/reports/tr44>), including one called "compat", which means some

miscellaneous type of decomposition that doesn’t fit into the other decomposition categories that

Unicode has chosen.

Note that most Unicode characters don’t have a decomposition, so their decomposition type is

"None".

For your convenience, Perl has added the "Non_Canonical" decomposition type to mean any of

the several compatibility decompositions.

"\p{Graph}"
Matches any character that is graphic. Theoretically, this means a character that on a printer

would cause ink to be used.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

"\p{HorizSpace}"
This is the same as "\h" and "\p{Blank}": a character that changes the spacing horizontally.

"\p{In=*}"
This is a synonym for "\p{Present_In=*}"

"\p{PerlSpace}"
This is the same as "\s", restricted to ASCII, namely "[\f\n\r\t]" and starting in Perl v5.18, a

vertical tab.

Mnemonic: Perl’s (original) space

"\p{PerlWord}"
This is the same as "\w", restricted to ASCII, namely "[A-Za-z0-9_]"

Mnemonic: Perl’s (original) word.

"\p{Posix...}"
There are several of these, which are equivalents, using the "\p{}" notation, for Posix classes and

are described in "POSIX Character Classes" in perlrecharclass.

"\p{Present_In: *}" (Short: "\p{In=*}")

This property is used when you need to know in what Unicode version(s) a character is.

The "*" above stands for some Unicode version number, such as 1.1 or 12.0; or the "*" can also be

"Unassigned". This property will match the code points whose final disposition has been settled

as of the Unicode release given by the version number; "\p{Present_In: Unassigned}" will match

those code points whose meaning has yet to be assigned.

For example, "U+0041" "LATIN CAPITAL LETTER A" was present in the very first Unicode

release available, which is 1.1, so this property is true for all valid "*" versions. On the other

hand, "U+1EFF" was not assigned until version 5.1 when it became "LATIN SMALL LETTER Y

WITH LOOP", so the only "*" that would match it are 5.1, 5.2, and later.

Unicode furnishes the "Age" property from which this is derived. The problem with Age is that a

strict interpretation of it (which Perl takes) has it matching the precise release a code point’s

meaning is introduced in. Thus "U+0041" would match only 1.1; and "U+1EFF" only 5.1. This is

not usually what you want.

Some non-Perl implementations of the Age property may change its meaning to be the same as the

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Perl "Present_In" property; just be aware of that.

Another confusion with both these properties is that the definition is not that the code point has

been assigned, but that the meaning of the code point has been determined. This is because 66

code points will always be unassigned, and so the "Age" for them is the Unicode version in which

the decision to make them so was made. For example, "U+FDD0" is to be permanently

unassigned to a character, and the decision to do that was made in version 3.1, so "\p{Age=3.1}"

matches this character, as also does "\p{Present_In: 3.1}" and up.

"\p{Print}"
This matches any character that is graphical or blank, except controls.

"\p{SpacePerl}"
This is the same as "\s", including beyond ASCII.

Mnemonic: Space, as modified by Perl. (It doesn’t include the vertical tab until v5.18, which both

the Posix standard and Unicode consider white space.)

"\p{Title}" and "\p{Titlecase}"
Under case-sensitive matching, these both match the same code points as "\p{General

Category=Titlecase_Letter}" ("\p{gc=lt}"). The difference is that under "/i" caseless matching,

these match the same as "\p{Cased}", whereas "\p{gc=lt}" matches "\p{Cased_Letter").

"\p{Unicode}"
This matches any of the 1_114_112 Unicode code points. "\p{Any}".

"\p{VertSpace}"
This is the same as "\v": A character that changes the spacing vertically.

"\p{Word}"
This is the same as "\w", including over 100_000 characters beyond ASCII.

"\p{XPosix...}"
There are several of these, which are the standard Posix classes extended to the full Unicode

range. They are described in "POSIX Character Classes" in perlrecharclass.

Comparison of "\N{...}" and "\p{name=...}"
Starting in Perl 5.32, you can specify a character by its name in regular expression patterns using

"\p{name=...}". This is in addition to the longstanding method of using "\N{...}". The following

summarizes the differences between these two:

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

\N{...} \p{Name=...}

can interpolate only with eval yes [1]

custom names yes no [2]

name aliases yes yes [3]

named sequences yes yes [4]

name value parsing exact Unicode loose [5]

[1] The ability to interpolate means you can do something like

qr/\p{na=latin capital letter $which}/

and specify $which elsewhere.

[2] You can create your own names for characters, and override official ones when using "\N{...}".

See "CUSTOM ALIASES" in charnames.

[3] Some characters have multiple names (synonyms).

[4] Some particular sequences of characters are given a single name, in addition to their individual

ones.

[5] Exact name value matching means you have to specify case, hyphens, underscores, and spaces

precisely in the name you want. Loose matching follows the Unicode rules

<https://www.unicode.org/reports/tr44/tr44-24.html#UAX44-LM2>, where these are mostly

irrelevant. Except for a few outlier character names, these are the same rules as are already used

for any other "\p{...}" property.

Wildcards in Property Values
Starting in Perl 5.30, it is possible to do something like this:

qr!\p{numeric_value=/\A[0-5]\z/}!

or, by abbreviating and adding "/x",

qr! \p{nv= /(?x) \A [0-5] \z / }!

This matches all code points whose numeric value is one of 0, 1, 2, 3, 4, or 5. This particular example

could instead have been written as

qr! \A [\p{nv=0}\p{nv=1}\p{nv=2}\p{nv=3}\p{nv=4}\p{nv=5}] \z !xx

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

in earlier perls, so in this case this feature just makes things easier and shorter to write. If we hadn’t

included the "\A" and "\z", these would have matched things like "1/2" because that contains a 1 (as

well as a 2). As written, it matches things like subscripts that have these numeric values. If we only

wanted the decimal digits with those numeric values, we could say,

qr! (?[\d & \p{nv=/[0-5]/]) }!x

The "\d" gets rid of needing to anchor the pattern, since it forces the result to only match "[0-9]", and

the "[0-5]" further restricts it.

