
NAME
pf - packet filter

SYNOPSIS
device pf
options PF_DEFAULT_TO_DROP

DESCRIPTION
Packet filtering takes place in the kernel. A pseudo-device, /dev/pf, allows userland processes to control

the behavior of the packet filter through an ioctl(2) interface. There are commands to enable and disable

the filter, load rulesets, add and remove individual rules or state table entries, and retrieve statistics. The

most commonly used functions are covered by pfctl(8).

Manipulations like loading a ruleset that involve more than a single ioctl(2) call require a so-called

ticket, which prevents the occurrence of multiple concurrent manipulations.

Fields of ioctl(2) parameter structures that refer to packet data (like addresses and ports) are generally

expected in network byte-order.

Rules and address tables are contained in so-called anchors. When servicing an ioctl(2) request, if the

anchor field of the argument structure is empty, the kernel will use the default anchor (i.e., the main

ruleset) in operations. Anchors are specified by name and may be nested, with components separated by

‘/’ characters, similar to how file system hierarchies are laid out. The final component of the anchor

path is the anchor under which operations will be performed.

SYSCTL VARIABLES AND LOADER TUNABLES
The following loader(8) tunables are available.

net.pf.states_hashsize

Size of hash tables that store states. Should be power of 2. Default value is 131072.

net.pf.source_nodes_hashsize

Size of hash table that store source nodes. Should be power of 2. Default value is 32768.

Read only sysctl(8) variables with matching names are provided to obtain current values at runtime.

KERNEL OPTIONS
The following options in the kernel configuration file are related to pf operation:

PF_DEFAULT_TO_DROP Change default policy to drop by default

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

IOCTL INTERFACE
pf supports the following ioctl(2) commands, available through <net/pfvar.h>:

DIOCSTART

Start the packet filter.

DIOCSTOP

Stop the packet filter.

DIOCSTARTALTQ

Start the ALTQ bandwidth control system (see altq(9)).

DIOCSTOPALTQ

Stop the ALTQ bandwidth control system.

DIOCBEGINADDRS struct pfioc_pooladdr *pp

struct pfioc_pooladdr {

u_int32_t action;

u_int32_t ticket;

u_int32_t nr;

u_int32_t r_num;

u_int8_t r_action;

u_int8_t r_last;

u_int8_t af;

char anchor[MAXPATHLEN];

struct pf_pooladdr addr;

};

Clear the buffer address pool and get a ticket for subsequent DIOCADDADDR,

DIOCADDRULE, and DIOCCHANGERULE calls.

DIOCADDADDR struct pfioc_pooladdr *pp

Add the pool address addr to the buffer address pool to be used in the following

DIOCADDRULE or DIOCCHANGERULE call. All other members of the structure are

ignored.

DIOCADDRULE struct pfioc_rule *pr

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

struct pfioc_rule {

u_int32_t action;

u_int32_t ticket;

u_int32_t pool_ticket;

u_int32_t nr;

char anchor[MAXPATHLEN];

char anchor_call[MAXPATHLEN];

struct pf_rule rule;

};

Add rule at the end of the inactive ruleset. This call requires a ticket obtained through a

preceding DIOCXBEGIN call and a pool_ticket obtained through a DIOCBEGINADDRS call.

DIOCADDADDR must also be called if any pool addresses are required. The optional anchor

name indicates the anchor in which to append the rule. nr and action are ignored.

DIOCADDALTQ struct pfioc_altq *pa

Add an ALTQ discipline or queue.

struct pfioc_altq {

u_int32_t action;

u_int32_t ticket;

u_int32_t nr;

struct pf_altq altq;

};

DIOCGETRULES struct pfioc_rule *pr

Get a ticket for subsequent DIOCGETRULE calls and the number nr of rules in the active

ruleset.

DIOCGETRULE struct pfioc_rule *pr

Get a rule by its number nr using the ticket obtained through a preceding DIOCGETRULES

call. If action is set to PF_GET_CLR_CNTR, the per-rule statistics on the requested rule are

cleared.

DIOCGETADDRS struct pfioc_pooladdr *pp

Get a ticket for subsequent DIOCGETADDR calls and the number nr of pool addresses in the

rule specified with r_action, r_num, and anchor.

