
NAME
perlunicook - cookbookish examples of handling Unicode in Perl

DESCRIPTION
This manpage contains short recipes demonstrating how to handle common Unicode operations in Perl,

plus one complete program at the end. Any undeclared variables in individual recipes are assumed to

have a previous appropriate value in them.

EXAMPLES
X 0: Standard preamble

Unless otherwise notes, all examples below require this standard preamble to work correctly, with the

"#!" adjusted to work on your system:

#!/usr/bin/env perl

use utf8; # so literals and identifiers can be in UTF-8

use v5.12; # or later to get "unicode_strings" feature

use strict; # quote strings, declare variables

use warnings; # on by default

use warnings qw(FATAL utf8); # fatalize encoding glitches

use open qw(:std :encoding(UTF-8)); # undeclared streams in UTF-8

use charnames qw(:full :short); # unneeded in v5.16

This does make even Unix programmers "binmode" your binary streams, or open them with ":raw", but

that’s the only way to get at them portably anyway.

WARNING: "use autodie" (pre 2.26) and "use open" do not get along with each other.

X 1: Generic Unicode-savvy filter
Always decompose on the way in, then recompose on the way out.

use Unicode::Normalize;

while (<>) {

$_ = NFD($_); # decompose + reorder canonically

...

} continue {

print NFC($_); # recompose (where possible) + reorder canonically

}

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

X 2: Fine-tuning Unicode warnings
As of v5.14, Perl distinguishes three subclasses of UTFX8 warnings.

use v5.14; # subwarnings unavailable any earlier

no warnings "nonchar"; # the 66 forbidden non-characters

no warnings "surrogate"; # UTF-16/CESU-8 nonsense

no warnings "non_unicode"; # for codepoints over 0x10_FFFF

X 3: Declare source in utf8 for identifiers and literals
Without the all-critical "use utf8" declaration, putting UTFX8 in your literals and identifiers wonXt

work right. If you used the standard preamble just given above, this already happened. If you did, you

can do things like this:

use utf8;

my $measure = "Aangstroem";

my @Xsoft = qw(cp852 cp1251 cp1252);

my @XXXXXXXXX = qw(XXXX XXXXX);

my @X = qw(koi8-f koi8-u koi8-r);

my $motto = "X X X"; # FAMILY, GROWING HEART, DROMEDARY CAMEL

If you forget "use utf8", high bytes will be misunderstood as separate characters, and nothing will work

right.

X 4: Characters and their numbers
The "ord" and "chr" functions work transparently on all codepoints, not just on ASCII alone X nor in

fact, not even just on Unicode alone.

ASCII characters

ord("A")

chr(65)

characters from the Basic Multilingual Plane

ord("X")

chr(0x3A3)

beyond the BMP

ord("X") # MATHEMATICAL ITALIC SMALL N

chr(0x1D45B)

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

beyond Unicode! (up to MAXINT)

ord("\x{20_0000}")

chr(0x20_0000)

X 5: Unicode literals by character number
In an interpolated literal, whether a double-quoted string or a regex, you may specify a character by its

number using the "\x{HHHHHH}" escape.

String: "\x{3a3}"

Regex: /\x{3a3}/

String: "\x{1d45b}"

Regex: /\x{1d45b}/

even non-BMP ranges in regex work fine

/[\x{1D434}-\x{1D467}]/

X 6: Get character name by number
use charnames ();

my $name = charnames::viacode(0x03A3);

X 7: Get character number by name
use charnames ();

my $number = charnames::vianame("GREEK CAPITAL LETTER SIGMA");

X 8: Unicode named characters
Use the "\N{charname}" notation to get the character by that name for use in interpolated literals

(double-quoted strings and regexes). In v5.16, there is an implicit

use charnames qw(:full :short);

But prior to v5.16, you must be explicit about which set of charnames you want. The ":full" names are

the official Unicode character name, alias, or sequence, which all share a namespace.

use charnames qw(:full :short latin greek);

"\N{MATHEMATICAL ITALIC SMALL N}" # :full

"\N{GREEK CAPITAL LETTER SIGMA}" # :full

Anything else is a Perl-specific convenience abbreviation. Specify one or more scripts by names if you

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

want short names that are script-specific.