The text in the above examples enclosed between the "/" characters can be just about any regular

expression. It is independent of the main pattern, so doesn’t share any capturing groups, etc. The

delimiters for it must be ASCII punctuation, but it may NOT be delimited by "{", nor "}" nor contain a

literal "}", as that delimits the end of the enclosing "\p{}". Like any pattern, certain other delimiters

are terminated by their mirror images. These are "(", ""["", and "<". If the delimiter is any of "-", "_",

"+", or "\", or is the same delimiter as is used for the enclosing pattern, it must be preceded by a

backslash escape, both fore and aft.

Beware of using "$" to indicate to match the end of the string. It can too easily be interpreted as being

a punctuation variable, like $/.

No modifiers may follow the final delimiter. Instead, use "(?adlupimnsx-imnsx)" in perlre and/or

"(?adluimnsx-imnsx:pattern)" in perlre to specify modifiers. However, certain modifiers are illegal in

your wildcard subpattern. The only character set modifier specifiable is "/aa"; any other character set,

and "-m", and "p", and "s" are all illegal. Specifying modifiers like "qr/.../gc" that aren’t legal in the

"(?...)" notation normally raise a warning, but with wildcard subpatterns, their use is an error. The "m"

modifier is ineffective; everything that matches will be a single line.

By default, your pattern is matched case-insensitively, as if "/i" had been specified. You can change

this by saying "(?-i)" in your pattern.

There are also certain operations that are illegal. You can’t nest "\p{...}" and "\P{...}" calls within a

wildcard subpattern, and "\G" doesn’t make sense, so is also prohibited.

And the "*" quantifier (or its equivalent "(0,}") is illegal.

This feature is not available when the left-hand side is prefixed by "Is_", nor for any form that is

marked as "Discouraged" in "Discouraged" in perluniprops.

This experimental feature has been added to begin to implement

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

<https://www.unicode.org/reports/tr18/#Wildcard_Properties>. Using it will raise a (default-on)

warning in the "experimental::uniprop_wildcards" category. We reserve the right to change its

operation as we gain experience.

Your subpattern can be just about anything, but for it to have some utility, it should match when called

with either or both of a) the full name of the property value with underscores (and/or spaces in the

Block property) and some things uppercase; or b) the property value in all lowercase with spaces and

underscores squeezed out. For example,

qr!\p{Blk=/Old I.*/}!

qr!\p{Blk=/oldi.*/}!

would match the same things.

Another example that shows that within "\p{...}", "/x" isn’t needed to have spaces:

qr!\p{scx= /Hebrew|Greek/ }!

To be safe, we should have anchored the above example, to prevent matches for something like

"Hebrew_Braille", but there aren’t any script names like that, so far. A warning is issued if none of the

legal values for a property are matched by your pattern. It’s likely that a future release will raise a

warning if your pattern ends up causing every possible code point to match.

Starting in 5.32, the Name, Name Aliases, and Named Sequences properties are allowed to be matched.

They are considered to be a single combination property, just as has long been the case for "\N{}".

Loose matching doesn’t work in exactly the same way for these as it does for the values of other

properties. The rules are given in <https://www.unicode.org/reports/tr44/tr44-24.html#UAX44-LM2>.

As a result, Perl doesn’t try loose matching for you, like it does in other properties. All letters in names

are uppercase, but you can add "(?i)" to your subpattern to ignore case. If you’re uncertain where a

blank is, you can use " ?" in your subpattern. No character name contains an underscore, so don’t

bother trying to match one. The use of hyphens is particularly problematic; refer to the above link. But

note that, as of Unicode 13.0, the only script in modern usage which has weirdnesses with these is

Tibetan; also the two Korean characters U+116C HANGUL JUNGSEONG OE and U+1180 HANGUL

JUNGSEONG O-E. Unicode makes no promises to not add hyphen-problematic names in the future.

Using wildcards on these is resource intensive, given the hundreds of thousands of legal names that

must be checked against.

An example of using Name property wildcards is

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

qr!\p{name=/(SMILING|GRINNING) FACE/}!

Another is

qr/(?[\p{name=\/CJK\/} - \p{ideographic}])/

which is the 200-ish (as of Unicode 13.0) CJK characters that aren’t ideographs.

There are certain properties that wildcard subpatterns don’t currently work with. These are:

Bidi Mirroring Glyph

Bidi Paired Bracket

Case Folding

Decomposition Mapping

Equivalent Unified Ideograph

Lowercase Mapping

NFKC Case Fold

Titlecase Mapping

Uppercase Mapping

Nor is the "@unicode_property@" form implemented.

Here’s a complete example of matching IPV4 internet protocol addresses in any (single) script

no warnings ’experimental::regex_sets’;

no warnings ’experimental::uniprop_wildcards’;

Can match a substring, so this intermediate regex needs to have

context or anchoring in its final use. Using nt=de yields decimal

digits. When specifying a subset of these, we must include \d to

prevent things like U+00B2 SUPERSCRIPT TWO from matching

my $zero_through_255 =

qr/ \b (*sr: # All from same sript

(?[\p{nv=0} & \d])* # Optional leading zeros

(# Then one of:

\d{1,2} # 0 - 99

| (?[\p{nv=1} & \d]) \d{2} # 100 - 199

| (?[\p{nv=2} & \d])

((?[\p{nv=:[0-4]:} & \d]) \d # 200 - 249

| (?[\p{nv=5} & \d])

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

(?[\p{nv=:[0-5]:} & \d]) # 250 - 255

)

)

)

\b

/x;

my $ipv4 = qr/ \A (*sr: $zero_through_255

(?: [.] $zero_through_255) {3}

)

\z

/x;

User-Defined Character Properties
You can define your own binary character properties by defining subroutines whose names begin with

"In" or "Is". (The experimental feature "(?[])" in perlre provides an alternative which allows more

complex definitions.) The subroutines can be defined in any package. They override any Unicode

properties expressed as the same names. The user-defined properties can be used in the regular

expression "\p{}" and "\P{}" constructs; if you are using a user-defined property from a package other

than the one you are in, you must specify its package in the "\p{}" or "\P{}" construct.

assuming property IsForeign defined in Lang::

package main; # property package name required

if ($txt =~ /\p{Lang::IsForeign}+/) { ... }

package Lang; # property package name not required

if ($txt =~ /\p{IsForeign}+/) { ... }

Note that the effect is compile-time and immutable once defined. However, the subroutines are passed

a single parameter, which is 0 if case-sensitive matching is in effect and non-zero if caseless matching

is in effect. The subroutine may return different values depending on the value of the flag, and one set

of values will immutably be in effect for all case-sensitive matches, and the other set for all case-

insensitive matches.