DIOCGETADDR struct pfioc_pooladdr *pp

Get the pool address addr by its number nr from the rule specified with r_action, r_num, and

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

anchor using the ticket obtained through a preceding DIOCGETADDRS call.

DIOCGETALTQS struct pfioc_altq *pa

Get a ticket for subsequent DIOCGETALTQ calls and the number nr of queues in the active

list.

DIOCGETALTQ struct pfioc_altq *pa

Get the queueing discipline altq by its number nr using the ticket obtained through a preceding

DIOCGETALTQS call.

DIOCGETQSTATS struct pfioc_qstats *pq

Get the statistics on a queue.

struct pfioc_qstats {

u_int32_t ticket;

u_int32_t nr;

void *buf;

int nbytes;

u_int8_t scheduler;

};

This call fills in a pointer to the buffer of statistics buf, of length nbytes, for the queue specified

by nr.

DIOCGETRULESETS struct pfioc_ruleset *pr

struct pfioc_ruleset {

u_int32_t nr;

char path[MAXPATHLEN];

char name[PF_ANCHOR_NAME_SIZE];

};

Get the number nr of rulesets (i.e., anchors) directly attached to the anchor named by path for

use in subsequent DIOCGETRULESET calls. Nested anchors, since they are not directly

attached to the given anchor, will not be included. This ioctl returns ENOENT if the parent

anchor given at path does not exist.

DIOCGETRULESET struct pfioc_ruleset *pr

Get a ruleset (i.e., an anchor) name by its number nr from the given anchor path, the maximum

number of which can be obtained from a preceding DIOCGETRULESETS call. This ioctl

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

returns ENOENT if the parent anchor given by path does not exist or EBUSY if the index

passed in by nr is greater than the number of anchors.

DIOCADDSTATE struct pfioc_state *ps

Add a state entry.

struct pfioc_state {

struct pfsync_state state;

};

DIOCGETSTATENV struct pfioc_nv *nv

Extract the entry identified by the id and creatorid fields of the state nvlist from the state table.

DIOCKILLSTATES struct pfioc_state_kill *psk

Remove matching entries from the state table. This ioctl returns the number of killed states in

psk_killed.

struct pfioc_state_kill {

struct pf_state_cmp psk_pfcmp;

sa_family_t psk_af;

int psk_proto;

struct pf_rule_addr psk_src;

struct pf_rule_addr psk_dst;

char psk_ifname[IFNAMSIZ];

char psk_label[PF_RULE_LABEL_SIZE];

u_int psk_killed;

};

DIOCCLRSTATES struct pfioc_state_kill *psk

Clear all states. It works like DIOCKILLSTATES, but ignores the psk_af, psk_proto, psk_src,

and psk_dst fields of the pfioc_state_kill structure.

DIOCSETSTATUSIF struct pfioc_if *pi

Specify the interface for which statistics are accumulated.

struct pfioc_if {

char ifname[IFNAMSIZ];

};

DIOCGETSTATUS struct pf_status *s

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

Get the internal packet filter statistics.

struct pf_status {

u_int64_t counters[PFRES_MAX];

u_int64_t lcounters[LCNT_MAX];

u_int64_t fcounters[FCNT_MAX];

u_int64_t scounters[SCNT_MAX];

u_int64_t pcounters[2][2][3];

u_int64_t bcounters[2][2];

u_int32_t running;

u_int32_t states;

u_int32_t src_nodes;

u_int32_t since;

u_int32_t debug;

u_int32_t hostid;

char ifname[IFNAMSIZ];

u_int8_t pf_chksum[MD5_DIGEST_LENGTH];

};

DIOCCLRSTATUS

Clear the internal packet filter statistics.