"\N{Greek:Sigma}" # :short

"\N{ae}" # latin

"\N{epsilon}" # greek

The v5.16 release also supports a ":loose" import for loose matching of character names, which works

just like loose matching of property names: that is, it disregards case, whitespace, and underscores:

"\N{euro sign}" # :loose (from v5.16)

Starting in v5.32, you can also use

qr/\p{name=euro sign}/

to get official Unicode named characters in regular expressions. Loose matching is always done for

these.

X 9: Unicode named sequences
These look just like character names but return multiple codepoints. Notice the %vx vector-print

functionality in "printf".

use charnames qw(:full);

my $seq = "\N{LATIN CAPITAL LETTER A WITH MACRON AND GRAVE}";

printf "U+%v04X\n", $seq;

U+0100.0300

X 10: Custom named characters
Use ":alias" to give your own lexically scoped nicknames to existing characters, or even to give

unnamed private-use characters useful names.

use charnames ":full", ":alias" => {

ecute => "LATIN SMALL LETTER E WITH ACUTE",

"APPLE LOGO" => 0xF8FF, # private use character

};

"\N{ecute}"

"\N{APPLE LOGO}"

X 11: Names of CJK codepoints

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

Sinograms like XXXX come back with character names of "CJK UNIFIED IDEOGRAPH-6771" and

"CJK UNIFIED IDEOGRAPH-4EAC", because their XnamesX vary. The CPAN "Unicode::Unihan"

module has a large database for decoding these (and a whole lot more), provided you know how to

understand its output.

cpan -i Unicode::Unihan

use Unicode::Unihan;

my $str = "XX";

my $unhan = Unicode::Unihan->new;

for my $lang (qw(Mandarin Cantonese Korean JapaneseOn JapaneseKun)) {

printf "CJK $str in %-12s is ", $lang;

say $unhan->$lang($str);

}

prints:

CJK XX in Mandarin is DONG1JING1

CJK XX in Cantonese is dung1ging1

CJK XX in Korean is TONGKYENG

CJK XX in JapaneseOn is TOUKYOU KEI KIN

CJK XX in JapaneseKun is HIGASHI AZUMAMIYAKO

If you have a specific romanization scheme in mind, use the specific module:

cpan -i Lingua::JA::Romanize::Japanese

use Lingua::JA::Romanize::Japanese;

my $k2r = Lingua::JA::Romanize::Japanese->new;

my $str = "XX";

say "Japanese for $str is ", $k2r->chars($str);

prints

Japanese for XX is toukyou

X 12: Explicit encode/decode
On rare occasion, such as a database read, you may be given encoded text you need to decode.

use Encode qw(encode decode);

my $chars = decode("shiftjis", $bytes, 1);

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

OR

my $bytes = encode("MIME-Header-ISO_2022_JP", $chars, 1);

For streams all in the same encoding, don’t use encode/decode; instead set the file encoding when you

open the file or immediately after with "binmode" as described later below.

X 13: Decode program arguments as utf8
$ perl -CA ...

or

$ export PERL_UNICODE=A

or

use Encode qw(decode);

@ARGV = map { decode(’UTF-8’, $_, 1) } @ARGV;

X 14: Decode program arguments as locale encoding
cpan -i Encode::Locale

use Encode qw(locale);

use Encode::Locale;

use "locale" as an arg to encode/decode

@ARGV = map { decode(locale => $_, 1) } @ARGV;

X 15: Declare STD{IN,OUT,ERR} to be utf8
Use a command-line option, an environment variable, or else call "binmode" explicitly:

$ perl -CS ...

or

$ export PERL_UNICODE=S

or

use open qw(:std :encoding(UTF-8));

or

binmode(STDIN, ":encoding(UTF-8)");

binmode(STDOUT, ":utf8");

binmode(STDERR, ":utf8");

X 16: Declare STD{IN,OUT,ERR} to be in locale encoding
cpan -i Encode::Locale

use Encode;

use Encode::Locale;

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

or as a stream for binmode or open

binmode STDIN, ":encoding(console_in)" if -t STDIN;

binmode STDOUT, ":encoding(console_out)" if -t STDOUT;

binmode STDERR, ":encoding(console_out)" if -t STDERR;

X 17: Make file I/O default to utf8
Files opened without an encoding argument will be in UTF-8:

$ perl -CD ...

or

$ export PERL_UNICODE=D

or

use open qw(:encoding(UTF-8));

X 18: Make all I/O and args default to utf8
$ perl -CSDA ...

