
NAME
perlvar - Perl predefined variables

DESCRIPTION
The Syntax of Variable Names

Variable names in Perl can have several formats. Usually, they must begin with a letter or underscore,

in which case they can be arbitrarily long (up to an internal limit of 251 characters) and may contain

letters, digits, underscores, or the special sequence "::" or "’". In this case, the part before the last "::"

or "’" is taken to be a package qualifier; see perlmod. A Unicode letter that is not ASCII is not

considered to be a letter unless "use utf8" is in effect, and somewhat more complicated rules apply; see

"Identifier parsing" in perldata for details.

Perl variable names may also be a sequence of digits, a single punctuation character, or the two-

character sequence: "^" (caret or CIRCUMFLEX ACCENT) followed by any one of the characters

"[][A-Z^_?\]". These names are all reserved for special uses by Perl; for example, the all-digits names

are used to hold data captured by backreferences after a regular expression match.

Since Perl v5.6.0, Perl variable names may also be alphanumeric strings preceded by a caret. These

must all be written using the demarcated variable form using curly braces such as "${^Foo}"; the

braces are not optional. "${^Foo}" denotes the scalar variable whose name is considered to be a

control-"F" followed by two "o"’s. (See "Demarcated variable names using braces" in perldata for

more information on this form of spelling a variable name or specifying access to an element of an

array or a hash). These variables are reserved for future special uses by Perl, except for the ones that

begin with "^_" (caret-underscore). No name that begins with "^_" will acquire a special meaning in

any future version of Perl; such names may therefore be used safely in programs. $^_ itself, however,

is reserved.

Note that you also must use the demarcated form to access subscripts of variables of this type when

interpolating, for instance to access the first element of the "@{^CAPTURE}" variable inside of a

double quoted string you would write "${^CAPTURE[0]}" and NOT "${^CAPTURE}[0]" which

would mean to reference a scalar variable named "${^CAPTURE}" and not index 0 of the magic

"@{^CAPTURE}" array which is populated by the regex engine.

Perl identifiers that begin with digits or punctuation characters are exempt from the effects of the

"package" declaration and are always forced to be in package "main"; they are also exempt from "strict

’vars’" errors. A few other names are also exempt in these ways:

ENV STDIN

INC STDOUT

ARGV STDERR

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

ARGVOUT

SIG

In particular, the special "${^_XYZ}" variables are always taken to be in package "main", regardless of

any "package" declarations presently in scope.

SPECIAL VARIABLES
The following names have special meaning to Perl. Most punctuation names have reasonable

mnemonics, or analogs in the shells. Nevertheless, if you wish to use long variable names, you need

only say:

use English;

at the top of your program. This aliases all the short names to the long names in the current package.

Some even have medium names, generally borrowed from awk. For more info, please see English.

Before you continue, note the sort order for variables. In general, we first list the variables in case-

insensitive, almost-lexigraphical order (ignoring the "{" or "^" preceding words, as in

"${^UNICODE}" or $^T), although $_ and @_ move up to the top of the pile. For variables with the

same identifier, we list it in order of scalar, array, hash, and bareword.

General Variables
$ARG

$_ The default input and pattern-searching space. The following pairs are equivalent:

while (<>) {...} # equivalent only in while!

while (defined($_ = <>)) {...}

/^Subject:/

$_ =~ /^Subject:/

tr/a-z/A-Z/

$_ =~ tr/a-z/A-Z/

chomp

chomp($_)

Here are the places where Perl will assume $_ even if you don’t use it:

+o The following functions use $_ as a default argument:

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

abs, alarm, chomp, chop, chr, chroot, cos, defined, eval, evalbytes, exp, fc, glob, hex, int,

lc, lcfirst, length, log, lstat, mkdir, oct, ord, pos, print, printf, quotemeta, readlink,

readpipe, ref, require, reverse (in scalar context only), rmdir, say, sin, split (for its second

argument), sqrt, stat, study, uc, ucfirst, unlink, unpack.

+o All file tests ("-f", "-d") except for "-t", which defaults to STDIN. See "-X" in perlfunc

+o The pattern matching operations "m//", "s///" and "tr///" (aka "y///") when used without an

"=~" operator.

+o The default iterator variable in a "foreach" loop if no other variable is supplied.

+o The implicit iterator variable in the "grep()" and "map()" functions.

+o The implicit variable of "given()".

+o The default place to put the next value or input record when a "<FH>", "readline",

"readdir" or "each" operation’s result is tested by itself as the sole criterion of a "while"

test. Outside a "while" test, this will not happen.

$_ is a global variable.

However, between perl v5.10.0 and v5.24.0, it could be used lexically by writing "my $_".

Making $_ refer to the global $_ in the same scope was then possible with "our $_". This

experimental feature was removed and is now a fatal error, but you may encounter it in older

code.

Mnemonic: underline is understood in certain operations.

@ARG

@_ Within a subroutine the array @_ contains the parameters passed to that subroutine. Inside a

subroutine, @_ is the default array for the array operators "pop" and "shift".

See perlsub.

$LIST_SEPARATOR

$" When an array or an array slice is interpolated into a double-quoted string or a similar

context such as "/.../", its elements are separated by this value. Default is a space. For

example, this:

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

print "The array is: @array\n";

is equivalent to this:

print "The array is: " . join($", @array) . "\n";

Mnemonic: works in double-quoted context.

$PROCESS_ID

$PID

$$ The process number of the Perl running this script. Though you can set this variable, doing

so is generally discouraged, although it can be invaluable for some testing purposes. It will

be reset automatically across "fork()" calls.

Note for Linux and Debian GNU/kFreeBSD users: Before Perl v5.16.0 perl would emulate

POSIX semantics on Linux systems using LinuxThreads, a partial implementation of POSIX

Threads that has since been superseded by the Native POSIX Thread Library (NPTL).

LinuxThreads is now obsolete on Linux, and caching "getpid()" like this made embedding

perl unnecessarily complex (since you’d have to manually update the value of $$), so now $$

and "getppid()" will always return the same values as the underlying C library.

Debian GNU/kFreeBSD systems also used LinuxThreads up until and including the 6.0

release, but after that moved to FreeBSD thread semantics, which are POSIX-like.

To see if your system is affected by this discrepancy check if "getconf

GNU_LIBPTHREAD_VERSION | grep -q NPTL" returns a false value. NTPL threads

preserve the POSIX semantics.

Mnemonic: same as shells.

$PROGRAM_NAME

$0 Contains the name of the program being executed.

On some (but not all) operating systems assigning to $0 modifies the argument area that the

"ps" program sees. On some platforms you may have to use special "ps" options or a

different "ps" to see the changes. Modifying the $0 is more useful as a way of indicating the

current program state than it is for hiding the program you’re running.

Note that there are platform-specific limitations on the maximum length of $0. In the most

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

extreme case it may be limited to the space occupied by the original $0.

In some platforms there may be arbitrary amount of padding, for example space characters,

after the modified name as shown by "ps". In some platforms this padding may extend all the

way to the original length of the argument area, no matter what you do (this is the case for

example with Linux 2.2).

Note for BSD users: setting $0 does not completely remove "perl" from the ps(1) output. For

example, setting $0 to "foobar" may result in "perl: foobar (perl)" (whether both the "perl: "

prefix and the " (perl)" suffix are shown depends on your exact BSD variant and version).

This is an operating system feature, Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so that any thread may modify its copy

of the $0 and the change becomes visible to ps(1) (assuming the operating system plays

along). Note that the view of $0 the other threads have will not change since they have their

own copies of it.

If the program has been given to perl via the switches "-e" or "-E", $0 will contain the string

"-e".

On Linux as of perl v5.14.0 the legacy process name will be set with prctl(2), in addition to

altering the POSIX name via "argv[0]" as perl has done since version 4.000. Now system

utilities that read the legacy process name such as ps, top and killall will recognize the name

you set when assigning to $0. The string you supply will be cut off at 16 bytes, this is a

limitation imposed by Linux.

Wide characters are invalid in $0 values. For historical reasons, though, Perl accepts them

and encodes them to UTF-8. When this happens a wide-character warning is triggered.

Mnemonic: same as sh and ksh.

$REAL_GROUP_ID

$GID

$(The real gid of this process. If you are on a machine that supports membership in multiple

groups simultaneously, gives a space separated list of groups you are in. The first number is

the one returned by "getgid()", and the subsequent ones by "getgroups()", one of which may

be the same as the first number.

However, a value assigned to $(must be a single number used to set the real gid. So the

value given by $(should not be assigned back to $(without being forced numeric, such as by

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

adding zero. Note that this is different to the effective gid ($)) which does take a list.