DIOCNATLOOK struct pfioc_natlook *pnl

Look up a state table entry by source and destination addresses and ports.

struct pfioc_natlook {

struct pf_addr saddr;

struct pf_addr daddr;

struct pf_addr rsaddr;

struct pf_addr rdaddr;

u_int16_t sport;

u_int16_t dport;

u_int16_t rsport;

u_int16_t rdport;

sa_family_t af;

u_int8_t proto;

u_int8_t direction;

};

DIOCSETDEBUG u_int32_t *level

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

Set the debug level.

enum { PF_DEBUG_NONE, PF_DEBUG_URGENT, PF_DEBUG_MISC,

PF_DEBUG_NOISY };

DIOCGETSTATESV2 struct pfioc_states_v2 *ps

Get state table entries.

struct pfioc_states_v2 {

int ps_len;

uint64_t ps_req_version;

union {

void *ps_buf;

struct pf_state_export *ps_states;

};

};

struct pf_state_export {

uint64_t version;

uint64_t id;

char ifname[IFNAMSIZ];

char orig_ifname[IFNAMSIZ];

struct pf_state_key_export key[2];

struct pf_state_peer_export src;

struct pf_state_peer_export dst;

struct pf_addr rt_addr;

uint32_t rule;

uint32_t anchor;

uint32_t nat_rule;

uint32_t creation;

uint32_t expire;

uint32_t spare0;

uint64_t packets[2];

uint64_t bytes[2];

uint32_t creatorid;

uint32_t spare1;

sa_family_t af;

uint8_t proto;

uint8_t direction;

uint8_t log;

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

uint8_t state_flags_compat;

uint8_t timeout;

uint8_t sync_flags;

uint8_t updates;

uint16_t state_flags;

uint16_t qid;

uint16_t pqid;

uint16_t dnpipe;

uint16_t dnrpipe;

int32_t rtableid;

uint8_t min_ttl;

uint8_t set_tos;

uint16_t max_mss;

uint8_t set_prio[2];

uint8_t rt;

char rt_ifname[IFNAMSIZ];

uint8_t spare[72];

};

DIOCCHANGERULE struct pfioc_rule *pcr

Add or remove the rule in the ruleset specified by rule.action.

The type of operation to be performed is indicated by action, which can be any of the following:

enum { PF_CHANGE_NONE, PF_CHANGE_ADD_HEAD, PF_CHANGE_ADD_TAIL,

PF_CHANGE_ADD_BEFORE, PF_CHANGE_ADD_AFTER,

PF_CHANGE_REMOVE, PF_CHANGE_GET_TICKET };

ticket must be set to the value obtained with PF_CHANGE_GET_TICKET for all actions

except PF_CHANGE_GET_TICKET. pool_ticket must be set to the value obtained with the

DIOCBEGINADDRS call for all actions except PF_CHANGE_REMOVE and

PF_CHANGE_GET_TICKET. anchor indicates to which anchor the operation applies. nr

indicates the rule number against which PF_CHANGE_ADD_BEFORE,

PF_CHANGE_ADD_AFTER, or PF_CHANGE_REMOVE actions are applied.

DIOCCHANGEADDR struct pfioc_pooladdr *pca

Add or remove the pool address addr from the rule specified by r_action, r_num, and anchor.

DIOCSETTIMEOUT struct pfioc_tm *pt

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

struct pfioc_tm {

int timeout;

int seconds;

};

Set the state timeout of timeout to seconds. The old value will be placed into seconds. For

possible values of timeout, consult the PFTM_* values in <net/pfvar.h>.

DIOCGETTIMEOUT struct pfioc_tm *pt

Get the state timeout of timeout. The value will be placed into the seconds field.

DIOCCLRRULECTRS

Clear per-rule statistics.

DIOCSETLIMIT struct pfioc_limit *pl

Set the hard limits on the memory pools used by the packet filter.

struct pfioc_limit {

int index;

unsigned limit;

};

enum { PF_LIMIT_STATES, PF_LIMIT_SRC_NODES, PF_LIMIT_FRAGS,

PF_LIMIT_TABLE_ENTRIES, PF_LIMIT_MAX };

DIOCGETLIMIT struct pfioc_limit *pl

Get the hard limit for the memory pool indicated by index.