Note that if the regular expression is tainted, then Perl will die rather than calling the subroutine when

the name of the subroutine is determined by the tainted data.

The subroutines must return a specially-formatted string, with one or more newline-separated lines.

Each line must be one of the following:

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

+o A single hexadecimal number denoting a code point to include.

+o Two hexadecimal numbers separated by horizontal whitespace (space or tabular characters)

denoting a range of code points to include. The second number must not be smaller than the first.

+o Something to include, prefixed by "+": a built-in character property (prefixed by "utf8::") or a

fully qualified (including package name) user-defined character property, to represent all the

characters in that property; two hexadecimal code points for a range; or a single hexadecimal code

point.

+o Something to exclude, prefixed by "-": an existing character property (prefixed by "utf8::") or a

fully qualified (including package name) user-defined character property, to represent all the

characters in that property; two hexadecimal code points for a range; or a single hexadecimal code

point.

+o Something to negate, prefixed "!": an existing character property (prefixed by "utf8::") or a fully

qualified (including package name) user-defined character property, to represent all the characters

in that property; two hexadecimal code points for a range; or a single hexadecimal code point.

+o Something to intersect with, prefixed by "&": an existing character property (prefixed by "utf8::")

or a fully qualified (including package name) user-defined character property, for all the

characters except the characters in the property; two hexadecimal code points for a range; or a

single hexadecimal code point.

For example, to define a property that covers both the Japanese syllabaries (hiragana and katakana),

you can define

sub InKana {

return <<END;

3040\t309F

30A0\t30FF

END

}

Imagine that the here-doc end marker is at the beginning of the line. Now you can use "\p{InKana}"

and "\P{InKana}".

You could also have used the existing block property names:

sub InKana {

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

return <<’END’;

+utf8::InHiragana

+utf8::InKatakana

END

}

Suppose you wanted to match only the allocated characters, not the raw block ranges: in other words,

you want to remove the unassigned characters:

sub InKana {

return <<’END’;

+utf8::InHiragana

+utf8::InKatakana

-utf8::IsCn

END

}

The negation is useful for defining (surprise!) negated classes.

sub InNotKana {

return <<’END’;

!utf8::InHiragana

-utf8::InKatakana

+utf8::IsCn

END

}

This will match all non-Unicode code points, since every one of them is not in Kana. You can use

intersection to exclude these, if desired, as this modified example shows:

sub InNotKana {

return <<’END’;

!utf8::InHiragana

-utf8::InKatakana

+utf8::IsCn

&utf8::Any

END

}

&utf8::Any must be the last line in the definition.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Intersection is used generally for getting the common characters matched by two (or more) classes. It’s

important to remember not to use "&" for the first set; that would be intersecting with nothing, resulting

in an empty set. (Similarly using "-" for the first set does nothing).

Unlike non-user-defined "\p{}" property matches, no warning is ever generated if these properties are

matched against a non-Unicode code point (see "Beyond Unicode code points" below).

User-Defined Case Mappings (for serious hackers only)
This feature has been removed as of Perl 5.16. The CPAN module "Unicode::Casing" provides better

functionality without the drawbacks that this feature had. If you are using a Perl earlier than 5.16, this

feature was most fully documented in the 5.14 version of this pod:

<http://perldoc.perl.org/5.14.0/perlunicode.html#User-Defined-Case-Mappings-%28for-serious-hackers-only%29>

Character Encodings for Input and Output
See Encode.

Unicode Regular Expression Support Level
The following list of Unicode supported features for regular expressions describes all features currently

directly supported by core Perl. The references to "Level N" and the section numbers refer to UTS#18

"Unicode Regular Expressions" <https://www.unicode.org/reports/tr18>, version 18, October 2016.

Level 1 - Basic Unicode Support

RL1.1 Hex Notation - Done [1]

RL1.2 Properties - Done [2]

RL1.2a Compatibility Properties - Done [3]

RL1.3 Subtraction and Intersection - Experimental [4]

RL1.4 Simple Word Boundaries - Done [5]

RL1.5 Simple Loose Matches - Done [6]

RL1.6 Line Boundaries - Partial [7]

RL1.7 Supplementary Code Points - Done [8]

[1] "\N{U+...}" and "\x{...}"

[2] "\p{...}" "\P{...}". This requirement is for a minimal list of properties. Perl supports these. See

R2.7 for other properties.

[3] Perl has "\d" "\D" "\s" "\S" "\w" "\W" "\X" "[:prop:]" "[:^prop:]", plus all the properties specified by

<https://www.unicode.org/reports/tr18/#Compatibility_Properties>. These are described above in

"Other Properties"

[4] The experimental feature "(?[...])" starting in v5.18 accomplishes this.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

See "(?[])" in perlre. If you don’t want to use an experimental feature, you can use one of the

following:

+o Regular expression lookahead

You can mimic class subtraction using lookahead. For example, what UTS#18 might write

as

[{Block=Greek}-[{UNASSIGNED}]]

in Perl can be written as:

(?!\p{Unassigned})\p{Block=Greek}

(?=\p{Assigned})\p{Block=Greek}

But in this particular example, you probably really want

\p{Greek}

which will match assigned characters known to be part of the Greek script.

+o CPAN module "Unicode::Regex::Set"

It does implement the full UTS#18 grouping, intersection, union, and removal (subtraction)

syntax.

+o "User-Defined Character Properties"

"+" for union, "-" for removal (set-difference), "&" for intersection

[5] "\b" "\B" meet most, but not all, the details of this requirement, but "\b{wb}" and "\B{wb}" do, as

well as the stricter R2.3.

[6] Note that Perl does Full case-folding in matching, not Simple:

For example "U+1F88" is equivalent to "U+1F00 U+03B9", instead of just "U+1F80". This

difference matters mainly for certain Greek capital letters with certain modifiers: the Full case-

folding decomposes the letter, while the Simple case-folding would map it to a single character.

[7] The reason this is considered to be only partially implemented is that Perl has "qr/\b{lb}/" and

"Unicode::LineBreak" that are conformant with UAX#14 "Unicode Line Breaking Algorithm"

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

<https://www.unicode.org/reports/tr14>. The regular expression construct provides default

behavior, while the heavier-weight module provides customizable line breaking.