You can change both the real gid and the effective gid at the same time by using

"POSIX::setgid()". Changes to $(require a check to $! to detect any possible errors after an

attempted change.

Mnemonic: parentheses are used to group things. The real gid is the group you left, if you’re

running setgid.

$EFFECTIVE_GROUP_ID

$EGID

$) The effective gid of this process. If you are on a machine that supports membership in

multiple groups simultaneously, gives a space separated list of groups you are in. The first

number is the one returned by "getegid()", and the subsequent ones by "getgroups()", one of

which may be the same as the first number.

Similarly, a value assigned to $) must also be a space-separated list of numbers. The first

number sets the effective gid, and the rest (if any) are passed to "setgroups()". To get the

effect of an empty list for "setgroups()", just repeat the new effective gid; that is, to force an

effective gid of 5 and an effectively empty "setgroups()" list, say " $) = "5 5" ".

You can change both the effective gid and the real gid at the same time by using

"POSIX::setgid()" (use only a single numeric argument). Changes to $) require a check to $!

to detect any possible errors after an attempted change.

$<, $>, $(and $) can be set only on machines that support the corresponding set[re][ug]id()
routine. $(and $) can be swapped only on machines supporting "setregid()".

Mnemonic: parentheses are used to group things. The effective gid is the group that’s right

for you, if you’re running setgid.

$REAL_USER_ID

$UID

$< The real uid of this process. You can change both the real uid and the effective uid at the

same time by using "POSIX::setuid()". Since changes to $< require a system call, check $!

after a change attempt to detect any possible errors.

Mnemonic: it’s the uid you came from, if you’re running setuid.

$EFFECTIVE_USER_ID

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

$EUID

$> The effective uid of this process. For example:

$< = $>; # set real to effective uid

($<,$>) = ($>,$<); # swap real and effective uids

You can change both the effective uid and the real uid at the same time by using

"POSIX::setuid()". Changes to $> require a check to $! to detect any possible errors after an

attempted change.

$< and $> can be swapped only on machines supporting "setreuid()".

Mnemonic: it’s the uid you went to, if you’re running setuid.

$SUBSCRIPT_SEPARATOR

$SUBSEP

$; The subscript separator for multidimensional array emulation. If you refer to a hash element

as

$foo{$x,$y,$z}

it really means

$foo{join($;, $x, $y, $z)}

But don’t put

@foo{$x,$y,$z} # a slice--note the @

which means

($foo{$x},$foo{$y},$foo{$z})

Default is "\034", the same as SUBSEP in awk. If your keys contain binary data there might

not be any safe value for $;.

Consider using "real" multidimensional arrays as described in perllol.

Mnemonic: comma (the syntactic subscript separator) is a semi-semicolon.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

$a

$b Special package variables when using "sort()", see "sort" in perlfunc. Because of this

specialness $a and $b don’t need to be declared (using "use vars", or "our()") even when

using the "strict ’vars’" pragma. Don’t lexicalize them with "my $a" or "my $b" if you want

to be able to use them in the "sort()" comparison block or function.

%ENV The hash %ENV contains your current environment. Setting a value in "ENV" changes the

environment for any child processes you subsequently "fork()" off.

As of v5.18.0, both keys and values stored in %ENV are stringified.

my $foo = 1;

$ENV{’bar’} = \$foo;

if(ref $ENV{’bar’}) {

say "Pre 5.18.0 Behaviour";

} else {

say "Post 5.18.0 Behaviour";

}

Previously, only child processes received stringified values:

my $foo = 1;

$ENV{’bar’} = \$foo;

Always printed ’non ref’

system($^X, ’-e’,

q/print (ref $ENV{’bar’} ? ’ref’ : ’non ref’) /);

This happens because you can’t really share arbitrary data structures with foreign processes.

$OLD_PERL_VERSION

$] The revision, version, and subversion of the Perl interpreter, represented as a decimal of the

form 5.XXXYYY, where XXX is the version / 1e3 and YYY is the subversion / 1e6. For

example, Perl v5.10.1 would be "5.010001".

This variable can be used to determine whether the Perl interpreter executing a script is in the

right range of versions:

warn "No PerlIO!\n" if "$]" < 5.008;

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

When comparing $], numeric comparison operators should be used, but the variable should

be stringified first to avoid issues where its original numeric value is inaccurate.

See also the documentation of "use VERSION" and "require VERSION" for a convenient

way to fail if the running Perl interpreter is too old.

See "$^V" for a representation of the Perl version as a version object, which allows more

flexible string comparisons.

The main advantage of $] over $^V is that it works the same on any version of Perl. The

disadvantages are that it can’t easily be compared to versions in other formats (e.g. literal

v-strings, "v1.2.3" or version objects) and numeric comparisons are subject to the binary

floating point representation; it’s good for numeric literal version checks and bad for

comparing to a variable that hasn’t been sanity-checked.

The $OLD_PERL_VERSION form was added in Perl v5.20.0 for historical reasons but its

use is discouraged. (If your reason to use $] is to run code on old perls then referring to it as

$OLD_PERL_VERSION would be self-defeating.)

Mnemonic: Is this version of perl in the right bracket?

$SYSTEM_FD_MAX

$^F The maximum system file descriptor, ordinarily 2. System file descriptors are passed to

"exec()"ed processes, while higher file descriptors are not. Also, during an "open()", system

file descriptors are preserved even if the "open()" fails (ordinary file descriptors are closed

before the "open()" is attempted). The close-on-exec status of a file descriptor will be

decided according to the value of $^F when the corresponding file, pipe, or socket was

opened, not the time of the "exec()".

@F The array @F contains the fields of each line read in when autosplit mode is turned on. See

perlrun for the -a switch. This array is package-specific, and must be declared or given a full

package name if not in package main when running under "strict ’vars’".

@INC The array @INC contains the list of places that the "do EXPR", "require", or "use" constructs

look for their library files. It initially consists of the arguments to any -I command-line

switches, followed by the default Perl library, probably /usr/local/lib/perl. Prior to Perl 5.26,

"." -which represents the current directory, was included in @INC; it has been removed. This

change in behavior is documented in "PERL_USE_UNSAFE_INC" and it is not

recommended that "." be re-added to @INC. If you need to modify @INC at runtime, you

should use the "use lib" pragma to get the machine-dependent library properly loaded as well:

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

use lib ’/mypath/libdir/’;

use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl code directly into

@INC. Those hooks may be subroutine references, array references or blessed objects. See

"require" in perlfunc for details.

%INC The hash %INC contains entries for each filename included via the "do", "require", or "use"

operators. The key is the filename you specified (with module names converted to

pathnames), and the value is the location of the file found. The "require" operator uses this

hash to determine whether a particular file has already been included.

If the file was loaded via a hook (e.g. a subroutine reference, see "require" in perlfunc for a

description of these hooks), this hook is by default inserted into %INC in place of a filename.

Note, however, that the hook may have set the %INC entry by itself to provide some more

specific info.

$INPLACE_EDIT

$^I The current value of the inplace-edit extension. Use "undef" to disable inplace editing.

Mnemonic: value of -i switch.

@ISA Each package contains a special array called @ISA which contains a list of that class’s parent

classes, if any. This array is simply a list of scalars, each of which is a string that corresponds

to a package name. The array is examined when Perl does method resolution, which is

covered in perlobj.

To load packages while adding them to @ISA, see the parent pragma. The discouraged base

pragma does this as well, but should not be used except when compatibility with the

discouraged fields pragma is required.

$^M By default, running out of memory is an untrappable, fatal error. However, if suitably built,

Perl can use the contents of $^M as an emergency memory pool after "die()"ing. Suppose

that your Perl were compiled with "-DPERL_EMERGENCY_SBRK" and used Perl’s

malloc. Then

$^M = ’a’ x (1 << 16);

would allocate a 64K buffer for use in an emergency. See the INSTALL file in the Perl

distribution for information on how to add custom C compilation flags when compiling perl.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

To discourage casual use of this advanced feature, there is no English long name for this

variable.

This variable was added in Perl 5.004.

$OSNAME

$^O The name of the operating system under which this copy of Perl was built, as determined

during the configuration process. For examples see "PLATFORMS" in perlport.

The value is identical to $Config{’osname’}. See also Config and the -V command-line

switch documented in perlrun.

In Windows platforms, $^O is not very helpful: since it is always "MSWin32", it doesn’t tell

the difference between 95/98/ME/NT/2000/XP/CE/.NET. Use "Win32::GetOSName()" or

Win32::GetOSVersion() (see Win32 and perlport) to distinguish between the variants.

This variable was added in Perl 5.003.