DIOCRCLRTABLES struct pfioc_table *io

Clear all tables. All the ioctls that manipulate radix tables use the same structure described

below. For DIOCRCLRTABLES, pfrio_ndel contains on exit the number of tables deleted.

struct pfioc_table {

struct pfr_table pfrio_table;

void *pfrio_buffer;

int pfrio_esize;

int pfrio_size;

int pfrio_size2;

int pfrio_nadd;

int pfrio_ndel;

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

int pfrio_nchange;

int pfrio_flags;

u_int32_t pfrio_ticket;

};

#define pfrio_exists pfrio_nadd

#define pfrio_nzero pfrio_nadd

#define pfrio_nmatch pfrio_nadd

#define pfrio_naddr pfrio_size2

#define pfrio_setflag pfrio_size2

#define pfrio_clrflag pfrio_nadd

DIOCRADDTABLES struct pfioc_table *io

Create one or more tables. On entry, pfrio_buffer must point to an array of struct pfr_table

containing at least pfrio_size elements. pfrio_esize must be the size of struct pfr_table. On

exit, pfrio_nadd contains the number of tables effectively created.

struct pfr_table {

char pfrt_anchor[MAXPATHLEN];

char pfrt_name[PF_TABLE_NAME_SIZE];

u_int32_t pfrt_flags;

u_int8_t pfrt_fback;

};

DIOCRDELTABLES struct pfioc_table *io

Delete one or more tables. On entry, pfrio_buffer must point to an array of struct pfr_table

containing at least pfrio_size elements. pfrio_esize must be the size of struct pfr_table. On

exit, pfrio_ndel contains the number of tables effectively deleted.

DIOCRGETTABLES struct pfioc_table *io

Get the list of all tables. On entry, pfrio_buffer[pfrio_size] contains a valid writeable buffer for

pfr_table structures. On exit, pfrio_size contains the number of tables written into the buffer. If

the buffer is too small, the kernel does not store anything but just returns the required buffer

size, without error.

DIOCRGETTSTATS struct pfioc_table *io

This call is like DIOCRGETTABLES but is used to get an array of pfr_tstats structures.

struct pfr_tstats {

struct pfr_table pfrts_t;

u_int64_t pfrts_packets

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

[PFR_DIR_MAX][PFR_OP_TABLE_MAX];

u_int64_t pfrts_bytes

[PFR_DIR_MAX][PFR_OP_TABLE_MAX];

u_int64_t pfrts_match;

u_int64_t pfrts_nomatch;

long pfrts_tzero;

int pfrts_cnt;

int pfrts_refcnt[PFR_REFCNT_MAX];

};

#define pfrts_name pfrts_t.pfrt_name

#define pfrts_flags pfrts_t.pfrt_flags

DIOCRCLRTSTATS struct pfioc_table *io

Clear the statistics of one or more tables. On entry, pfrio_buffer must point to an array of

struct pfr_table containing at least pfrio_size elements. pfrio_esize must be the size of struct

pfr_table. On exit, pfrio_nzero contains the number of tables effectively cleared.

DIOCRCLRADDRS struct pfioc_table *io

Clear all addresses in a table. On entry, pfrio_table contains the table to clear. On exit,

pfrio_ndel contains the number of addresses removed.

DIOCRADDADDRS struct pfioc_table *io

Add one or more addresses to a table. On entry, pfrio_table contains the table ID and

pfrio_buffer must point to an array of struct pfr_addr containing at least pfrio_size elements to

add to the table. pfrio_esize must be the size of struct pfr_addr. On exit, pfrio_nadd contains

the number of addresses effectively added.

struct pfr_addr {

union {

struct in_addr _pfra_ip4addr;

struct in6_addr _pfra_ip6addr;

} pfra_u;

u_int8_t pfra_af;

u_int8_t pfra_net;

u_int8_t pfra_not;

u_int8_t pfra_fback;

};

#define pfra_ip4addr pfra_u._pfra_ip4addr

#define pfra_ip6addr pfra_u._pfra_ip6addr

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

DIOCRDELADDRS struct pfioc_table *io

Delete one or more addresses from a table. On entry, pfrio_table contains the table ID and

pfrio_buffer must point to an array of struct pfr_addr containing at least pfrio_size elements to

delete from the table. pfrio_esize must be the size of struct pfr_addr. On exit, pfrio_ndel

contains the number of addresses effectively deleted.

DIOCRSETADDRS struct pfioc_table *io

Replace the content of a table by a new address list. This is the most complicated command,

which uses all the structure members.