But Perl treats "\n" as the start- and end-line delimiter, whereas Unicode specifies more characters

that should be so-interpreted.

These are:

VT U+000B (\v in C)

FF U+000C (\f)

CR U+000D (\r)

NEL U+0085

LS U+2028

PS U+2029

"^" and "$" in regular expression patterns are supposed to match all these, but don’t. These

characters also don’t, but should, affect "<>" $., and script line numbers.

Also, lines should not be split within "CRLF" (i.e. there is no empty line between "\r" and "\n").

For "CRLF", try the ":crlf" layer (see PerlIO).

[8] UTF-8/UTF-EBDDIC used in Perl allows not only "U+10000" to "U+10FFFF" but also beyond

"U+10FFFF"

Level 2 - Extended Unicode Support

RL2.1 Canonical Equivalents - Retracted [9]

by Unicode

RL2.2 Extended Grapheme Clusters and - Partial [10]

Character Classes with Strings

RL2.3 Default Word Boundaries - Done [11]

RL2.4 Default Case Conversion - Done

RL2.5 Name Properties - Done

RL2.6 Wildcards in Property Values - Partial [12]

RL2.7 Full Properties - Partial [13]

RL2.8 Optional Properties - Partial [14]

[9] Unicode has rewritten this portion of UTS#18 to say that getting canonical equivalence (see

UAX#15 "Unicode Normalization Forms" <https://www.unicode.org/reports/tr15>) is basically to be

done at the programmer level. Use NFD to write both your regular expressions and text to match them

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

against (you can use Unicode::Normalize).

[10] Perl has "\X" and "\b{gcb}". Unicode has retracted their "Grapheme Cluster Mode", and recently

added string properties, which Perl does not yet support.

[11] see UAX#29 "Unicode Text Segmentation" <https://www.unicode.org/reports/tr29>,

[12] see "Wildcards in Property Values" above.

[13] Perl supports all the properties in the Unicode Character Database (UCD). It does not yet support

the listed properties that come from other Unicode sources.

[14] The only optional property that Perl supports is Named Sequence. None of these properties are in

the UCD.

Level 3 - Tailored Support

This has been retracted by Unicode.

Unicode Encodings
Unicode characters are assigned to code points, which are abstract numbers. To use these numbers,

various encodings are needed.

+o UTF-8

UTF-8 is a variable-length (1 to 4 bytes), byte-order independent encoding. In most of Perl’s

documentation, including elsewhere in this document, the term "UTF-8" means also "UTF-

EBCDIC". But in this section, "UTF-8" refers only to the encoding used on ASCII platforms. It

is a superset of 7-bit US-ASCII, so anything encoded in ASCII has the identical representation

when encoded in UTF-8.

The following table is from Unicode 3.2.

Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

U+0000..U+007F 00..7F

U+0080..U+07FF * C2..DF 80..BF

U+0800..U+0FFF E0 * A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+D800..U+DFFF +++++ utf16 surrogates, not legal utf8 +++++

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 * 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Note the gaps marked by "*" before several of the byte entries above. These are caused by legal

UTF-8 avoiding non-shortest encodings: it is technically possible to UTF-8-encode a single code

point in different ways, but that is explicitly forbidden, and the shortest possible encoding should

always be used (and that is what Perl does).

Another way to look at it is via bits:

Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte

0aaaaaaa 0aaaaaaa

00000bbbbbaaaaaa 110bbbbb 10aaaaaa

ccccbbbbbbaaaaaa 1110cccc 10bbbbbb 10aaaaaa

00000dddccccccbbbbbbaaaaaa 11110ddd 10cccccc 10bbbbbb 10aaaaaa

As you can see, the continuation bytes all begin with "10", and the leading bits of the start byte tell

how many bytes there are in the encoded character.

The original UTF-8 specification allowed up to 6 bytes, to allow encoding of numbers up to

"0x7FFF_FFFF". Perl continues to allow those, and has extended that up to 13 bytes to encode

code points up to what can fit in a 64-bit word. However, Perl will warn if you output any of

these as being non-portable; and under strict UTF-8 input protocols, they are forbidden. In

addition, it is now illegal to use a code point larger than what a signed integer variable on your

system can hold. On 32-bit ASCII systems, this means "0x7FFF_FFFF" is the legal maximum

(much higher on 64-bit systems).

+o UTF-EBCDIC

Like UTF-8, but EBCDIC-safe, in the way that UTF-8 is ASCII-safe. This means that all the

basic characters (which includes all those that have ASCII equivalents (like "A", "0", "%", etc.)

are the same in both EBCDIC and UTF-EBCDIC.)

UTF-EBCDIC is used on EBCDIC platforms. It generally requires more bytes to represent a

given code point than UTF-8 does; the largest Unicode code points take 5 bytes to represent

(instead of 4 in UTF-8), and, extended for 64-bit words, it uses 14 bytes instead of 13 bytes in

UTF-8.

+o UTF-16, UTF-16BE, UTF-16LE, Surrogates, and "BOM"’s (Byte Order Marks)

The followings items are mostly for reference and general Unicode knowledge, Perl doesn’t use

these constructs internally.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Like UTF-8, UTF-16 is a variable-width encoding, but where UTF-8 uses 8-bit code units,

UTF-16 uses 16-bit code units. All code points occupy either 2 or 4 bytes in UTF-16: code points

"U+0000..U+FFFF" are stored in a single 16-bit unit, and code points "U+10000..U+10FFFF" in

two 16-bit units. The latter case is using surrogates, the first 16-bit unit being the high surrogate,

and the second being the low surrogate.

Surrogates are code points set aside to encode the "U+10000..U+10FFFF" range of Unicode code

points in pairs of 16-bit units. The high surrogates are the range "U+D800..U+DBFF" and the low

surrogates are the range "U+DC00..U+DFFF". The surrogate encoding is

$hi = ($uni - 0x10000) / 0x400 + 0xD800;

$lo = ($uni - 0x10000) % 0x400 + 0xDC00;

and the decoding is

$uni = 0x10000 + ($hi - 0xD800) * 0x400 + ($lo - 0xDC00);

Because of the 16-bitness, UTF-16 is byte-order dependent. UTF-16 itself can be used for in-

memory computations, but if storage or transfer is required either UTF-16BE (big-endian) or

UTF-16LE (little-endian) encodings must be chosen.

