
NAME
pg_dump - extract a PostgreSQL database into a script file or other archive file

SYNOPSIS
pg_dump [connection-option...] [option...] [dbname]

DESCRIPTION
pg_dump is a utility for backing up a PostgreSQL database. It makes consistent backups even if the

database is being used concurrently. pg_dump does not block other users accessing the database

(readers or writers).

pg_dump only dumps a single database. To back up an entire cluster, or to back up global objects that

are common to all databases in a cluster (such as roles and tablespaces), use pg_dumpall(1).

Dumps can be output in script or archive file formats. Script dumps are plain-text files containing the

SQL commands required to reconstruct the database to the state it was in at the time it was saved. To

restore from such a script, feed it to psql(1). Script files can be used to reconstruct the database even on

other machines and other architectures; with some modifications, even on other SQL database

products.

The alternative archive file formats must be used with pg_restore(1) to rebuild the database. They

allow pg_restore to be selective about what is restored, or even to reorder the items prior to being

restored. The archive file formats are designed to be portable across architectures.

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a

flexible archival and transfer mechanism. pg_dump can be used to backup an entire database, then

pg_restore can be used to examine the archive and/or select which parts of the database are to be

restored. The most flexible output file formats are the "custom" format (-Fc) and the "directory" format

(-Fd). They allow for selection and reordering of all archived items, support parallel restoration, and

are compressed by default. The "directory" format is the only format that supports parallel dumps.

While running pg_dump, one should examine the output for any warnings (printed on standard error),

especially in light of the limitations listed below.

OPTIONS
The following command-line options control the content and format of the output.

dbname

Specifies the name of the database to be dumped. If this is not specified, the environment variable

PGDATABASE is used. If that is not set, the user name specified for the connection is used.

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



-a
--data-only

Dump only the data, not the schema (data definitions). Table data, large objects, and sequence

values are dumped.

This option is similar to, but for historical reasons not identical to, specifying --section=data.

-b
--blobs

Include large objects in the dump. This is the default behavior except when --schema, --table, or

--schema-only is specified. The -b switch is therefore only useful to add large objects to dumps

where a specific schema or table has been requested. Note that blobs are considered data and

therefore will be included when --data-only is used, but not when --schema-only is.

-B
--no-blobs

Exclude large objects in the dump.

When both -b and -B are given, the behavior is to output large objects, when data is being

dumped, see the -b documentation.

-c
--clean

Output commands to clean (drop) database objects prior to outputting the commands for creating

them. (Unless --if-exists is also specified, restore might generate some harmless error messages, if

any objects were not present in the destination database.)

This option is ignored when emitting an archive (non-text) output file. For the archive formats,

you can specify the option when you call pg_restore.

-C
--create

Begin the output with a command to create the database itself and reconnect to the created

database. (With a script of this form, it doesn’t matter which database in the destination

installation you connect to before running the script.) If --clean is also specified, the script drops

and recreates the target database before reconnecting to it.

With --create, the output also includes the database’s comment if any, and any configuration

variable settings that are specific to this database, that is, any ALTER DATABASE ... SET ... and

ALTER ROLE ... IN DATABASE ... SET ... commands that mention this database. Access

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



privileges for the database itself are also dumped, unless --no-acl is specified.

This option is ignored when emitting an archive (non-text) output file. For the archive formats,

you can specify the option when you call pg_restore.

-e pattern

--extension=pattern

Dump only extensions matching pattern. When this option is not specified, all non-system

extensions in the target database will be dumped. Multiple extensions can be selected by writing

multiple -e switches. The pattern parameter is interpreted as a pattern according to the same rules

used by psql’s \d commands (see Patterns), so multiple extensions can also be selected by writing

wildcard characters in the pattern. When using wildcards, be careful to quote the pattern if needed

to prevent the shell from expanding the wildcards.

Any configuration relation registered by pg_extension_config_dump is included in the dump if its

extension is specified by --extension.

Note
When -e is specified, pg_dump makes no attempt to dump any other database objects that the

selected extension(s) might depend upon. Therefore, there is no guarantee that the results of a

specific-extension dump can be successfully restored by themselves into a clean database.

-E encoding

--encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the

database encoding. (Another way to get the same result is to set the PGCLIENTENCODING
environment variable to the desired dump encoding.) The supported encodings are described in

Section 24.3.1.

-f file

--file=file

Send output to the specified file. This parameter can be omitted for file based output formats, in

which case the standard output is used. It must be given for the directory output format however,

where it specifies the target directory instead of a file. In this case the directory is created by

pg_dump and must not exist before.