%SIG The hash %SIG contains signal handlers for signals. For example:

sub handler { # 1st argument is signal name

my($sig) = @_;

print "Caught a SIG$sig--shutting down\n";

close(LOG);

exit(0);

}

$SIG{’INT’} = \&handler;

$SIG{’QUIT’} = \&handler;

...

$SIG{’INT’} = ’DEFAULT’; # restore default action

$SIG{’QUIT’} = ’IGNORE’; # ignore SIGQUIT

Using a value of ’IGNORE’ usually has the effect of ignoring the signal, except for the

"CHLD" signal. See perlipc for more about this special case. Using an empty string or

"undef" as the value has the same effect as ’DEFAULT’.

Here are some other examples:

$SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

recommended)

$SIG{"PIPE"} = \&Plumber; # just fine; assume current

Plumber

$SIG{"PIPE"} = *Plumber; # somewhat esoteric

$SIG{"PIPE"} = Plumber(); # oops, what did Plumber()

return??

Be sure not to use a bareword as the name of a signal handler, lest you inadvertently call it.

Using a string that doesn’t correspond to any existing function or a glob that doesn’t contain

a code slot is equivalent to ’IGNORE’, but a warning is emitted when the handler is being

called (the warning is not emitted for the internal hooks described below).

If your system has the "sigaction()" function then signal handlers are installed using it. This

means you get reliable signal handling.

The default delivery policy of signals changed in Perl v5.8.0 from immediate (also known as

"unsafe") to deferred, also known as "safe signals". See perlipc for more information.

Certain internal hooks can be also set using the %SIG hash. The routine indicated by

$SIG{__WARN__} is called when a warning message is about to be printed. The warning

message is passed as the first argument. The presence of a "__WARN__" hook causes the

ordinary printing of warnings to "STDERR" to be suppressed. You can use this to save

warnings in a variable, or turn warnings into fatal errors, like this:

local $SIG{__WARN__} = sub { die $_[0] };

eval $proggie;

As the ’IGNORE’ hook is not supported by "__WARN__", its effect is the same as using

’DEFAULT’. You can disable warnings using the empty subroutine:

local $SIG{__WARN__} = sub {};

The routine indicated by $SIG{__DIE__} is called when a fatal exception is about to be

thrown. The error message is passed as the first argument. When a "__DIE__" hook routine

returns, the exception processing continues as it would have in the absence of the hook,

unless the hook routine itself exits via a "goto &sub", a loop exit, or a "die()". The

"__DIE__" handler is explicitly disabled during the call, so that you can die from a

"__DIE__" handler. Similarly for "__WARN__".

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

The $SIG{__DIE__} hook is called even inside an "eval()". It was never intended to happen

this way, but an implementation glitch made this possible. This used to be deprecated, as it

allowed strange action at a distance like rewriting a pending exception in $@. Plans to rectify

this have been scrapped, as users found that rewriting a pending exception is actually a useful

feature, and not a bug.

The $SIG{__DIE__} doesn’t support ’IGNORE’; it has the same effect as ’DEFAULT’.

"__DIE__"/"__WARN__" handlers are very special in one respect: they may be called to

report (probable) errors found by the parser. In such a case the parser may be in inconsistent

state, so any attempt to evaluate Perl code from such a handler will probably result in a

segfault. This means that warnings or errors that result from parsing Perl should be used with

extreme caution, like this:

require Carp if defined $^S;

Carp::confess("Something wrong") if defined &Carp::confess;

die "Something wrong, but could not load Carp to give "

. "backtrace...\n\t"

. "To see backtrace try starting Perl with -MCarp switch";

Here the first line will load "Carp" unless it is the parser who called the handler. The second

line will print backtrace and die if "Carp" was available. The third line will be executed only

if "Carp" was not available.

Having to even think about the $^S variable in your exception handlers is simply wrong.

$SIG{__DIE__} as currently implemented invites grievous and difficult to track down errors.

Avoid it and use an "END{}" or CORE::GLOBAL::die override instead.

See "die" in perlfunc, "warn" in perlfunc, "eval" in perlfunc, and warnings for additional

information.

$BASETIME

$^T The time at which the program began running, in seconds since the epoch (beginning of

1970). The values returned by the -M, -A, and -C filetests are based on this value.

$PERL_VERSION

$^V The revision, version, and subversion of the Perl interpreter, represented as a version object.

This variable first appeared in perl v5.6.0; earlier versions of perl will see an undefined

value. Before perl v5.10.0 $^V was represented as a v-string rather than a version object.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

$^V can be used to determine whether the Perl interpreter executing a script is in the right

range of versions. For example:

warn "Hashes not randomized!\n" if !$^V or $^V lt v5.8.1

While version objects overload stringification, to portably convert $^V into its string

representation, use "sprintf()"’s "%vd" conversion, which works for both v-strings or version

objects:

printf "version is v%vd\n", $^V; # Perl’s version

See the documentation of "use VERSION" and "require VERSION" for a convenient way to

fail if the running Perl interpreter is too old.

See also "$]" for a decimal representation of the Perl version.

The main advantage of $^V over $] is that, for Perl v5.10.0 or later, it overloads operators,

allowing easy comparison against other version representations (e.g. decimal, literal v-string,

"v1.2.3", or objects). The disadvantage is that prior to v5.10.0, it was only a literal v-string,

which can’t be easily printed or compared, whereas the behavior of $] is unchanged on all

versions of Perl.

Mnemonic: use ^V for a version object.

$EXECUTABLE_NAME

$^X The name used to execute the current copy of Perl, from C’s "argv[0]" or (where supported)

/proc/self/exe.

Depending on the host operating system, the value of $^X may be a relative or absolute

pathname of the perl program file, or may be the string used to invoke perl but not the

pathname of the perl program file. Also, most operating systems permit invoking programs

that are not in the PATH environment variable, so there is no guarantee that the value of $^X

is in PATH. For VMS, the value may or may not include a version number.

You usually can use the value of $^X to re-invoke an independent copy of the same perl that

is currently running, e.g.,

@first_run = ‘$^X -le "print int rand 100 for 1..100"‘;

But recall that not all operating systems support forking or capturing of the output of

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

commands, so this complex statement may not be portable.

It is not safe to use the value of $^X as a path name of a file, as some operating systems that

have a mandatory suffix on executable files do not require use of the suffix when invoking a

command. To convert the value of $^X to a path name, use the following statements:

Build up a set of file names (not command names).

use Config;

my $this_perl = $^X;

if ($^O ne ’VMS’) {

$this_perl .= $Config{_exe}

unless $this_perl =~ m/$Config{_exe}$/i;

}

Because many operating systems permit anyone with read access to the Perl program file to

make a copy of it, patch the copy, and then execute the copy, the security-conscious Perl

programmer should take care to invoke the installed copy of perl, not the copy referenced by

$^X. The following statements accomplish this goal, and produce a pathname that can be

invoked as a command or referenced as a file.

use Config;

my $secure_perl_path = $Config{perlpath};

if ($^O ne ’VMS’) {

$secure_perl_path .= $Config{_exe}

unless $secure_perl_path =~ m/$Config{_exe}$/i;

}

Variables related to regular expressions
Most of the special variables related to regular expressions are side effects. Perl sets these variables

when it has a successful match, so you should check the match result before using them. For instance:

if(/P(A)TT(ER)N/) {

print "I found $1 and $2\n";

}

These variables are read-only and dynamically-scoped, unless we note otherwise.

The dynamic nature of the regular expression variables means that their value is limited to the block

that they are in, as demonstrated by this bit of code:

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

my $outer = ’Wallace and Grommit’;

my $inner = ’Mutt and Jeff’;

my $pattern = qr/(\S+) and (\S+)/;

sub show_n { print "\$1 is $1; \$2 is $2\n" }

{

OUTER:

show_n() if $outer =~ m/$pattern/;

INNER: {

show_n() if $inner =~ m/$pattern/;

}

show_n();

}

The output shows that while in the "OUTER" block, the values of $1 and $2 are from the match against

$outer. Inside the "INNER" block, the values of $1 and $2 are from the match against $inner, but only

until the end of the block (i.e. the dynamic scope). After the "INNER" block completes, the values of

$1 and $2 return to the values for the match against $outer even though we have not made another

match:

$1 is Wallace; $2 is Grommit

$1 is Mutt; $2 is Jeff

$1 is Wallace; $2 is Grommit

Performance issues

Traditionally in Perl, any use of any of the three variables "$‘", $& or "$’" (or their "use English"

equivalents) anywhere in the code, caused all subsequent successful pattern matches to make a copy of

the matched string, in case the code might subsequently access one of those variables. This imposed a

considerable performance penalty across the whole program, so generally the use of these variables has

been discouraged.