This introduces another problem: what if you just know that your data is UTF-16, but you don’t

know which endianness? Byte Order Marks, or "BOM"’s, are a solution to this. A special

character has been reserved in Unicode to function as a byte order marker: the character with the

code point "U+FEFF" is the "BOM".

The trick is that if you read a "BOM", you will know the byte order, since if it was written on a

big-endian platform, you will read the bytes "0xFE 0xFF", but if it was written on a little-endian

platform, you will read the bytes "0xFF 0xFE". (And if the originating platform was writing in

ASCII platform UTF-8, you will read the bytes "0xEF 0xBB 0xBF".)

The way this trick works is that the character with the code point "U+FFFE" is not supposed to be

in input streams, so the sequence of bytes "0xFF 0xFE" is unambiguously ""BOM", represented in

little-endian format" and cannot be "U+FFFE", represented in big-endian format".

Surrogates have no meaning in Unicode outside their use in pairs to represent other code points.

However, Perl allows them to be represented individually internally, for example by saying

"chr(0xD801)", so that all code points, not just those valid for open interchange, are representable.

Unicode does define semantics for them, such as their "General_Category" is "Cs". But because

their use is somewhat dangerous, Perl will warn (using the warning category "surrogate", which is

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

a sub-category of "utf8") if an attempt is made to do things like take the lower case of one, or

match case-insensitively, or to output them. (But don’t try this on Perls before 5.14.)

+o UTF-32, UTF-32BE, UTF-32LE

The UTF-32 family is pretty much like the UTF-16 family, except that the units are 32-bit, and

therefore the surrogate scheme is not needed. UTF-32 is a fixed-width encoding. The "BOM"

signatures are "0x00 0x00 0xFE 0xFF" for BE and "0xFF 0xFE 0x00 0x00" for LE.

+o UCS-2, UCS-4

Legacy, fixed-width encodings defined by the ISO 10646 standard. UCS-2 is a 16-bit encoding.

Unlike UTF-16, UCS-2 is not extensible beyond "U+FFFF", because it does not use surrogates.

UCS-4 is a 32-bit encoding, functionally identical to UTF-32 (the difference being that UCS-4

forbids neither surrogates nor code points larger than "0x10_FFFF").

+o UTF-7

A seven-bit safe (non-eight-bit) encoding, which is useful if the transport or storage is not eight-

bit safe. Defined by RFC 2152.

Noncharacter code points
66 code points are set aside in Unicode as "noncharacter code points". These all have the "Unassigned"

("Cn") "General_Category", and no character will ever be assigned to any of them. They are the 32

code points between "U+FDD0" and "U+FDEF" inclusive, and the 34 code points:

U+FFFE U+FFFF

U+1FFFE U+1FFFF

U+2FFFE U+2FFFF

...

U+EFFFE U+EFFFF

U+FFFFE U+FFFFF

U+10FFFE U+10FFFF

Until Unicode 7.0, the noncharacters were "forbidden for use in open interchange of Unicode text

data", so that code that processed those streams could use these code points as sentinels that could be

mixed in with character data, and would always be distinguishable from that data. (Emphasis above

and in the next paragraph are added in this document.)

Unicode 7.0 changed the wording so that they are "not recommended for use in open interchange of

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Unicode text data". The 7.0 Standard goes on to say:

"If a noncharacter is received in open interchange, an application is not required to interpret it in

any way. It is good practice, however, to recognize it as a noncharacter and to take appropriate

action, such as replacing it with "U+FFFD" replacement character, to indicate the problem in the

text. It is not recommended to simply delete noncharacter code points from such text, because of

the potential security issues caused by deleting uninterpreted characters. (See conformance clause

C7 in Section 3.2, Conformance Requirements, and Unicode Technical Report #36, "Unicode

Security Considerations"

<https://www.unicode.org/reports/tr36/#Substituting_for_Ill_Formed_Subsequences>)."

This change was made because it was found that various commercial tools like editors, or for things

like source code control, had been written so that they would not handle program files that used these

code points, effectively precluding their use almost entirely! And that was never the intent. They’ve

always been meant to be usable within an application, or cooperating set of applications, at will.

If you’re writing code, such as an editor, that is supposed to be able to handle any Unicode text data,

then you shouldn’t be using these code points yourself, and instead allow them in the input. If you

need sentinels, they should instead be something that isn’t legal Unicode. For UTF-8 data, you can use

the bytes 0xC1 and 0xC2 as sentinels, as they never appear in well-formed UTF-8. (There are

equivalents for UTF-EBCDIC). You can also store your Unicode code points in integer variables and

use negative values as sentinels.

If you’re not writing such a tool, then whether you accept noncharacters as input is up to you (though

the Standard recommends that you not). If you do strict input stream checking with Perl, these code

points continue to be forbidden. This is to maintain backward compatibility (otherwise potential

security holes could open up, as an unsuspecting application that was written assuming the

noncharacters would be filtered out before getting to it, could now, without warning, start getting

them). To do strict checking, you can use the layer ":encoding(’UTF-8’)".

Perl continues to warn (using the warning category "nonchar", which is a sub-category of "utf8") if an

attempt is made to output noncharacters.

Beyond Unicode code points
The maximum Unicode code point is "U+10FFFF", and Unicode only defines operations on code

points up through that. But Perl works on code points up to the maximum permissible signed number

available on the platform. However, Perl will not accept these from input streams unless lax rules are

being used, and will warn (using the warning category "non_unicode", which is a sub-category of

"utf8") if any are output.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Since Unicode rules are not defined on these code points, if a Unicode-defined operation is done on

them, Perl uses what we believe are sensible rules, while generally warning, using the "non_unicode"

category. For example, "uc("\x{11_0000}")" will generate such a warning, returning the input

parameter as its result, since Perl defines the uppercase of every non-Unicode code point to be the code

point itself. (All the case changing operations, not just uppercasing, work this way.)

The situation with matching Unicode properties in regular expressions, the "\p{}" and "\P{}"

constructs, against these code points is not as clear cut, and how these are handled has changed as

we’ve gained experience.