-F format

--format=format

Selects the format of the output. format can be one of the following:

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



p

plain

Output a plain-text SQL script file (the default).

c

custom

Output a custom-format archive suitable for input into pg_restore. Together with the

directory output format, this is the most flexible output format in that it allows manual

selection and reordering of archived items during restore. This format is also compressed by

default.

d

directory

Output a directory-format archive suitable for input into pg_restore. This will create a

directory with one file for each table and blob being dumped, plus a so-called Table of

Contents file describing the dumped objects in a machine-readable format that pg_restore can

read. A directory format archive can be manipulated with standard Unix tools; for example,

files in an uncompressed archive can be compressed with the gzip tool. This format is

compressed by default and also supports parallel dumps.

t

tar

Output a tar-format archive suitable for input into pg_restore. The tar format is compatible

with the directory format: extracting a tar-format archive produces a valid directory-format

archive. However, the tar format does not support compression. Also, when using tar format

the relative order of table data items cannot be changed during restore.

-j njobs

--jobs=njobs

Run the dump in parallel by dumping njobs tables simultaneously. This option may reduce the

time needed to perform the dump but it also increases the load on the database server. You can

only use this option with the directory output format because this is the only output format where

multiple processes can write their data at the same time.

pg_dump will open njobs + 1 connections to the database, so make sure your max_connections

setting is high enough to accommodate all connections.

Requesting exclusive locks on database objects while running a parallel dump could cause the

dump to fail. The reason is that the pg_dump leader process requests shared locks (ACCESS

SHARE) on the objects that the worker processes are going to dump later in order to make sure

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



that nobody deletes them and makes them go away while the dump is running. If another client

then requests an exclusive lock on a table, that lock will not be granted but will be queued waiting

for the shared lock of the leader process to be released. Consequently any other access to the table

will not be granted either and will queue after the exclusive lock request. This includes the worker

process trying to dump the table. Without any precautions this would be a classic deadlock

situation. To detect this conflict, the pg_dump worker process requests another shared lock using

the NOWAIT option. If the worker process is not granted this shared lock, somebody else must

have requested an exclusive lock in the meantime and there is no way to continue with the dump,

so pg_dump has no choice but to abort the dump.

To perform a parallel dump, the database server needs to support synchronized snapshots, a

feature that was introduced in PostgreSQL 9.2 for primary servers and 10 for standbys. With this

feature, database clients can ensure they see the same data set even though they use different

connections. pg_dump -j uses multiple database connections; it connects to the database once

with the leader process and once again for each worker job. Without the synchronized snapshot

feature, the different worker jobs wouldn’t be guaranteed to see the same data in each connection,

which could lead to an inconsistent backup.

-n pattern

--schema=pattern

Dump only schemas matching pattern; this selects both the schema itself, and all its contained

objects. When this option is not specified, all non-system schemas in the target database will be

dumped. Multiple schemas can be selected by writing multiple -n switches. The pattern parameter

is interpreted as a pattern according to the same rules used by psql’s \d commands (see Patterns

below), so multiple schemas can also be selected by writing wildcard characters in the pattern.

When using wildcards, be careful to quote the pattern if needed to prevent the shell from

expanding the wildcards; see Examples below.

Note
When -n is specified, pg_dump makes no attempt to dump any other database objects that the

selected schema(s) might depend upon. Therefore, there is no guarantee that the results of a

specific-schema dump can be successfully restored by themselves into a clean database.

Note
Non-schema objects such as blobs are not dumped when -n is specified. You can add blobs

back to the dump with the --blobs switch.

-N pattern

--exclude-schema=pattern

Do not dump any schemas matching pattern. The pattern is interpreted according to the same rules

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



as for -n. -N can be given more than once to exclude schemas matching any of several patterns.

When both -n and -N are given, the behavior is to dump just the schemas that match at least one -n
switch but no -N switches. If -N appears without -n, then schemas matching -N are excluded from

what is otherwise a normal dump.

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,

pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set

ownership of created database objects. These statements will fail when the script is run unless it is

started by a superuser (or the same user that owns all of the objects in the script). To make a script

that can be restored by any user, but will give that user ownership of all the objects, specify -O.

This option is ignored when emitting an archive (non-text) output file. For the archive formats,

you can specify the option when you call pg_restore.

-R
--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s
--schema-only

Dump only the object definitions (schema), not data.

This option is the inverse of --data-only. It is similar to, but for historical reasons not identical to,

specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word "schema" in a different

meaning.)

To exclude table data for only a subset of tables in the database, see --exclude-table-data.

-S username

--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if

--disable-triggers is used. (Usually, it’s better to leave this out, and instead start the resulting script

as superuser.)

-t pattern

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



--table=pattern

Dump only tables with names matching pattern. Multiple tables can be selected by writing

multiple -t switches. The pattern parameter is interpreted as a pattern according to the same rules

used by psql’s \d commands (see Patterns below), so multiple tables can also be selected by

writing wildcard characters in the pattern. When using wildcards, be careful to quote the pattern if

needed to prevent the shell from expanding the wildcards; see Examples below.