In Perl 5.6.0 the "@-" and "@+" dynamic arrays were introduced that supply the indices of successful

matches. So you could for example do this:

$str =~ /pattern/;

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

print $‘, $&, $’; # bad: performance hit

print # good: no performance hit

substr($str, 0, $-[0]),

substr($str, $-[0], $+[0]-$-[0]),

substr($str, $+[0]);

In Perl 5.10.0 the "/p" match operator flag and the "${^PREMATCH}", "${^MATCH}", and

"${^POSTMATCH}" variables were introduced, that allowed you to suffer the penalties only on

patterns marked with "/p".

In Perl 5.18.0 onwards, perl started noting the presence of each of the three variables separately, and

only copied that part of the string required; so in

$‘; $&; "abcdefgh" =~ /d/

perl would only copy the "abcd" part of the string. That could make a big difference in something like

$str = ’x’ x 1_000_000;

$&; # whoops

$str =~ /x/g # one char copied a million times, not a million chars

In Perl 5.20.0 a new copy-on-write system was enabled by default, which finally fixes all performance

issues with these three variables, and makes them safe to use anywhere.

The "Devel::NYTProf" and "Devel::FindAmpersand" modules can help you find uses of these

problematic match variables in your code.

$<digits> ($1, $2, ...)

Contains the subpattern from the corresponding set of capturing parentheses from the last

successful pattern match, not counting patterns matched in nested blocks that have been

exited already.

Note there is a distinction between a capture buffer which matches the empty string a capture

buffer which is optional. Eg, "(x?)" and "(x)?" The latter may be undef, the former not.

These variables are read-only and dynamically-scoped.

Mnemonic: like \digits.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

@{^CAPTURE}

An array which exposes the contents of the capture buffers, if any, of the last successful

pattern match, not counting patterns matched in nested blocks that have been exited already.

Note that the 0 index of @{^CAPTURE} is equivalent to $1, the 1 index is equivalent to $2,

etc.

if ("foal"=~/(.)(.)(.)(.)/) {

print join "-", @{^CAPTURE};

}

should output "f-o-a-l".

See also "$<digits> ($1, $2, ...)", "%{^CAPTURE}" and "%{^CAPTURE_ALL}".

Note that unlike most other regex magic variables there is no single letter equivalent to

"@{^CAPTURE}". Also be aware that when interpolating subscripts of this array you must
use the demarcated variable form, for instance

print "${^CAPTURE[0]}"

see "Demarcated variable names using braces" in perldata for more information on this form

and its uses.

This variable was added in 5.25.7

$MATCH

$& The string matched by the last successful pattern match (not counting any matches hidden

within a BLOCK or "eval()" enclosed by the current BLOCK).

See "Performance issues" above for the serious performance implications of using this

variable (even once) in your code.

This variable is read-only and dynamically-scoped.

Mnemonic: like "&" in some editors.

${^MATCH}

This is similar to $& ($MATCH) except that it does not incur the performance penalty

associated with that variable.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

See "Performance issues" above.

In Perl v5.18 and earlier, it is only guaranteed to return a defined value when the pattern was

compiled or executed with the "/p" modifier. In Perl v5.20, the "/p" modifier does nothing,

so "${^MATCH}" does the same thing as $MATCH.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$PREMATCH

$‘ The string preceding whatever was matched by the last successful pattern match, not

counting any matches hidden within a BLOCK or "eval" enclosed by the current BLOCK.

See "Performance issues" above for the serious performance implications of using this

variable (even once) in your code.

This variable is read-only and dynamically-scoped.

Mnemonic: "‘" often precedes a quoted string.

${^PREMATCH}

This is similar to "$‘" ($PREMATCH) except that it does not incur the performance penalty

associated with that variable.

See "Performance issues" above.

In Perl v5.18 and earlier, it is only guaranteed to return a defined value when the pattern was

compiled or executed with the "/p" modifier. In Perl v5.20, the "/p" modifier does nothing,

so "${^PREMATCH}" does the same thing as $PREMATCH.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$POSTMATCH

$’ The string following whatever was matched by the last successful pattern match (not

counting any matches hidden within a BLOCK or "eval()" enclosed by the current BLOCK).

Example:

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

local $_ = ’abcdefghi’;

/def/;

print "$‘:$&:$’\n"; # prints abc:def:ghi

See "Performance issues" above for the serious performance implications of using this

variable (even once) in your code.

This variable is read-only and dynamically-scoped.

Mnemonic: "’" often follows a quoted string.

${^POSTMATCH}

This is similar to "$’" ($POSTMATCH) except that it does not incur the performance penalty

associated with that variable.

See "Performance issues" above.

In Perl v5.18 and earlier, it is only guaranteed to return a defined value when the pattern was

compiled or executed with the "/p" modifier. In Perl v5.20, the "/p" modifier does nothing,

so "${^POSTMATCH}" does the same thing as $POSTMATCH.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$LAST_PAREN_MATCH

$+ The text matched by the highest used capture group of the last successful search pattern. It is

logically equivalent to the highest numbered capture variable ($1, $2, ...) which has a defined

value.

This is useful if you don’t know which one of a set of alternative patterns matched. For

example:

/Version: (.*)|Revision: (.*)/ && ($rev = $+);

This variable is read-only and dynamically-scoped.

Mnemonic: be positive and forward looking.

$LAST_SUBMATCH_RESULT

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

$^N The text matched by the used group most-recently closed (i.e. the group with the rightmost

closing parenthesis) of the last successful search pattern. This is subtly different from $+. For

example in

"ab" =~ /^((.)(.))$/

we have

$1,$^N have the value "ab"

$2 has the value "a"

$3,$+ have the value "b"

This is primarily used inside "(?{...})" blocks for examining text recently matched. For

example, to effectively capture text to a variable (in addition to $1, $2, etc.), replace "(...)"

with

(?:(...)(?{ $var = $^N }))

By setting and then using $var in this way relieves you from having to worry about exactly

which numbered set of parentheses they are.

This variable was added in Perl v5.8.0.

Mnemonic: the (possibly) Nested parenthesis that most recently closed.

@LAST_MATCH_END

@+ This array holds the offsets of the ends of the last successful submatches in the currently

active dynamic scope. $+[0] is the offset into the string of the end of the entire match. This

is the same value as what the "pos" function returns when called on the variable that was

matched against. The nth element of this array holds the offset of the nth submatch, so $+[1]

is the offset past where $1 ends, $+[2] the offset past where $2 ends, and so on. You can use

$#+ to determine how many subgroups were in the last successful match. See the examples

given for the "@-" variable.

This variable was added in Perl v5.6.0.

%{^CAPTURE}

%LAST_PAREN_MATCH

%+ Similar to "@+", the "%+" hash allows access to the named capture buffers, should they

exist, in the last successful match in the currently active dynamic scope.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

For example, $+{foo} is equivalent to $1 after the following match:

’foo’ =~ /(?<foo>foo)/;

The keys of the "%+" hash list only the names of buffers that have captured (and that are thus

associated to defined values).

If multiple distinct capture groups have the same name, then $+{NAME} will refer to the

leftmost defined group in the match.

The underlying behaviour of "%+" is provided by the Tie::Hash::NamedCapture module.

Note: "%-" and "%+" are tied views into a common internal hash associated with the last

successful regular expression. Therefore mixing iterative access to them via "each" may

have unpredictable results. Likewise, if the last successful match changes, then the results

may be surprising.

This variable was added in Perl v5.10.0. The "%{^CAPTURE}" alias was added in 5.25.7.

This variable is read-only and dynamically-scoped.

@LAST_MATCH_START

@- "$-[0]" is the offset of the start of the last successful match. "$-[n]" is the offset of the start

of the substring matched by n-th subpattern, or undef if the subpattern did not match.

Thus, after a match against $_, $& coincides with "substr $_, $-[0], $+[0] - $-[0]". Similarly,

$n coincides with "substr $_, $-[n], $+[n] - $-[n]" if "$-[n]" is defined, and $+ coincides with

"substr $_, $-[$#-], $+[$#-] - $-[$#-]". One can use "$#-" to find the last matched subgroup

in the last successful match. Contrast with $#+, the number of subgroups in the regular

expression. Compare with "@+".

This array holds the offsets of the beginnings of the last successful submatches in the

currently active dynamic scope. "$-[0]" is the offset into the string of the beginning of the

entire match. The nth element of this array holds the offset of the nth submatch, so "$-[1]" is

the offset where $1 begins, "$-[2]" the offset where $2 begins, and so on.