One possibility is to treat any match against these code points as undefined. But since Perl doesn’t

have the concept of a match being undefined, it converts this to failing or "FALSE". This is almost, but

not quite, what Perl did from v5.14 (when use of these code points became generally reliable) through

v5.18. The difference is that Perl treated all "\p{}" matches as failing, but all "\P{}" matches as

succeeding.

One problem with this is that it leads to unexpected, and confusing results in some cases:

chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Failed on <= v5.18

chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Failed! on <= v5.18

That is, it treated both matches as undefined, and converted that to false (raising a warning on each).

The first case is the expected result, but the second is likely counterintuitive: "How could both be false

when they are complements?" Another problem was that the implementation optimized many Unicode

property matches down to already existing simpler, faster operations, which don’t raise the warning.

We chose to not forgo those optimizations, which help the vast majority of matches, just to generate a

warning for the unlikely event that an above-Unicode code point is being matched against.

As a result of these problems, starting in v5.20, what Perl does is to treat non-Unicode code points as

just typical unassigned Unicode characters, and matches accordingly. (Note: Unicode has atypical

unassigned code points. For example, it has noncharacter code points, and ones that, when they do get

assigned, are destined to be written Right-to-left, as Arabic and Hebrew are. Perl assumes that no non-

Unicode code point has any atypical properties.)

Perl, in most cases, will raise a warning when matching an above-Unicode code point against a

Unicode property when the result is "TRUE" for "\p{}", and "FALSE" for "\P{}". For example:

chr(0x110000) =~ \p{ASCII_Hex_Digit=True} # Fails, no warning

chr(0x110000) =~ \p{ASCII_Hex_Digit=False} # Succeeds, with warning

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

In both these examples, the character being matched is non-Unicode, so Unicode doesn’t define how it

should match. It clearly isn’t an ASCII hex digit, so the first example clearly should fail, and so it

does, with no warning. But it is arguable that the second example should have an undefined, hence

"FALSE", result. So a warning is raised for it.

Thus the warning is raised for many fewer cases than in earlier Perls, and only when what the result is

could be arguable. It turns out that none of the optimizations made by Perl (or are ever likely to be

made) cause the warning to be skipped, so it solves both problems of Perl’s earlier approach. The most

commonly used property that is affected by this change is "\p{Unassigned}" which is a short form for

"\p{General_Category=Unassigned}". Starting in v5.20, all non-Unicode code points are considered

"Unassigned". In earlier releases the matches failed because the result was considered undefined.

The only place where the warning is not raised when it might ought to have been is if optimizations

cause the whole pattern match to not even be attempted. For example, Perl may figure out that for a

string to match a certain regular expression pattern, the string has to contain the substring "foobar".

Before attempting the match, Perl may look for that substring, and if not found, immediately fail the

match without actually trying it; so no warning gets generated even if the string contains an above-

Unicode code point.

This behavior is more "Do what I mean" than in earlier Perls for most applications. But it catches

fewer issues for code that needs to be strictly Unicode compliant. Therefore there is an additional

mode of operation available to accommodate such code. This mode is enabled if a regular expression

pattern is compiled within the lexical scope where the "non_unicode" warning class has been made

fatal, say by:

use warnings FATAL => "non_unicode"

(see warnings). In this mode of operation, Perl will raise the warning for all matches against a non-

Unicode code point (not just the arguable ones), and it skips the optimizations that might cause the

warning to not be output. (It currently still won’t warn if the match isn’t even attempted, like in the

"foobar" example above.)

In summary, Perl now normally treats non-Unicode code points as typical Unicode unassigned code

points for regular expression matches, raising a warning only when it is arguable what the result should

be. However, if this warning has been made fatal, it isn’t skipped.

There is one exception to all this. "\p{All}" looks like a Unicode property, but it is a Perl extension

that is defined to be true for all possible code points, Unicode or not, so no warning is ever generated

when matching this against a non-Unicode code point. (Prior to v5.20, it was an exact synonym for

"\p{Any}", matching code points 0 through 0x10FFFF.)

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Security Implications of Unicode
First, read Unicode Security Considerations <https://www.unicode.org/reports/tr36>.

Also, note the following:

+o Malformed UTF-8

UTF-8 is very structured, so many combinations of bytes are invalid. In the past, Perl tried to

soldier on and make some sense of invalid combinations, but this can lead to security holes, so

now, if the Perl core needs to process an invalid combination, it will either raise a fatal error, or

will replace those bytes by the sequence that forms the Unicode REPLACEMENT

CHARACTER, for which purpose Unicode created it.

Every code point can be represented by more than one possible syntactically valid UTF-8

sequence. Early on, both Unicode and Perl considered any of these to be valid, but now, all

sequences longer than the shortest possible one are considered to be malformed.

Unicode considers many code points to be illegal, or to be avoided. Perl generally accepts them,

once they have passed through any input filters that may try to exclude them. These have been

discussed above (see "Surrogates" under UTF-16 in "Unicode Encodings", "Noncharacter code

points", and "Beyond Unicode code points").

+o Regular expression pattern matching may surprise you if you’re not accustomed to Unicode.

Starting in Perl 5.14, several pattern modifiers are available to control this, called the character set

modifiers. Details are given in "Character set modifiers" in perlre.

As discussed elsewhere, Perl has one foot (two hooves?) planted in each of two worlds: the old world

of ASCII and single-byte locales, and the new world of Unicode, upgrading when necessary. If your

legacy code does not explicitly use Unicode, no automatic switch-over to Unicode should happen.

Unicode in Perl on EBCDIC
Unicode is supported on EBCDIC platforms. See perlebcdic.

Unless ASCII vs. EBCDIC issues are specifically being discussed, references to UTF-8 encoding in

this document and elsewhere should be read as meaning UTF-EBCDIC on EBCDIC platforms. See

"Unicode and UTF" in perlebcdic.

Because UTF-EBCDIC is so similar to UTF-8, the differences are mostly hidden from you; "use utf8"

(and NOT something like "use utfebcdic") declares the script is in the platform’s "native" 8-bit

encoding of Unicode. (Similarly for the ":utf8" layer.)

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Locales
See "Unicode and UTF-8" in perllocale

When Unicode Does Not Happen
There are still many places where Unicode (in some encoding or another) could be given as arguments

or received as results, or both in Perl, but it is not, in spite of Perl having extensive ways to input and

output in Unicode, and a few other "entry points" like the @ARGV array (which can sometimes be

interpreted as UTF-8).