or

$ export PERL_UNICODE=SDA

or

use open qw(:std :encoding(UTF-8));

use Encode qw(decode);

@ARGV = map { decode(’UTF-8’, $_, 1) } @ARGV;

X 19: Open file with specific encoding
Specify stream encoding. This is the normal way to deal with encoded text, not by calling low-level

functions.

input file

open(my $in_file, "< :encoding(UTF-16)", "wintext");

OR

open(my $in_file, "<", "wintext");

binmode($in_file, ":encoding(UTF-16)");

THEN

my $line = <$in_file>;

output file

open($out_file, "> :encoding(cp1252)", "wintext");

OR

open(my $out_file, ">", "wintext");

binmode($out_file, ":encoding(cp1252)");

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

THEN

print $out_file "some text\n";

More layers than just the encoding can be specified here. For example, the incantation ":raw

:encoding(UTF-16LE) :crlf" includes implicit CRLF handling.

X 20: Unicode casing
Unicode casing is very different from ASCII casing.

uc("henry X") # "HENRY X"

uc("tschuess") # "TSCHUeSS" notice ss => SS

both are true:

"tschuess" =~ /TSCHUeSS/i # notice ss => SS

"XXXXXXX" =~ /XXXXXXX/i # notice X,X,X sameness

X 21: Unicode case-insensitive comparisons
Also available in the CPAN Unicode::CaseFold module, the new "fc" XfoldcaseX function from v5.16

grants access to the same Unicode casefolding as the "/i" pattern modifier has always used:

use feature "fc"; # fc() function is from v5.16

sort case-insensitively

my @sorted = sort { fc($a) cmp fc($b) } @list;

both are true:

fc("tschuess") eq fc("TSCHUeSS")

fc("XXXXXXX") eq fc("XXXXXXX")

X 22: Match Unicode linebreak sequence in regex
A Unicode linebreak matches the two-character CRLF grapheme or any of seven vertical whitespace

characters. Good for dealing with textfiles coming from different operating systems.

\R

s/\R/\n/g; # normalize all linebreaks to \n

X 23: Get character category
Find the general category of a numeric codepoint.

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

use Unicode::UCD qw(charinfo);

my $cat = charinfo(0x3A3)->{category}; # "Lu"

X 24: Disabling Unicode-awareness in builtin charclasses
Disable "\w", "\b", "\s", "\d", and the POSIX classes from working correctly on Unicode either in this

scope, or in just one regex.

use v5.14;

use re "/a";

OR

my($num) = $str =~ /(\d+)/a;

Or use specific un-Unicode properties, like "\p{ahex}" and "\p{POSIX_Digit"}. Properties still work

normally no matter what charset modifiers ("/d /u /l /a /aa") should be effect.

X 25: Match Unicode properties in regex with \p, \P
These all match a single codepoint with the given property. Use "\P" in place of "\p" to match one

codepoint lacking that property.

\pL, \pN, \pS, \pP, \pM, \pZ, \pC

\p{Sk}, \p{Ps}, \p{Lt}

\p{alpha}, \p{upper}, \p{lower}

\p{Latin}, \p{Greek}

\p{script_extensions=Latin}, \p{scx=Greek}

\p{East_Asian_Width=Wide}, \p{EA=W}

\p{Line_Break=Hyphen}, \p{LB=HY}

\p{Numeric_Value=4}, \p{NV=4}

X 26: Custom character properties
Define at compile-time your own custom character properties for use in regexes.

using private-use characters

sub In_Tengwar { "E000\tE07F\n" }

if (/\p{In_Tengwar}/) { ... }

blending existing properties

sub Is_GraecoRoman_Title {<<’END_OF_SET’}

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

+utf8::IsLatin

+utf8::IsGreek

&utf8::IsTitle

END_OF_SET

if (/\p{Is_GraecoRoman_Title}/ { ... }

X 27: Unicode normalization
Typically render into NFD on input and NFC on output. Using NFKC or NFKD functions improves

recall on searches, assuming you’ve already done to the same text to be searched. Note that this is

about much more than just pre- combined compatibility glyphs; it also reorders marks according to

their canonical combining classes and weeds out singletons.

use Unicode::Normalize;

my $nfd = NFD($orig);

my $nfc = NFC($orig);

my $nfkd = NFKD($orig);

my $nfkc = NFKC($orig);