After a match against some variable $var:

"$‘" is the same as "substr($var, 0, $-[0])"

$& is the same as "substr($var, $-[0], $+[0] - $-[0])"

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

"$’" is the same as "substr($var, $+[0])"

$1 is the same as "substr($var, $-[1], $+[1] - $-[1])"

$2 is the same as "substr($var, $-[2], $+[2] - $-[2])"

$3 is the same as "substr($var, $-[3], $+[3] - $-[3])"

This variable was added in Perl v5.6.0.

%{^CAPTURE_ALL}

%- Similar to "%+", this variable allows access to the named capture groups in the last

successful match in the currently active dynamic scope. To each capture group name found

in the regular expression, it associates a reference to an array containing the list of values

captured by all buffers with that name (should there be several of them), in the order where

they appear.

Here’s an example:

if (’1234’ =~ /(?<A>1)(?2)(?<A>3)(?4)/) {

foreach my $bufname (sort keys %-) {

my $ary = $-{$bufname};

foreach my $idx (0..$#$ary) {

print "\$-{$bufname}[$idx] : ",

(defined($ary->[$idx])

? "’$ary->[$idx]’"

: "undef"),

"\n";

}

}

}

would print out:

$-{A}[0] : ’1’

$-{A}[1] : ’3’

$-{B}[0] : ’2’

$-{B}[1] : ’4’

The keys of the "%-" hash correspond to all buffer names found in the regular expression.

The behaviour of "%-" is implemented via the Tie::Hash::NamedCapture module.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

Note: "%-" and "%+" are tied views into a common internal hash associated with the last

successful regular expression. Therefore mixing iterative access to them via "each" may

have unpredictable results. Likewise, if the last successful match changes, then the results

may be surprising.

This variable was added in Perl v5.10.0. The "%{^CAPTURE_ALL}" alias was added in

5.25.7.

This variable is read-only and dynamically-scoped.

$LAST_REGEXP_CODE_RESULT

$^R The result of evaluation of the last successful "(?{ code })" regular expression assertion (see

perlre). May be written to.

This variable was added in Perl 5.005.

${^RE_COMPILE_RECURSION_LIMIT}

The current value giving the maximum number of open but unclosed parenthetical groups

there may be at any point during a regular expression compilation. The default is currently

1000 nested groups. You may adjust it depending on your needs and the amount of memory

available.

This variable was added in Perl v5.30.0.

${^RE_DEBUG_FLAGS}

The current value of the regex debugging flags. Set to 0 for no debug output even when the

"re ’debug’" module is loaded. See re for details.

This variable was added in Perl v5.10.0.

${^RE_TRIE_MAXBUF}

Controls how certain regex optimisations are applied and how much memory they utilize.

This value by default is 65536 which corresponds to a 512kB temporary cache. Set this to a

higher value to trade memory for speed when matching large alternations. Set it to a lower

value if you want the optimisations to be as conservative of memory as possible but still

occur, and set it to a negative value to prevent the optimisation and conserve the most

memory. Under normal situations this variable should be of no interest to you.

This variable was added in Perl v5.10.0.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

Variables related to filehandles
Variables that depend on the currently selected filehandle may be set by calling an appropriate object

method on the "IO::Handle" object, although this is less efficient than using the regular built-in

variables. (Summary lines below for this contain the word HANDLE.) First you must say

use IO::Handle;

after which you may use either

method HANDLE EXPR

or more safely,

HANDLE->method(EXPR)

Each method returns the old value of the "IO::Handle" attribute. The methods each take an optional

EXPR, which, if supplied, specifies the new value for the "IO::Handle" attribute in question. If not

supplied, most methods do nothing to the current value--except for "autoflush()", which will assume a

1 for you, just to be different.

Because loading in the "IO::Handle" class is an expensive operation, you should learn how to use the

regular built-in variables.

A few of these variables are considered "read-only". This means that if you try to assign to this

variable, either directly or indirectly through a reference, you’ll raise a run-time exception.

You should be very careful when modifying the default values of most special variables described in

this document. In most cases you want to localize these variables before changing them, since if you

don’t, the change may affect other modules which rely on the default values of the special variables

that you have changed. This is one of the correct ways to read the whole file at once:

open my $fh, "<", "foo" or die $!;

local $/; # enable localized slurp mode

my $content = <$fh>;

close $fh;

But the following code is quite bad:

open my $fh, "<", "foo" or die $!;

undef $/; # enable slurp mode

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

my $content = <$fh>;

close $fh;

since some other module, may want to read data from some file in the default "line mode", so if the

code we have just presented has been executed, the global value of $/ is now changed for any other

code running inside the same Perl interpreter.

Usually when a variable is localized you want to make sure that this change affects the shortest scope

possible. So unless you are already inside some short "{}" block, you should create one yourself. For

example:

my $content = ’’;

open my $fh, "<", "foo" or die $!;

{

local $/;

$content = <$fh>;

}

close $fh;

Here is an example of how your own code can go broken:

for (1..3){

$\ = "\r\n";

nasty_break();

print "$_";

}

sub nasty_break {

$\ = "\f";

do something with $_

}

You probably expect this code to print the equivalent of

"1\r\n2\r\n3\r\n"

but instead you get:

"1\f2\f3\f"

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

Why? Because "nasty_break()" modifies "$\" without localizing it first. The value you set in

"nasty_break()" is still there when you return. The fix is to add "local()" so the value doesn’t leak out

of "nasty_break()":

local $\ = "\f";

It’s easy to notice the problem in such a short example, but in more complicated code you are looking

for trouble if you don’t localize changes to the special variables.

$ARGV Contains the name of the current file when reading from "<>".

@ARGV

The array @ARGV contains the command-line arguments intended for the script. $#ARGV

is generally the number of arguments minus one, because $ARGV[0] is the first argument,

not the program’s command name itself. See "$0" for the command name.

ARGV The special filehandle that iterates over command-line filenames in @ARGV. Usually

written as the null filehandle in the angle operator "<>". Note that currently "ARGV" only

has its magical effect within the "<>" operator; elsewhere it is just a plain filehandle

corresponding to the last file opened by "<>". In particular, passing "*ARGV" as a

parameter to a function that expects a filehandle may not cause your function to

automatically read the contents of all the files in @ARGV.

ARGVOUT

The special filehandle that points to the currently open output file when doing edit-in-place

processing with -i. Useful when you have to do a lot of inserting and don’t want to keep

modifying $_. See perlrun for the -i switch.

IO::Handle->output_field_separator(EXPR)

$OUTPUT_FIELD_SEPARATOR

$OFS

$, The output field separator for the print operator. If defined, this value is printed between

each of print’s arguments. Default is "undef".

You cannot call "output_field_separator()" on a handle, only as a static method. See

IO::Handle.

Mnemonic: what is printed when there is a "," in your print statement.

HANDLE->input_line_number(EXPR)

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

$INPUT_LINE_NUMBER

$NR

$. Current line number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that have been read from it. (Depending

on the value of $/, Perl’s idea of what constitutes a line may not match yours.) When a line is

read from a filehandle (via "readline()" or "<>"), or when "tell()" or "seek()" is called on it, $.

becomes an alias to the line counter for that filehandle.

You can adjust the counter by assigning to $., but this will not actually move the seek

pointer. Localizing $. will not localize the filehandle’s line count. Instead, it will localize

perl’s notion of which filehandle $. is currently aliased to.

$. is reset when the filehandle is closed, but not when an open filehandle is reopened without

an intervening "close()". For more details, see "I/O Operators" in perlop. Because "<>"

never does an explicit close, line numbers increase across "ARGV" files (but see examples in

"eof" in perlfunc).

You can also use "HANDLE->input_line_number(EXPR)" to access the line counter for a

given filehandle without having to worry about which handle you last accessed.

Mnemonic: many programs use "." to mean the current line number.

IO::Handle->input_record_separator(EXPR)

$INPUT_RECORD_SEPARATOR

$RS

$/ The input record separator, newline by default. This influences Perl’s idea of what a "line"

is. Works like awk’s RS variable, including treating empty lines as a terminator if set to the

null string (an empty line cannot contain any spaces or tabs). You may set it to a multi-

character string to match a multi-character terminator, or to "undef" to read through the end

of file. Setting it to "\n\n" means something slightly different than setting to "", if the file

contains consecutive empty lines. Setting to "" will treat two or more consecutive empty

lines as a single empty line. Setting to "\n\n" will blindly assume that the next input character

belongs to the next paragraph, even if it’s a newline.

local $/; # enable "slurp" mode

local $_ = <FH>; # whole file now here

s/\n[\t]+/ /g;

Remember: the value of $/ is a string, not a regex. awk has to be better for something. :-)

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

Setting $/ to an empty string -- the so-called paragraph mode -- merits special attention.