The following are such interfaces. Also, see "The "Unicode Bug"". For all of these interfaces Perl

currently (as of v5.16.0) simply assumes byte strings both as arguments and results, or UTF-8 strings if

the (deprecated) "encoding" pragma has been used.

One reason that Perl does not attempt to resolve the role of Unicode in these situations is that the

answers are highly dependent on the operating system and the file system(s). For example, whether

filenames can be in Unicode and in exactly what kind of encoding, is not exactly a portable concept.

Similarly for "qx" and "system": how well will the "command-line interface" (and which of them?)

handle Unicode?

+o "chdir", "chmod", "chown", "chroot", "exec", "link", "lstat", "mkdir", "rename", "rmdir", "stat",

"symlink", "truncate", "unlink", "utime", "-X"

+o %ENV

+o "glob" (aka the "<*>")

+o "open", "opendir", "sysopen"

+o "qx" (aka the backtick operator), "system"

+o "readdir", "readlink"

The "Unicode Bug"
The term, "Unicode bug" has been applied to an inconsistency with the code points in the "Latin-1

Supplement" block, that is, between 128 and 255. Without a locale specified, unlike all other

characters or code points, these characters can have very different semantics depending on the rules in

effect. (Characters whose code points are above 255 force Unicode rules; whereas the rules for ASCII

characters are the same under both ASCII and Unicode rules.)

Under Unicode rules, these upper-Latin1 characters are interpreted as Unicode code points, which

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

means they have the same semantics as Latin-1 (ISO-8859-1) and C1 controls.

As explained in "ASCII Rules versus Unicode Rules", under ASCII rules, they are considered to be

unassigned characters.

This can lead to unexpected results. For example, a string’s semantics can suddenly change if a code

point above 255 is appended to it, which changes the rules from ASCII to Unicode. As an example,

consider the following program and its output:

$ perl -le’

no feature "unicode_strings";

$s1 = "\xC2";

$s2 = "\x{2660}";

for ($s1, $s2, $s1.$s2) {

print /\w/ || 0;

}

’

0

0

1

If there’s no "\w" in "s1" nor in "s2", why does their concatenation have one?

This anomaly stems from Perl’s attempt to not disturb older programs that didn’t use Unicode, along

with Perl’s desire to add Unicode support seamlessly. But the result turned out to not be seamless. (By

the way, you can choose to be warned when things like this happen. See "encoding::warnings".)

"use feature ’unicode_strings’" was added, starting in Perl v5.12, to address this problem. It affects

these things:

+o Changing the case of a scalar, that is, using "uc()", "ucfirst()", "lc()", and "lcfirst()", or "\L", "\U",

"\u" and "\l" in double-quotish contexts, such as regular expression substitutions.

Under "unicode_strings" starting in Perl 5.12.0, Unicode rules are generally used. See "lc" in

perlfunc for details on how this works in combination with various other pragmas.

+o Using caseless ("/i") regular expression matching.

Starting in Perl 5.14.0, regular expressions compiled within the scope of "unicode_strings" use

Unicode rules even when executed or compiled into larger regular expressions outside the scope.

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

+o Matching any of several properties in regular expressions.

These properties are "\b" (without braces), "\B" (without braces), "\s", "\S", "\w", "\W", and all the

Posix character classes except "[[:ascii:]]".

Starting in Perl 5.14.0, regular expressions compiled within the scope of "unicode_strings" use

Unicode rules even when executed or compiled into larger regular expressions outside the scope.

+o In "quotemeta" or its inline equivalent "\Q".

Starting in Perl 5.16.0, consistent quoting rules are used within the scope of "unicode_strings", as

described in "quotemeta" in perlfunc. Prior to that, or outside its scope, no code points above 127

are quoted in UTF-8 encoded strings, but in byte encoded strings, code points between 128-255

are always quoted.

+o In the ".." or range operator.

Starting in Perl 5.26.0, the range operator on strings treats their lengths consistently within the

scope of "unicode_strings". Prior to that, or outside its scope, it could produce strings whose

length in characters exceeded that of the right-hand side, where the right-hand side took up more

bytes than the correct range endpoint.

+o In "split"’s special-case whitespace splitting.

Starting in Perl 5.28.0, the "split" function with a pattern specified as a string containing a single

space handles whitespace characters consistently within the scope of "unicode_strings". Prior to

that, or outside its scope, characters that are whitespace according to Unicode rules but not

according to ASCII rules were treated as field contents rather than field separators when they

appear in byte-encoded strings.

You can see from the above that the effect of "unicode_strings" increased over several Perl releases.

(And Perl’s support for Unicode continues to improve; it’s best to use the latest available release in

order to get the most complete and accurate results possible.) Note that "unicode_strings" is

automatically chosen if you "use 5.012" or higher.

For Perls earlier than those described above, or when a string is passed to a function outside the scope

of "unicode_strings", see the next section.

Forcing Unicode in Perl (Or Unforcing Unicode in Perl)
Sometimes (see "When Unicode Does Not Happen" or "The "Unicode Bug"") there are situations

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

where you simply need to force a byte string into UTF-8, or vice versa. The standard module Encode

can be used for this, or the low-level calls "utf8::upgrade($bytestring)" and

"utf8::downgrade($utf8string[, FAIL_OK])".

Note that "utf8::downgrade()" can fail if the string contains characters that don’t fit into a byte.

Calling either function on a string that already is in the desired state is a no-op.

"ASCII Rules versus Unicode Rules" gives all the ways that a string is made to use Unicode rules.

Using Unicode in XS
See "Unicode Support" in perlguts for an introduction to Unicode at the XS level, and "Unicode

Support" in perlapi for the API details.

Hacking Perl to work on earlier Unicode versions (for very serious hackers only)
Perl by default comes with the latest supported Unicode version built-in, but the goal is to allow you to

change to use any earlier one. In Perls v5.20 and v5.22, however, the earliest usable version is Unicode

5.1. Perl v5.18 and v5.24 are able to handle all earlier versions.

Download the files in the desired version of Unicode from the Unicode web site

<https://www.unicode.org>). These should replace the existing files in lib/unicore in the Perl source

tree. Follow the instructions in README.perl in that directory to change some of their names, and

then build perl (see INSTALL).