X 28: Convert non-ASCII Unicode numerics
Unless youXve used "/a" or "/aa", "\d" matches more than ASCII digits only, but PerlXs implicit

string-to-number conversion does not current recognize these. HereXs how to convert such strings

manually.

use v5.14; # needed for num() function

use Unicode::UCD qw(num);

my $str = "got X and XXXX and X and here";

my @nums = ();

while ($str =~ /(\d+|\N)/g) { # not just ASCII!

push @nums, num($1);

}

say "@nums"; # 12 4567 0.875

use charnames qw(:full);

my $nv = num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}");

X 29: Match Unicode grapheme cluster in regex
Programmer-visible XcharactersX are codepoints matched by "/./s", but user-visible XcharactersX are

graphemes matched by "/\X/".

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

Find vowel *plus* any combining diacritics,underlining,etc.

my $nfd = NFD($orig);

$nfd =~ / (?=[aeiou]) \X /xi

X 30: Extract by grapheme instead of by codepoint (regex)
match and grab five first graphemes

my($first_five) = $str =~ /^ (\X{5}) /x;

X 31: Extract by grapheme instead of by codepoint (substr)
cpan -i Unicode::GCString

use Unicode::GCString;

my $gcs = Unicode::GCString->new($str);

my $first_five = $gcs->substr(0, 5);

X 32: Reverse string by grapheme
Reversing by codepoint messes up diacritics, mistakenly converting "creme brulee" into "eelXurb

emXerc" instead of into "eelurb emerc"; so reverse by grapheme instead. Both these approaches work

right no matter what normalization the string is in:

$str = join("", reverse $str =~ /\X/g);

OR: cpan -i Unicode::GCString

use Unicode::GCString;

$str = reverse Unicode::GCString->new($str);

X 33: String length in graphemes
The string "brulee" has six graphemes but up to eight codepoints. This counts by grapheme, not by

codepoint:

my $str = "brulee";

my $count = 0;

while ($str =~ /\X/g) { $count++ }

OR: cpan -i Unicode::GCString

use Unicode::GCString;

my $gcs = Unicode::GCString->new($str);

my $count = $gcs->length;

X 34: Unicode column-width for printing
PerlXs "printf", "sprintf", and "format" think all codepoints take up 1 print column, but many take 0 or

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

2. Here to show that normalization makes no difference, we print out both forms:

use Unicode::GCString;

use Unicode::Normalize;

my @words = qw/creme brulee/;

@words = map { NFC($_), NFD($_) } @words;

for my $str (@words) {

my $gcs = Unicode::GCString->new($str);

my $cols = $gcs->columns;

my $pad = " " x (10 - $cols);

say str, $pad, " |";

}

generates this to show that it pads correctly no matter the normalization:

creme |

creXme |

brulee |

bruXleXe |

X 35: Unicode collation
Text sorted by numeric codepoint follows no reasonable alphabetic order; use the UCA for sorting text.

use Unicode::Collate;

my $col = Unicode::Collate->new();

my @list = $col->sort(@old_list);

See the ucsort program from the Unicode::Tussle CPAN module for a convenient command-line

interface to this module.

X 36: Case- and accent-insensitive Unicode sort
Specify a collation strength of level 1 to ignore case and diacritics, only looking at the basic character.

use Unicode::Collate;

my $col = Unicode::Collate->new(level => 1);

my @list = $col->sort(@old_list);

X 37: Unicode locale collation

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

Some locales have special sorting rules.

either use v5.12, OR: cpan -i Unicode::Collate::Locale

use Unicode::Collate::Locale;

my $col = Unicode::Collate::Locale->new(locale => "de__phonebook");

my @list = $col->sort(@old_list);

The ucsort program mentioned above accepts a "--locale" parameter.

X 38: Making "cmp" work on text instead of codepoints
Instead of this:

@srecs = sort {

$b->{AGE} <=> $a->{AGE}

||

$a->{NAME} cmp $b->{NAME}

} @recs;

Use this:

my $coll = Unicode::Collate->new();

for my $rec (@recs) {

$rec->{NAME_key} = $coll->getSortKey($rec->{NAME});

}

@srecs = sort {

$b->{AGE} <=> $a->{AGE}

||

$a->{NAME_key} cmp $b->{NAME_key}

} @recs;

X 39: Case- and accent-insensitive comparisons
Use a collator object to compare Unicode text by character instead of by codepoint.