When $/ is set to "" and the entire file is read in with that setting, any sequence of one or

more consecutive newlines at the beginning of the file is discarded. With the exception of

the final record in the file, each sequence of characters ending in two or more newlines is

treated as one record and is read in to end in exactly two newlines. If the last record in the

file ends in zero or one consecutive newlines, that record is read in with that number of

newlines. If the last record ends in two or more consecutive newlines, it is read in with two

newlines like all preceding records.

Suppose we wrote the following string to a file:

my $string = "\n\n\n";

$string .= "alpha beta\ngamma delta\n\n\n";

$string .= "epsilon zeta eta\n\n";

$string .= "theta\n";

my $file = ’simple_file.txt’;

open my $OUT, ’>’, $file or die;

print $OUT $string;

close $OUT or die;

Now we read that file in paragraph mode:

local $/ = ""; # paragraph mode

open my $IN, ’<’, $file or die;

my @records = <$IN>;

close $IN or die;

@records will consist of these 3 strings:

(

"alpha beta\ngamma delta\n\n",

"epsilon zeta eta\n\n",

"theta\n",

)

Setting $/ to a reference to an integer, scalar containing an integer, or scalar that’s convertible

to an integer will attempt to read records instead of lines, with the maximum record size

being the referenced integer number of characters. So this:

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

local $/ = \32768; # or \"32768", or \$var_containing_32768

open my $fh, "<", $myfile or die $!;

local $_ = <$fh>;

will read a record of no more than 32768 characters from $fh. If you’re not reading from a

record-oriented file (or your OS doesn’t have record-oriented files), then you’ll likely get a

full chunk of data with every read. If a record is larger than the record size you’ve set, you’ll

get the record back in pieces. Trying to set the record size to zero or less is deprecated and

will cause $/ to have the value of "undef", which will cause reading in the (rest of the) whole

file.

As of 5.19.9 setting $/ to any other form of reference will throw a fatal exception. This is in

preparation for supporting new ways to set $/ in the future.

On VMS only, record reads bypass PerlIO layers and any associated buffering, so you must

not mix record and non-record reads on the same filehandle. Record mode mixes with line

mode only when the same buffering layer is in use for both modes.

You cannot call "input_record_separator()" on a handle, only as a static method. See

IO::Handle.

See also "Newlines" in perlport. Also see "$.".

Mnemonic: / delimits line boundaries when quoting poetry.

IO::Handle->output_record_separator(EXPR)

$OUTPUT_RECORD_SEPARATOR

$ORS

$\ The output record separator for the print operator. If defined, this value is printed after the

last of print’s arguments. Default is "undef".

You cannot call "output_record_separator()" on a handle, only as a static method. See

IO::Handle.

Mnemonic: you set "$\" instead of adding "\n" at the end of the print. Also, it’s just like $/,

but it’s what you get "back" from Perl.

HANDLE->autoflush(EXPR)

$OUTPUT_AUTOFLUSH

$| If set to nonzero, forces a flush right away and after every write or print on the currently

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

selected output channel. Default is 0 (regardless of whether the channel is really buffered by

the system or not; $| tells you only whether you’ve asked Perl explicitly to flush after each

write). STDOUT will typically be line buffered if output is to the terminal and block

buffered otherwise. Setting this variable is useful primarily when you are outputting to a

pipe or socket, such as when you are running a Perl program under rsh and want to see the

output as it’s happening. This has no effect on input buffering. See "getc" in perlfunc for

that. See "select" in perlfunc on how to select the output channel. See also IO::Handle.

Mnemonic: when you want your pipes to be piping hot.

${^LAST_FH}

This read-only variable contains a reference to the last-read filehandle. This is set by

"<HANDLE>", "readline", "tell", "eof" and "seek". This is the same handle that $. and "tell"

and "eof" without arguments use. It is also the handle used when Perl appends ", <STDIN>

line 1" to an error or warning message.

This variable was added in Perl v5.18.0.

Variables related to formats

The special variables for formats are a subset of those for filehandles. See perlform for more

information about Perl’s formats.

$ACCUMULATOR

$^A The current value of the "write()" accumulator for "format()" lines. A format contains

"formline()" calls that put their result into $^A. After calling its format, "write()" prints out

the contents of $^A and empties. So you never really see the contents of $^A unless you call

"formline()" yourself and then look at it. See perlform and "formline PICTURE,LIST" in

perlfunc.

IO::Handle->format_formfeed(EXPR)

$FORMAT_FORMFEED

$^L What formats output as a form feed. The default is "\f".

You cannot call "format_formfeed()" on a handle, only as a static method. See IO::Handle.

HANDLE->format_page_number(EXPR)

$FORMAT_PAGE_NUMBER

$% The current page number of the currently selected output channel.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

Mnemonic: "%" is page number in nroff.

HANDLE->format_lines_left(EXPR)

$FORMAT_LINES_LEFT

$- The number of lines left on the page of the currently selected output channel.

Mnemonic: lines_on_page - lines_printed.

IO::Handle->format_line_break_characters EXPR

$FORMAT_LINE_BREAK_CHARACTERS

$: The current set of characters after which a string may be broken to fill continuation fields

(starting with "^") in a format. The default is " \n-", to break on a space, newline, or a

hyphen.

You cannot call "format_line_break_characters()" on a handle, only as a static method. See

IO::Handle.

Mnemonic: a "colon" in poetry is a part of a line.

HANDLE->format_lines_per_page(EXPR)

$FORMAT_LINES_PER_PAGE

$= The current page length (printable lines) of the currently selected output channel. The default

is 60.

Mnemonic: = has horizontal lines.

HANDLE->format_top_name(EXPR)

$FORMAT_TOP_NAME

$^ The name of the current top-of-page format for the currently selected output channel. The

default is the name of the filehandle with "_TOP" appended. For example, the default format

top name for the "STDOUT" filehandle is "STDOUT_TOP".

Mnemonic: points to top of page.

HANDLE->format_name(EXPR)

$FORMAT_NAME

$~ The name of the current report format for the currently selected output channel. The default

format name is the same as the filehandle name. For example, the default format name for

the "STDOUT" filehandle is just "STDOUT".

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

Mnemonic: brother to $^.

Error Variables
The variables $@, $!, $^E, and $? contain information about different types of error conditions that

may appear during execution of a Perl program. The variables are shown ordered by the "distance"

between the subsystem which reported the error and the Perl process. They correspond to errors

detected by the Perl interpreter, C library, operating system, or an external program, respectively.

To illustrate the differences between these variables, consider the following Perl expression, which

uses a single-quoted string. After execution of this statement, perl may have set all four special error

variables:

eval q{

open my $pipe, "/cdrom/install |" or die $!;

my @res = <$pipe>;

close $pipe or die "bad pipe: $?, $!";

};

When perl executes the "eval()" expression, it translates the "open()", "<PIPE>", and "close" calls in

the C run-time library and thence to the operating system kernel. perl sets $! to the C library’s "errno"

if one of these calls fails.

$@ is set if the string to be "eval"-ed did not compile (this may happen if "open" or "close" were

imported with bad prototypes), or if Perl code executed during evaluation "die()"d. In these cases the

value of $@ is the compile error, or the argument to "die" (which will interpolate $! and $?). (See also

Fatal, though.)

Under a few operating systems, $^E may contain a more verbose error indicator, such as in this case,

"CDROM tray not closed." Systems that do not support extended error messages leave $^E the same

as $!.

Finally, $? may be set to a non-0 value if the external program /cdrom/install fails. The upper eight bits

reflect specific error conditions encountered by the program (the program’s "exit()" value). The lower

eight bits reflect mode of failure, like signal death and core dump information. See wait(2) for details.

In contrast to $! and $^E, which are set only if an error condition is detected, the variable $? is set on

each "wait" or pipe "close", overwriting the old value. This is more like $@, which on every "eval()" is

always set on failure and cleared on success.

For more details, see the individual descriptions at $@, $!, $^E, and $?.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

${^CHILD_ERROR_NATIVE}

The native status returned by the last pipe close, backtick ("‘‘") command, successful call to

"wait()" or "waitpid()", or from the "system()" operator. On POSIX-like systems this value

can be decoded with the WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,

WIFSTOPPED, and WSTOPSIG functions provided by the POSIX module.

Under VMS this reflects the actual VMS exit status; i.e. it is the same as $? when the pragma

"use vmsish ’status’" is in effect.

This variable was added in Perl v5.10.0.