Porting code from perl-5.6.X
Perls starting in 5.8 have a different Unicode model from 5.6. In 5.6 the programmer was required to

use the "utf8" pragma to declare that a given scope expected to deal with Unicode data and had to make

sure that only Unicode data were reaching that scope. If you have code that is working with 5.6, you

will need some of the following adjustments to your code. The examples are written such that the code

will continue to work under 5.6, so you should be safe to try them out.

+o A filehandle that should read or write UTF-8

if ($] > 5.008) {

binmode $fh, ":encoding(UTF-8)";

}

+o A scalar that is going to be passed to some extension

Be it "Compress::Zlib", "Apache::Request" or any extension that has no mention of Unicode in the

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

manpage, you need to make sure that the UTF8 flag is stripped off. Note that at the time of this

writing (January 2012) the mentioned modules are not UTF-8-aware. Please check the

documentation to verify if this is still true.

if ($] > 5.008) {

require Encode;

$val = Encode::encode("UTF-8", $val); # make octets

}

+o A scalar we got back from an extension

If you believe the scalar comes back as UTF-8, you will most likely want the UTF8 flag restored:

if ($] > 5.008) {

require Encode;

$val = Encode::decode("UTF-8", $val);

}

+o Same thing, if you are really sure it is UTF-8

if ($] > 5.008) {

require Encode;

Encode::_utf8_on($val);

}

+o A wrapper for DBI "fetchrow_array" and "fetchrow_hashref"

When the database contains only UTF-8, a wrapper function or method is a convenient way to

replace all your "fetchrow_array" and "fetchrow_hashref" calls. A wrapper function will also make

it easier to adapt to future enhancements in your database driver. Note that at the time of this

writing (January 2012), the DBI has no standardized way to deal with UTF-8 data. Please check the

DBI documentation to verify if that is still true.

sub fetchrow {

$what is one of fetchrow_{array,hashref}

my($self, $sth, $what) = @_;

if ($] < 5.008) {

return $sth->$what;

} else {

require Encode;

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

if (wantarray) {

my @arr = $sth->$what;

for (@arr) {

defined && /[^\000-\177]/ && Encode::_utf8_on($_);

}

return @arr;

} else {

my $ret = $sth->$what;

if (ref $ret) {

for my $k (keys %$ret) {

defined

&& /[^\000-\177]/

&& Encode::_utf8_on($_) for $ret->{$k};

}

return $ret;

} else {

defined && /[^\000-\177]/ && Encode::_utf8_on($_) for $ret;

return $ret;

}

}

}

}

+o A large scalar that you know can only contain ASCII

Scalars that contain only ASCII and are marked as UTF-8 are sometimes a drag to your program. If

you recognize such a situation, just remove the UTF8 flag:

utf8::downgrade($val) if $] > 5.008;

BUGS
See also "The "Unicode Bug"" above.

Interaction with Extensions
When Perl exchanges data with an extension, the extension should be able to understand the UTF8 flag

and act accordingly. If the extension doesn’t recognize that flag, it’s likely that the extension will return

incorrectly-flagged data.

So if you’re working with Unicode data, consult the documentation of every module you’re using if

there are any issues with Unicode data exchange. If the documentation does not talk about Unicode at

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

all, suspect the worst and probably look at the source to learn how the module is implemented.

Modules written completely in Perl shouldn’t cause problems. Modules that directly or indirectly

access code written in other programming languages are at risk.

For affected functions, the simple strategy to avoid data corruption is to always make the encoding of

the exchanged data explicit. Choose an encoding that you know the extension can handle. Convert

arguments passed to the extensions to that encoding and convert results back from that encoding. Write

wrapper functions that do the conversions for you, so you can later change the functions when the

extension catches up.

To provide an example, let’s say the popular "Foo::Bar::escape_html" function doesn’t deal with

Unicode data yet. The wrapper function would convert the argument to raw UTF-8 and convert the

result back to Perl’s internal representation like so:

sub my_escape_html ($) {

my($what) = shift;

return unless defined $what;

Encode::decode("UTF-8", Foo::Bar::escape_html(

Encode::encode("UTF-8", $what)));

}

Sometimes, when the extension does not convert data but just stores and retrieves it, you will be able to

use the otherwise dangerous "Encode::_utf8_on()" function. Let’s say the popular "Foo::Bar"

extension, written in C, provides a "param" method that lets you store and retrieve data according to

these prototypes:

$self->param($name, $value); # set a scalar

$value = $self->param($name); # retrieve a scalar

If it does not yet provide support for any encoding, one could write a derived class with such a "param"

method:

sub param {

my($self,$name,$value) = @_;

utf8::upgrade($name); # make sure it is UTF-8 encoded

if (defined $value) {

utf8::upgrade($value); # make sure it is UTF-8 encoded

return $self->SUPER::param($name,$value);

} else {

my $ret = $self->SUPER::param($name);

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

Encode::_utf8_on($ret); # we know, it is UTF-8 encoded

return $ret;

}

}

Some extensions provide filters on data entry/exit points, such as "DB_File::filter_store_key" and

family. Look out for such filters in the documentation of your extensions; they can make the transition

to Unicode data much easier.

Speed
Some functions are slower when working on UTF-8 encoded strings than on byte encoded strings. All

functions that need to hop over characters such as "length()", "substr()" or "index()", or matching

regular expressions can work much faster when the underlying data are byte-encoded.

In Perl 5.8.0 the slowness was often quite spectacular; in Perl 5.8.1 a caching scheme was introduced

which improved the situation. In general, operations with UTF-8 encoded strings are still slower. As

an example, the Unicode properties (character classes) like "\p{Nd}" are known to be quite a bit slower

(5-20 times) than their simpler counterparts like "[0-9]" (then again, there are hundreds of Unicode

characters matching "Nd" compared with the 10 ASCII characters matching "[0-9]").

SEE ALSO
perlunitut, perluniintro, perluniprops, Encode, open, utf8, bytes, perlretut, "${^UNICODE}" in perlvar,

<https://www.unicode.org/reports/tr44>).

PERLUNICODE(1) Perl Programmers Reference Guide PERLUNICODE(1)

perl v5.34.3 2023-11-28 PERLUNICODE(1)