On entry, pfrio_table contains the table ID and pfrio_buffer must point to an array of struct

pfr_addr containing at least pfrio_size elements which become the new contents of the table.

pfrio_esize must be the size of struct pfr_addr. Additionally, if pfrio_size2 is non-zero,

pfrio_buffer[pfrio_size..pfrio_size2] must be a writeable buffer, into which the kernel can copy

the addresses that have been deleted during the replace operation. On exit, pfrio_ndel,

pfrio_nadd, and pfrio_nchange contain the number of addresses deleted, added, and changed by

the kernel. If pfrio_size2 was set on entry, pfrio_size2 will point to the size of the buffer used,

exactly like DIOCRGETADDRS.

DIOCRGETADDRS struct pfioc_table *io

Get all the addresses of a table. On entry, pfrio_table contains the table ID and

pfrio_buffer[pfrio_size] contains a valid writeable buffer for pfr_addr structures. On exit,

pfrio_size contains the number of addresses written into the buffer. If the buffer was too small,

the kernel does not store anything but just returns the required buffer size, without returning an

error.

DIOCRGETASTATS struct pfioc_table *io

This call is like DIOCRGETADDRS but is used to get an array of pfr_astats structures.

struct pfr_astats {

struct pfr_addr pfras_a;

u_int64_t pfras_packets

[PFR_DIR_MAX][PFR_OP_ADDR_MAX];

u_int64_t pfras_bytes

[PFR_DIR_MAX][PFR_OP_ADDR_MAX];

long pfras_tzero;

};

DIOCRCLRASTATS struct pfioc_table *io

Clear the statistics of one or more addresses. On entry, pfrio_table contains the table ID and

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

pfrio_buffer must point to an array of struct pfr_addr containing at least pfrio_size elements to

be cleared from the table. pfrio_esize must be the size of struct pfr_addr. On exit, pfrio_nzero

contains the number of addresses effectively cleared.

DIOCRTSTADDRS struct pfioc_table *io

Test if the given addresses match a table. On entry, pfrio_table contains the table ID and

pfrio_buffer must point to an array of struct pfr_addr containing at least pfrio_size elements,

each of which will be tested for a match in the table. pfrio_esize must be the size of struct

pfr_addr. On exit, the kernel updates the pfr_addr array by setting the pfra_fback member

appropriately.

DIOCRSETTFLAGS struct pfioc_table *io

Change the PFR_TFLAG_CONST or PFR_TFLAG_PERSIST flags of a table. On entry,

pfrio_buffer must point to an array of struct pfr_table containing at least pfrio_size elements.

pfrio_esize must be the size of struct pfr_table. pfrio_setflag must contain the flags to add,

while pfrio_clrflag must contain the flags to remove. On exit, pfrio_nchange and pfrio_ndel

contain the number of tables altered or deleted by the kernel. Yes, tables can be deleted if one

removes the PFR_TFLAG_PERSIST flag of an unreferenced table.

DIOCRINADEFINE struct pfioc_table *io

Defines a table in the inactive set. On entry, pfrio_table contains the table ID and

pfrio_buffer[pfrio_size] contains an array of pfr_addr structures to put in the table. A valid

ticket must also be supplied to pfrio_ticket. On exit, pfrio_nadd contains 0 if the table was

already defined in the inactive list or 1 if a new table has been created. pfrio_naddr contains the

number of addresses effectively put in the table.

DIOCXBEGIN struct pfioc_trans *io

struct pfioc_trans {

int size; /* number of elements */

int esize; /* size of each element in bytes */

struct pfioc_trans_e {

int rs_num;

char anchor[MAXPATHLEN];

u_int32_t ticket;

} *array;

};

Clear all the inactive rulesets specified in the pfioc_trans_e array. For each ruleset, a ticket is

returned for subsequent "add rule" ioctls, as well as for the DIOCXCOMMIT and

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

DIOCXROLLBACK calls.

Ruleset types, identified by rs_num, include the following:

PF_RULESET_SCRUB Scrub (packet normalization) rules.

PF_RULESET_FILTER Filter rules.

PF_RULESET_NAT NAT (Network Address Translation) rules.

PF_RULESET_BINAT Bidirectional NAT rules.

PF_RULESET_RDR Redirect rules.

PF_RULESET_ALTQ ALTQ disciplines.