As well as tables, this option can be used to dump the definition of matching views, materialized

views, foreign tables, and sequences. It will not dump the contents of views or materialized views,

and the contents of foreign tables will only be dumped if the corresponding foreign server is

specified with --include-foreign-data.

The -n and -N switches have no effect when -t is used, because tables selected by -t will be

dumped regardless of those switches, and non-table objects will not be dumped.

Note
When -t is specified, pg_dump makes no attempt to dump any other database objects that the

selected table(s) might depend upon. Therefore, there is no guarantee that the results of a

specific-table dump can be successfully restored by themselves into a clean database.

-T pattern

--exclude-table=pattern

Do not dump any tables matching pattern. The pattern is interpreted according to the same rules as

for -t. -T can be given more than once to exclude tables matching any of several patterns.

When both -t and -T are given, the behavior is to dump just the tables that match at least one -t
switch but no -T switches. If -T appears without -t, then tables matching -T are excluded from

what is otherwise a normal dump.

-v
--verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and

start/stop times to the dump file, and progress messages to standard error. Repeating the option

causes additional debug-level messages to appear on standard error.

-V
--version

Print the pg_dump version and exit.

-x

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

-Z 0..9

--compress=0..9

Specify the compression level to use. Zero means no compression. For the custom and directory

archive formats, this specifies compression of individual table-data segments, and the default is to

compress at a moderate level. For plain text output, setting a nonzero compression level causes the

entire output file to be compressed, as though it had been fed through gzip; but the default is not to

compress. The tar archive format currently does not support compression at all.

--binary-upgrade
This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended

or supported. The behavior of the option may change in future releases without notice.

--column-inserts
--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table (column, ...)

VALUES ...). This will make restoration very slow; it is mainly useful for making dumps that can

be loaded into non-PostgreSQL databases. Any error during restoring will cause only rows that are

part of the problematic INSERT to be lost, rather than the entire table contents.

--disable-dollar-quoting
This option disables the use of dollar quoting for function bodies, and forces them to be quoted

using SQL standard string syntax.

--disable-triggers
This option is relevant only when creating a data-only dump. It instructs pg_dump to include

commands to temporarily disable triggers on the target tables while the data is restored. Use this if

you have referential integrity checks or other triggers on the tables that you do not want to invoke

during data restore.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you should

also specify a superuser name with -S, or preferably be careful to start the resulting script as a

superuser.

This option is ignored when emitting an archive (non-text) output file. For the archive formats,

you can specify the option when you call pg_restore.

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



--enable-row-security
This option is relevant only when dumping the contents of a table which has row security. By

default, pg_dump will set row_security to off, to ensure that all data is dumped from the table. If

the user does not have sufficient privileges to bypass row security, then an error is thrown. This

parameter instructs pg_dump to set row_security to on instead, allowing the user to dump the parts

of the contents of the table that they have access to.

Note that if you use this option currently, you probably also want the dump be in INSERT format,

as the COPY FROM during restore does not support row security.

--exclude-table-data=pattern

Do not dump data for any tables matching pattern. The pattern is interpreted according to the same

rules as for -t. --exclude-table-data can be given more than once to exclude tables matching any

of several patterns. This option is useful when you need the definition of a particular table even

though you do not need the data in it.

To exclude data for all tables in the database, see --schema-only.

--extra-float-digits=ndigits

Use the specified value of extra_float_digits when dumping floating-point data, instead of the

maximum available precision. Routine dumps made for backup purposes should not use this

option.

--if-exists
Use conditional commands (i.e., add an IF EXISTS clause) when cleaning database objects. This

option is not valid unless --clean is also specified.

--include-foreign-data=foreignserver

Dump the data for any foreign table with a foreign server matching foreignserver pattern. Multiple

foreign servers can be selected by writing multiple --include-foreign-data switches. Also, the

foreignserver parameter is interpreted as a pattern according to the same rules used by psql’s \d

commands (see Patterns below), so multiple foreign servers can also be selected by writing

wildcard characters in the pattern. When using wildcards, be careful to quote the pattern if needed

to prevent the shell from expanding the wildcards; see Examples below. The only exception is that

an empty pattern is disallowed.

Note
When --include-foreign-data is specified, pg_dump does not check that the foreign table is

writable. Therefore, there is no guarantee that the results of a foreign table dump can be

successfully restored.

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



--inserts
Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is

mainly useful for making dumps that can be loaded into non-PostgreSQL databases. Any error

during restoring will cause only rows that are part of the problematic INSERT to be lost, rather

than the entire table contents. Note that the restore might fail altogether if you have rearranged

column order. The --column-inserts option is safe against column order changes, though even

slower.