use Unicode::Collate;

my $es = Unicode::Collate->new(

level => 1,

normalization => undef

);

now both are true:

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

$es->eq("Garcia", "GARCIA");

$es->eq("Marquez", "MARQUEZ");

X 40: Case- and accent-insensitive locale comparisons
Same, but in a specific locale.

my $de = Unicode::Collate::Locale->new(

locale => "de__phonebook",

);

now this is true:

$de->eq("tschuess", "TSCHUESS"); # notice ue => UE, ss => SS

X 41: Unicode linebreaking
Break up text into lines according to Unicode rules.

cpan -i Unicode::LineBreak

use Unicode::LineBreak;

use charnames qw(:full);

my $para = "This is a super\N{HYPHEN}long string. " x 20;

my $fmt = Unicode::LineBreak->new;

print $fmt->break($para), "\n";

X 42: Unicode text in DBM hashes, the tedious way
Using a regular Perl string as a key or value for a DBM hash will trigger a wide character exception if

any codepoints wonXt fit into a byte. HereXs how to manually manage the translation:

use DB_File;

use Encode qw(encode decode);

tie %dbhash, "DB_File", "pathname";

STORE

assume $uni_key and $uni_value are abstract Unicode strings

my $enc_key = encode("UTF-8", $uni_key, 1);

my $enc_value = encode("UTF-8", $uni_value, 1);

$dbhash{$enc_key} = $enc_value;

FETCH

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

assume $uni_key holds a normal Perl string (abstract Unicode)

my $enc_key = encode("UTF-8", $uni_key, 1);

my $enc_value = $dbhash{$enc_key};

my $uni_value = decode("UTF-8", $enc_value, 1);

X 43: Unicode text in DBM hashes, the easy way
HereXs how to implicitly manage the translation; all encoding and decoding is done automatically, just

as with streams that have a particular encoding attached to them:

use DB_File;

use DBM_Filter;

my $dbobj = tie %dbhash, "DB_File", "pathname";

$dbobj->Filter_Value("utf8"); # this is the magic bit

STORE

assume $uni_key and $uni_value are abstract Unicode strings

$dbhash{$uni_key} = $uni_value;

FETCH

$uni_key holds a normal Perl string (abstract Unicode)

my $uni_value = $dbhash{$uni_key};

X 44: PROGRAM: Demo of Unicode collation and printing
HereXs a full program showing how to make use of locale-sensitive sorting, Unicode casing, and

managing print widths when some of the characters take up zero or two columns, not just one column

each time. When run, the following program produces this nicely aligned output:

Creme Brulee....... X2.00

Eclair............. X1.60

Fideua............. X4.20

Hamburger.......... X6.00

Jamon Serrano...... X4.45

Linguica........... X7.00

Pate............... X4.15

Pears.............. X2.00

Peches............. X2.25

Smorbrod........... X5.75

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

Spaetzle............ X5.50

Xorico............. X3.00

XXXXX.............. X6.50

XXX............. X4.00

XXX............. X2.65

XXXXX......... X8.00

XXXXXXX..... X1.85

XX............... X9.99

XX............... X7.50

Here’s that program; tested on v5.14.

#!/usr/bin/env perl

umenu - demo sorting and printing of Unicode food

#

(obligatory and increasingly long preamble)

#

use utf8;

use v5.14; # for locale sorting

use strict;

use warnings;

use warnings qw(FATAL utf8); # fatalize encoding faults

use open qw(:std :encoding(UTF-8)); # undeclared streams in UTF-8

use charnames qw(:full :short); # unneeded in v5.16

std modules

use Unicode::Normalize; # std perl distro as of v5.8

use List::Util qw(max); # std perl distro as of v5.10

use Unicode::Collate::Locale; # std perl distro as of v5.14

cpan modules

use Unicode::GCString; # from CPAN

forward defs

sub pad($$$);

sub colwidth(_);

sub entitle(_);

my %price = (

"XXXXX" => 6.50, # gyros

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

"pears" => 2.00, # like um, pears

"linguica" => 7.00, # spicy sausage, Portuguese

"xorico" => 3.00, # chorizo sausage, Catalan

"hamburger" => 6.00, # burgermeister meisterburger

"eclair" => 1.60, # dessert, French

"smorbrod" => 5.75, # sandwiches, Norwegian

"spaetzle" => 5.50, # Bayerisch noodles, little sparrows

"XX" => 7.50, # bao1 zi5, steamed pork buns, Mandarin

"jamon serrano" => 4.45, # country ham, Spanish

"peches" => 2.25, # peaches, French

"XXXXXXX" => 1.85, # cream-filled pastry like eclair

"XXX" => 4.00, # makgeolli, Korean rice wine

"XX" => 9.99, # sushi, Japanese

"XXX" => 2.65, # omochi, rice cakes, Japanese

"creme brulee" => 2.00, # crema catalana

"fideua" => 4.20, # more noodles, Valencian

(Catalan=fideuada)