PF_RULESET_TABLE Address tables.

DIOCXCOMMIT struct pfioc_trans *io

Atomically switch a vector of inactive rulesets to the active rulesets. This call is implemented

as a standard two-phase commit, which will either fail for all rulesets or completely succeed.

All tickets need to be valid. This ioctl returns EBUSY if another process is concurrently

updating some of the same rulesets.

DIOCXROLLBACK struct pfioc_trans *io

Clean up the kernel by undoing all changes that have taken place on the inactive rulesets since

the last DIOCXBEGIN. DIOCXROLLBACK will silently ignore rulesets for which the ticket

is invalid.

DIOCSETHOSTID u_int32_t *hostid

Set the host ID, which is used by pfsync(4) to identify which host created state table entries.

DIOCOSFPFLUSH

Flush the passive OS fingerprint table.

DIOCOSFPADD struct pf_osfp_ioctl *io

struct pf_osfp_ioctl {

struct pf_osfp_entry {

SLIST_ENTRY(pf_osfp_entry) fp_entry;

pf_osfp_t fp_os;

char fp_class_nm[PF_OSFP_LEN];

char fp_version_nm[PF_OSFP_LEN];

char fp_subtype_nm[PF_OSFP_LEN];

} fp_os;

pf_tcpopts_t fp_tcpopts;

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

u_int16_t fp_wsize;

u_int16_t fp_psize;

u_int16_t fp_mss;

u_int16_t fp_flags;

u_int8_t fp_optcnt;

u_int8_t fp_wscale;

u_int8_t fp_ttl;

int fp_getnum;

};

Add a passive OS fingerprint to the table. Set fp_os.fp_os to the packed fingerprint,

fp_os.fp_class_nm to the name of the class (Linux, Windows, etc), fp_os.fp_version_nm to the

name of the version (NT, 95, 98), and fp_os.fp_subtype_nm to the name of the subtype or

patchlevel. The members fp_mss, fp_wsize, fp_psize, fp_ttl, fp_optcnt, and fp_wscale are set

to the TCP MSS, the TCP window size, the IP length, the IP TTL, the number of TCP options,

and the TCP window scaling constant of the TCP SYN packet, respectively.

The fp_flags member is filled according to the <net/pfvar.h> include file PF_OSFP_* defines.

The fp_tcpopts member contains packed TCP options. Each option uses

PF_OSFP_TCPOPT_BITS bits in the packed value. Options include any of

PF_OSFP_TCPOPT_NOP, PF_OSFP_TCPOPT_SACK, PF_OSFP_TCPOPT_WSCALE,

PF_OSFP_TCPOPT_MSS, or PF_OSFP_TCPOPT_TS.

The fp_getnum member is not used with this ioctl.

The structure’s slack space must be zeroed for correct operation; memset(3) the whole structure

to zero before filling and sending to the kernel.

DIOCOSFPGET struct pf_osfp_ioctl *io

Get the passive OS fingerprint number fp_getnum from the kernel’s fingerprint list. The rest of

the structure members will come back filled. Get the whole list by repeatedly incrementing the

fp_getnum number until the ioctl returns EBUSY.

DIOCGETSRCNODES struct pfioc_src_nodes *psn

struct pfioc_src_nodes {

int psn_len;

union {

caddr_t psu_buf;

struct pf_src_node *psu_src_nodes;

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

} psn_u;

#define psn_buf psn_u.psu_buf

#define psn_src_nodes psn_u.psu_src_nodes

};

Get the list of source nodes kept by sticky addresses and source tracking. The ioctl must be

called once with psn_len set to 0. If the ioctl returns without error, psn_len will be set to the

size of the buffer required to hold all the pf_src_node structures held in the table. A buffer of

this size should then be allocated, and a pointer to this buffer placed in psn_buf. The ioctl must

then be called again to fill this buffer with the actual source node data. After that call, psn_len

will be set to the length of the buffer actually used.

DIOCCLRSRCNODES

Clear the tree of source tracking nodes.