$EXTENDED_OS_ERROR

$^E Error information specific to the current operating system. At the moment, this differs from

"$!" under only VMS, OS/2, and Win32 (and for MacPerl). On all other platforms, $^E is

always just the same as $!.

Under VMS, $^E provides the VMS status value from the last system error. This is more

specific information about the last system error than that provided by $!. This is particularly

important when $! is set to EVMSERR.

Under OS/2, $^E is set to the error code of the last call to OS/2 API either via CRT, or

directly from perl.

Under Win32, $^E always returns the last error information reported by the Win32 call

"GetLastError()" which describes the last error from within the Win32 API. Most

Win32-specific code will report errors via $^E. ANSI C and Unix-like calls set "errno" and

so most portable Perl code will report errors via $!.

Caveats mentioned in the description of "$!" generally apply to $^E, also.

This variable was added in Perl 5.003.

Mnemonic: Extra error explanation.

$EXCEPTIONS_BEING_CAUGHT

$^S Current state of the interpreter.

$^S State

--------- -------------------------------------

undef Parsing module, eval, or main program

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

true (1) Executing an eval or try block

false (0) Otherwise

The first state may happen in $SIG{__DIE__} and $SIG{__WARN__} handlers.

The English name $EXCEPTIONS_BEING_CAUGHT is slightly misleading, because the

"undef" value does not indicate whether exceptions are being caught, since compilation of the

main program does not catch exceptions.

This variable was added in Perl 5.004.

$WARNING

$^W The current value of the warning switch, initially true if -w was used, false otherwise, but

directly modifiable.

See also warnings.

Mnemonic: related to the -w switch.

${^WARNING_BITS}

The current set of warning checks enabled by the "use warnings" pragma. It has the same

scoping as the $^H and "%^H" variables. The exact values are considered internal to the

warnings pragma and may change between versions of Perl.

Each time a statement completes being compiled, the current value of

"${^WARNING_BITS}" is stored with that statement, and can later be retrieved via

"(caller($level))[9]".

This variable was added in Perl v5.6.0.

$OS_ERROR

$ERRNO

$! When referenced, $! retrieves the current value of the C "errno" integer variable. If $! is

assigned a numerical value, that value is stored in "errno". When referenced as a string, $!

yields the system error string corresponding to "errno".

Many system or library calls set "errno" if they fail, to indicate the cause of failure. They

usually do not set "errno" to zero if they succeed and may set "errno" to a non-zero value on

success. This means "errno", hence $!, is meaningful only immediately after a failure:

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

if (open my $fh, "<", $filename) {

Here $! is meaningless.

...

}

else {

ONLY here is $! meaningful.

...

Already here $! might be meaningless.

}

Since here we might have either success or failure,

$! is meaningless.

Here, meaningless means that $! may be unrelated to the outcome of the "open()" operator.

Assignment to $! is similarly ephemeral. It can be used immediately before invoking the

"die()" operator, to set the exit value, or to inspect the system error string corresponding to

error n, or to restore $! to a meaningful state.

Perl itself may set "errno" to a non-zero on failure even if no system call is performed.

Mnemonic: What just went bang?

%OS_ERROR

%ERRNO

%! Each element of "%!" has a true value only if $! is set to that value. For example,

$!{ENOENT} is true if and only if the current value of $! is "ENOENT"; that is, if the most

recent error was "No such file or directory" (or its moral equivalent: not all operating systems

give that exact error, and certainly not all languages). The specific true value is not

guaranteed, but in the past has generally been the numeric value of $!. To check if a

particular key is meaningful on your system, use "exists $!{the_key}"; for a list of legal keys,

use "keys %!". See Errno for more information, and also see "$!".

This variable was added in Perl 5.005.

$CHILD_ERROR

$? The status returned by the last pipe close, backtick ("‘‘") command, successful call to

"wait()" or "waitpid()", or from the "system()" operator. This is just the 16-bit status word

returned by the traditional Unix "wait()" system call (or else is made up to look like it).

Thus, the exit value of the subprocess is really ("$? >> 8"), and "$? & 127" gives which

signal, if any, the process died from, and "$? & 128" reports whether there was a core dump.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

Additionally, if the "h_errno" variable is supported in C, its value is returned via $? if any

"gethost*()" function fails.

If you have installed a signal handler for "SIGCHLD", the value of $? will usually be wrong

outside that handler.

Inside an "END" subroutine $? contains the value that is going to be given to "exit()". You

can modify $? in an "END" subroutine to change the exit status of your program. For

example:

END {

$? = 1 if $? == 255; # die would make it 255

}

Under VMS, the pragma "use vmsish ’status’" makes $? reflect the actual VMS exit status,

instead of the default emulation of POSIX status; see "$?" in perlvms for details.

Mnemonic: similar to sh and ksh.

$EVAL_ERROR

$@ The Perl error from the last "eval" operator, i.e. the last exception that was caught. For "eval

BLOCK", this is either a runtime error message or the string or reference "die" was called

with. The "eval STRING" form also catches syntax errors and other compile time

exceptions.

If no error occurs, "eval" sets $@ to the empty string.

Warning messages are not collected in this variable. You can, however, set up a routine to

process warnings by setting $SIG{__WARN__} as described in "%SIG".

Mnemonic: Where was the error "at"?

Variables related to the interpreter state
These variables provide information about the current interpreter state.

$COMPILING

$^C The current value of the flag associated with the -c switch. Mainly of use with -MO=... to

allow code to alter its behavior when being compiled, such as for example to "AUTOLOAD"

at compile time rather than normal, deferred loading. Setting "$^C = 1" is similar to calling

"B::minus_c".

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

This variable was added in Perl v5.6.0.

$DEBUGGING

$^D The current value of the debugging flags. May be read or set. Like its command-line

equivalent, you can use numeric or symbolic values, e.g. "$^D = 10" or "$^D = "st"". See

"-Dnumber" in perlrun. The contents of this variable also affects the debugger operation.

See "Debugger Internals" in perldebguts.

Mnemonic: value of -D switch.

${^GLOBAL_PHASE}

The current phase of the perl interpreter.

Possible values are:

CONSTRUCT

The "PerlInterpreter*" is being constructed via "perl_construct". This value is

mostly there for completeness and for use via the underlying C variable

"PL_phase". It’s not really possible for Perl code to be executed unless

construction of the interpreter is finished.

START This is the global compile-time. That includes, basically, every "BEGIN" block

executed directly or indirectly from during the compile-time of the top-level

program.

This phase is not called "BEGIN" to avoid confusion with "BEGIN"-blocks, as

those are executed during compile-time of any compilation unit, not just the top-

level program. A new, localised compile-time entered at run-time, for example by

constructs as "eval "use SomeModule"" are not global interpreter phases, and

therefore aren’t reflected by "${^GLOBAL_PHASE}".

CHECK Execution of any "CHECK" blocks.

INIT Similar to "CHECK", but for "INIT"-blocks, not "CHECK" blocks.

RUN The main run-time, i.e. the execution of "PL_main_root".

END Execution of any "END" blocks.

DESTRUCT

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

Global destruction.

Also note that there’s no value for UNITCHECK-blocks. That’s because those are run for

each compilation unit individually, and therefore is not a global interpreter phase.

Not every program has to go through each of the possible phases, but transition from one

phase to another can only happen in the order described in the above list.

An example of all of the phases Perl code can see:

BEGIN { print "compile-time: ${^GLOBAL_PHASE}\n" }

INIT { print "init-time: ${^GLOBAL_PHASE}\n" }

CHECK { print "check-time: ${^GLOBAL_PHASE}\n" }

{

package Print::Phase;

sub new {

my ($class, $time) = @_;

return bless \$time, $class;

}

sub DESTROY {

my $self = shift;

print "$$self: ${^GLOBAL_PHASE}\n";

}

}

print "run-time: ${^GLOBAL_PHASE}\n";

my $runtime = Print::Phase->new(

"lexical variables are garbage collected before END"

);

END { print "end-time: ${^GLOBAL_PHASE}\n" }

our $destruct = Print::Phase->new(

"package variables are garbage collected after END"

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

);

This will print out

compile-time: START

check-time: CHECK

init-time: INIT

run-time: RUN

lexical variables are garbage collected before END: RUN

end-time: END

package variables are garbage collected after END: DESTRUCT

This variable was added in Perl 5.14.0.

$^H WARNING: This variable is strictly for internal use only. Its availability, behavior, and

contents are subject to change without notice.

This variable contains compile-time hints for the Perl interpreter. At the end of compilation

of a BLOCK the value of this variable is restored to the value when the interpreter started to

compile the BLOCK.

Each time a statement completes being compiled, the current value of $^H is stored with that

statement, and can later be retrieved via "(caller($level))[8]".