"pate" => 4.15, # gooseliver paste, French

"XXXXX" => 8.00, # okonomiyaki, Japanese

);

my $width = 5 + max map { colwidth } keys %price;

So the Asian stuff comes out in an order that someone

who reads those scripts won’t freak out over; the

CJK stuff will be in JIS X 0208 order that way.

my $coll = Unicode::Collate::Locale->new(locale => "ja");

for my $item ($coll->sort(keys %price)) {

print pad(entitle($item), $width, ".");

printf " X%.2f\n", $price{$item};

}

sub pad($$$) {

my($str, $width, $padchar) = @_;

return $str . ($padchar x ($width - colwidth($str)));

}

sub colwidth(_) {

my($str) = @_;

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

return Unicode::GCString->new($str)->columns;

}

sub entitle(_) {

my($str) = @_;

$str =~ s{ (?=\pL)(\S) (\S*) }

{ ucfirst($1) . lc($2) }xge;

return $str;

}

SEE ALSO
See these manpages, some of which are CPAN modules: perlunicode, perluniprops, perlre,

perlrecharclass, perluniintro, perlunitut, perlunifaq, PerlIO, DB_File, DBM_Filter, DBM_Filter::utf8,

Encode, Encode::Locale, Unicode::UCD, Unicode::Normalize, Unicode::GCString,

Unicode::LineBreak, Unicode::Collate, Unicode::Collate::Locale, Unicode::Unihan,

Unicode::CaseFold, Unicode::Tussle, Lingua::JA::Romanize::Japanese,

Lingua::ZH::Romanize::Pinyin, Lingua::KO::Romanize::Hangul.

The Unicode::Tussle CPAN module includes many programs to help with working with Unicode,

including these programs to fully or partly replace standard utilities: tcgrep instead of egrep, uniquote

instead of cat -v or hexdump, uniwc instead of wc, unilook instead of look, unifmt instead of fmt, and

ucsort instead of sort. For exploring Unicode character names and character properties, see its

uniprops, unichars, and uninames programs. It also supplies these programs, all of which are general

filters that do Unicode-y things: unititle and unicaps; uniwide and uninarrow; unisupers and unisubs;

nfd, nfc, nfkd, and nfkc; and uc, lc, and tc.

Finally, see the published Unicode Standard (page numbers are from version 6.0.0), including these

specific annexes and technical reports:

X3.13 Default Case Algorithms, page 113; X4.2 Case, pages 120X122; Case Mappings, page

166X172, especially Caseless Matching starting on page 170.

UAX #44: Unicode Character Database

UTS #18: Unicode Regular Expressions

UAX #15: Unicode Normalization Forms

UTS #10: Unicode Collation Algorithm

UAX #29: Unicode Text Segmentation

UAX #14: Unicode Line Breaking Algorithm

UAX #11: East Asian Width

AUTHOR

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

Tom Christiansen <tchrist@perl.com> wrote this, with occasional kibbitzing from Larry Wall and

Jeffrey Friedl in the background.

COPYRIGHT AND LICENCE
Copyright X 2012 Tom Christiansen.

This program is free software; you may redistribute it and/or modify it under the same terms as Perl

itself.

Most of these examples taken from the current edition of the XCamel BookX; that is, from the 4XX

Edition of Programming Perl, Copyright X 2012 Tom Christiansen <et al.>, 2012-02-13 by OXReilly

Media. The code itself is freely redistributable, and you are encouraged to transplant, fold, spindle, and

mutilate any of the examples in this manpage however you please for inclusion into your own

programs without any encumbrance whatsoever. Acknowledgement via code comment is polite but

not required.

REVISION HISTORY
v1.0.0 X first public release, 2012-02-27

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

perl v5.34.3 2023-11-28 PERLUNICOOK(1)