DIOCIGETIFACES struct pfioc_iface *io

Get the list of interfaces and interface drivers known to pf. All the ioctls that manipulate

interfaces use the same structure described below:

struct pfioc_iface {

char pfiio_name[IFNAMSIZ];

void *pfiio_buffer;

int pfiio_esize;

int pfiio_size;

int pfiio_nzero;

int pfiio_flags;

};

If not empty, pfiio_name can be used to restrict the search to a specific interface or driver.

pfiio_buffer[pfiio_size] is the user-supplied buffer for returning the data. On entry, pfiio_size

contains the number of pfi_kif entries that can fit into the buffer. The kernel will replace this

value by the real number of entries it wants to return. pfiio_esize should be set to sizeof(struct

pfi_kif).

The data is returned in the pfi_kif structure described below:

struct pfi_kif {

char pfik_name[IFNAMSIZ];

union {

RB_ENTRY(pfi_kif) pfik_tree;

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

LIST_ENTRY(pfi_kif) pfik_list;

};

u_int64_t pfik_packets[2][2][2];

u_int64_t pfik_bytes[2][2][2];

u_int32_t pfik_tzero;

u_int pfik_flags;

struct ifnet *pfik_ifp;

struct ifg_group *pfik_group;

u_int pfik_rulerefs;

TAILQ_HEAD(, pfi_dynaddr) pfik_dynaddrs;

};

DIOCSETIFFLAG struct pfioc_iface *io

Set the user settable flags (described above) of the pf internal interface description. The

filtering process is the same as for DIOCIGETIFACES.

#define PFI_IFLAG_SKIP 0x0100 /* skip filtering on interface */

DIOCCLRIFFLAG struct pfioc_iface *io

Works as DIOCSETIFFLAG above but clears the flags.

DIOCKILLSRCNODES struct pfioc_iface *io

Explicitly remove source tracking nodes.

FILES
/dev/pf packet filtering device.

EXAMPLES
The following example demonstrates how to use the DIOCNATLOOK command to find the internal

host/port of a NATed connection:

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/ioctl.h>

#include <sys/fcntl.h>

#include <net/if.h>

#include <netinet/in.h>

#include <net/pfvar.h>

#include <err.h>

#include <stdio.h>

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

#include <stdlib.h>

u_int32_t

read_address(const char *s)

{

int a, b, c, d;

sscanf(s, "%i.%i.%i.%i", &a, &b, &c, &d);

return htonl(a << 24 | b << 16 | c << 8 | d);

}

void

print_address(u_int32_t a)

{

a = ntohl(a);

printf("%d.%d.%d.%d", a >> 24 & 255, a >> 16 & 255,

a >> 8 & 255, a & 255);

}

int

main(int argc, char *argv[])

{

struct pfioc_natlook nl;

int dev;

if (argc != 5) {

printf("%s <gwy addr> <gwy port> <ext addr> <ext port>\n",

argv[0]);

return 1;

}

dev = open("/dev/pf", O_RDWR);

if (dev == -1)

err(1, "open(\"/dev/pf\") failed");

memset(&nl, 0, sizeof(struct pfioc_natlook));

nl.saddr.v4.s_addr = read_address(argv[1]);

nl.sport = htons(atoi(argv[2]));

nl.daddr.v4.s_addr = read_address(argv[3]);

nl.dport = htons(atoi(argv[4]));

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

nl.af = AF_INET;

nl.proto = IPPROTO_TCP;

nl.direction = PF_IN;

if (ioctl(dev, DIOCNATLOOK, &nl))

err(1, "DIOCNATLOOK");

printf("internal host ");

print_address(nl.rsaddr.v4.s_addr);

printf(":%u\n", ntohs(nl.rsport));

return 0;

}

SEE ALSO
ioctl(2), altq(4), if_bridge(4), pflog(4), pfsync(4), pfctl(8), altq(9)

HISTORY
The pf packet filtering mechanism first appeared in OpenBSD 3.0 and then FreeBSD 5.2.

This implementation is derived from OpenBSD 4.5. A number of individual features, improvements,

bug fixes and security fixes have been ported from later versions of OpenBSD. It has been heavily

modified to be capable of running in multithreaded FreeBSD kernel and scale its performance on

multiple CPUs.

PF(4) FreeBSD Kernel Interfaces Manual PF(4)

FreeBSD 14.2-RELEASE October 20, 2023 FreeBSD 14.2-RELEASE