When perl begins to parse any block construct that provides a lexical scope (e.g., eval body,

required file, subroutine body, loop body, or conditional block), the existing value of $^H is

saved, but its value is left unchanged. When the compilation of the block is completed, it

regains the saved value. Between the points where its value is saved and restored, code that

executes within BEGIN blocks is free to change the value of $^H.

This behavior provides the semantic of lexical scoping, and is used in, for instance, the "use

strict" pragma.

The contents should be an integer; different bits of it are used for different pragmatic flags.

Here’s an example:

sub add_100 { $^H |= 0x100 }

sub foo {

BEGIN { add_100() }

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

bar->baz($boon);

}

Consider what happens during execution of the BEGIN block. At this point the BEGIN

block has already been compiled, but the body of "foo()" is still being compiled. The new

value of $^H will therefore be visible only while the body of "foo()" is being compiled.

Substitution of "BEGIN { add_100() }" block with:

BEGIN { require strict; strict->import(’vars’) }

demonstrates how "use strict ’vars’" is implemented. Here’s a conditional version of the

same lexical pragma:

BEGIN {

require strict; strict->import(’vars’) if $condition

}

This variable was added in Perl 5.003.

%^H The "%^H" hash provides the same scoping semantic as $^H. This makes it useful for

implementation of lexically scoped pragmas. See perlpragma. All the entries are stringified

when accessed at runtime, so only simple values can be accommodated. This means no

pointers to objects, for example.

Each time a statement completes being compiled, the current value of "%^H" is stored with

that statement, and can later be retrieved via "(caller($level))[10]".

When putting items into "%^H", in order to avoid conflicting with other users of the hash

there is a convention regarding which keys to use. A module should use only keys that begin

with the module’s name (the name of its main package) and a "/" character. For example, a

module "Foo::Bar" should use keys such as "Foo::Bar/baz".

This variable was added in Perl v5.6.0.

${^OPEN}

An internal variable used by PerlIO. A string in two parts, separated by a "\0" byte, the first

part describes the input layers, the second part describes the output layers.

This is the mechanism that applies the lexical effects of the open pragma, and the main

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

program scope effects of the "io" or "D" options for the -C command-line switch and

PERL_UNICODE environment variable.

The functions "accept()", "open()", "pipe()", "readpipe()" (as well as the related "qx" and

"‘STRING‘" operators), "socket()", "socketpair()", and "sysopen()" are affected by the lexical

value of this variable. The implicit "ARGV" handle opened by "readline()" (or the related

"<>" and "<<>>" operators) on passed filenames is also affected (but not if it opens

"STDIN"). If this variable is not set, these functions will set the default layers as described in

"Defaults and how to override them" in PerlIO.

"open()" ignores this variable (and the default layers) when called with 3 arguments and

explicit layers are specified. Indirect calls to these functions via modules like IO::Handle are

not affected as they occur in a different lexical scope. Directory handles such as opened by

"opendir()" are not currently affected.

This variable was added in Perl v5.8.0.

$PERLDB

$^P The internal variable for debugging support. The meanings of the various bits are subject to

change, but currently indicate:

0x01 Debug subroutine enter/exit.

0x02 Line-by-line debugging. Causes "DB::DB()" subroutine to be called for each

statement executed. Also causes saving source code lines (like 0x400).

0x04 Switch off optimizations.

0x08 Preserve more data for future interactive inspections.

0x10 Keep info about source lines on which a subroutine is defined.

0x20 Start with single-step on.

0x40 Use subroutine address instead of name when reporting.

0x80 Report "goto &subroutine" as well.

0x100 Provide informative "file" names for evals based on the place they were compiled.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

0x200 Provide informative names to anonymous subroutines based on the place they were

compiled.

0x400 Save source code lines into "@{"_<$filename"}".

0x800 When saving source, include evals that generate no subroutines.

0x1000

When saving source, include source that did not compile.

Some bits may be relevant at compile-time only, some at run-time only. This is a new

mechanism and the details may change. See also perldebguts.

${^TAINT}

Reflects if taint mode is on or off. 1 for on (the program was run with -T), 0 for off, -1 when

only taint warnings are enabled (i.e. with -t or -TU).

Note: if your perl was built without taint support (see perlsec), then "${^TAINT}" will

always be 0, even if the program was run with -T).

This variable is read-only.

This variable was added in Perl v5.8.0.

${^SAFE_LOCALES}

Reflects if safe locale operations are available to this perl (when the value is 1) or not (the

value is 0). This variable is always 1 if the perl has been compiled without threads. It is also

1 if this perl is using thread-safe locale operations. Note that an individual thread may

choose to use the global locale (generally unsafe) by calling "switch_to_global_locale" in

perlapi. This variable currently is still set to 1 in such threads.

This variable is read-only.

This variable was added in Perl v5.28.0.

${^UNICODE}

Reflects certain Unicode settings of Perl. See perlrun documentation for the "-C" switch for

more information about the possible values.

This variable is set during Perl startup and is thereafter read-only.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

This variable was added in Perl v5.8.2.

${^UTF8CACHE}

This variable controls the state of the internal UTF-8 offset caching code. 1 for on (the

default), 0 for off, -1 to debug the caching code by checking all its results against linear

scans, and panicking on any discrepancy.

This variable was added in Perl v5.8.9. It is subject to change or removal without notice, but

is currently used to avoid recalculating the boundaries of multi-byte UTF-8-encoded

characters.

${^UTF8LOCALE}

This variable indicates whether a UTF-8 locale was detected by perl at startup. This

information is used by perl when it’s in adjust-utf8ness-to-locale mode (as when run with the

"-CL" command-line switch); see perlrun for more info on this.

This variable was added in Perl v5.8.8.

Deprecated and removed variables
Deprecating a variable announces the intent of the perl maintainers to eventually remove the variable

from the language. It may still be available despite its status. Using a deprecated variable triggers a

warning.

Once a variable is removed, its use triggers an error telling you the variable is unsupported.

See perldiag for details about error messages.

$# $# was a variable that could be used to format printed numbers. After a deprecation cycle, its

magic was removed in Perl v5.10.0 and using it now triggers a warning: "$# is no longer

supported".

This is not the sigil you use in front of an array name to get the last index, like $#array.

That’s still how you get the last index of an array in Perl. The two have nothing to do with

each other.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$* $* was a variable that you could use to enable multiline matching. After a deprecation cycle,

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

its magic was removed in Perl v5.10.0. Using it now triggers a warning: "$* is no longer

supported". You should use the "/s" and "/m" regexp modifiers instead.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$[This variable stores the index of the first element in an array, and of the first character in a

substring. The default is 0, but you could theoretically set it to 1 to make Perl behave more

like awk (or Fortran) when subscripting and when evaluating the index() and substr()
functions.

As of release 5 of Perl, assignment to $[is treated as a compiler directive, and cannot

influence the behavior of any other file. (That’s why you can only assign compile-time

constants to it.) Its use is highly discouraged.

Prior to Perl v5.10.0, assignment to $[could be seen from outer lexical scopes in the same

file, unlike other compile-time directives (such as strict). Using local() on it would bind its

value strictly to a lexical block. Now it is always lexically scoped.

As of Perl v5.16.0, it is implemented by the arybase module.

As of Perl v5.30.0, or under "use v5.16", or "no feature "array_base"", $[no longer has any

effect, and always contains 0. Assigning 0 to it is permitted, but any other value will produce

an error.

Mnemonic: [begins subscripts.

Deprecated in Perl v5.12.0.

${^ENCODING}

This variable is no longer supported.

It used to hold the object reference to the "Encode" object that was used to convert the source

code to Unicode.

Its purpose was to allow your non-ASCII Perl scripts not to have to be written in UTF-8; this

was useful before editors that worked on UTF-8 encoded text were common, but that was

long ago. It caused problems, such as affecting the operation of other modules that weren’t

expecting it, causing general mayhem.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

If you need something like this functionality, it is recommended that use you a simple source

filter, such as Filter::Encoding.

If you are coming here because code of yours is being adversely affected by someone’s use

of this variable, you can usually work around it by doing this:

local ${^ENCODING};

near the beginning of the functions that are getting broken. This undefines the variable

during the scope of execution of the including function.

This variable was added in Perl 5.8.2 and removed in 5.26.0. Setting it to anything other than

"undef" was made fatal in Perl 5.28.0.

${^WIN32_SLOPPY_STAT}

This variable no longer has any function.

This variable was added in Perl v5.10.0 and removed in Perl v5.34.0.

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

perl v5.36.3 2023-11-28 PERLVAR(1)