--load-via-partition-root
When dumping data for a table partition, make the COPY or INSERT statements target the root of

the partitioning hierarchy that contains it, rather than the partition itself. This causes the

appropriate partition to be re-determined for each row when the data is loaded. This may be useful

when restoring data on a server where rows do not always fall into the same partitions as they did

on the original server. That could happen, for example, if the partitioning column is of type text

and the two systems have different definitions of the collation used to sort the partitioning column.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead fail if

unable to lock a table within the specified timeout. The timeout may be specified in any of the

formats accepted by SET statement_timeout. (Allowed formats vary depending on the server

version you are dumping from, but an integer number of milliseconds is accepted by all versions.)

--no-comments
Do not dump comments.

--no-publications
Do not dump publications.

--no-security-labels
Do not dump security labels.

--no-subscriptions
Do not dump subscriptions.

--no-sync
By default, pg_dump will wait for all files to be written safely to disk. This option causes

pg_dump to return without waiting, which is faster, but means that a subsequent operating system

crash can leave the dump corrupt. Generally, this option is useful for testing but should not be

used when dumping data from production installation.

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



--no-table-access-method
Do not output commands to select table access methods. With this option, all objects will be

created with whichever table access method is the default during restore.

This option is ignored when emitting an archive (non-text) output file. For the archive formats,

you can specify the option when you call pg_restore.

--no-tablespaces
Do not output commands to select tablespaces. With this option, all objects will be created in

whichever tablespace is the default during restore.

This option is ignored when emitting an archive (non-text) output file. For the archive formats,

you can specify the option when you call pg_restore.

--no-toast-compression
Do not output commands to set TOAST compression methods. With this option, all columns will

be restored with the default compression setting.

--no-unlogged-table-data
Do not dump the contents of unlogged tables and sequences. This option has no effect on whether

or not the table and sequence definitions (schema) are dumped; it only suppresses dumping the

table and sequence data. Data in unlogged tables and sequences is always excluded when dumping

from a standby server.

--on-conflict-do-nothing
Add ON CONFLICT DO NOTHING to INSERT commands. This option is not valid unless

--inserts, --column-inserts or --rows-per-insert is also specified.

--quote-all-identifiers
Force quoting of all identifiers. This option is recommended when dumping a database from a

server whose PostgreSQL major version is different from pg_dump’s, or when the output is

intended to be loaded into a server of a different major version. By default, pg_dump quotes only

identifiers that are reserved words in its own major version. This sometimes results in

compatibility issues when dealing with servers of other versions that may have slightly different

sets of reserved words. Using --quote-all-identifiers prevents such issues, at the price of a

harder-to-read dump script.

--rows-per-insert=nrows

Dump data as INSERT commands (rather than COPY). Controls the maximum number of rows

per INSERT command. The value specified must be a number greater than zero. Any error during

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



restoring will cause only rows that are part of the problematic INSERT to be lost, rather than the

entire table contents.

--section=sectionname

Only dump the named section. The section name can be pre-data, data, or post-data. This option

can be specified more than once to select multiple sections. The default is to dump all sections.

The data section contains actual table data, large-object contents, and sequence values. Post-data

items include definitions of indexes, triggers, rules, and constraints other than validated check

constraints. Pre-data items include all other data definition items.

--serializable-deferrable
Use a serializable transaction for the dump, to ensure that the snapshot used is consistent with later

database states; but do this by waiting for a point in the transaction stream at which no anomalies

can be present, so that there isn’t a risk of the dump failing or causing other transactions to roll

back with a serialization_failure. See Chapter 13 for more information about transaction isolation

and concurrency control.

This option is not beneficial for a dump which is intended only for disaster recovery. It could be

useful for a dump used to load a copy of the database for reporting or other read-only load sharing

while the original database continues to be updated. Without it the dump may reflect a state which

is not consistent with any serial execution of the transactions eventually committed. For example,

if batch processing techniques are used, a batch may show as closed in the dump without all of the

items which are in the batch appearing.

This option will make no difference if there are no read-write transactions active when pg_dump

is started. If read-write transactions are active, the start of the dump may be delayed for an

indeterminate length of time. Once running, performance with or without the switch is the same.

--snapshot=snapshotname

Use the specified synchronized snapshot when making a dump of the database (see Table 9.92 for

more details).

This option is useful when needing to synchronize the dump with a logical replication slot (see

Chapter 49) or with a concurrent session.

In the case of a parallel dump, the snapshot name defined by this option is used rather than taking

a new snapshot.

--strict-names

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



Require that each extension (-e/--extension), schema (-n/--schema) and table (-t/--table) qualifier

match at least one extension/schema/table in the database to be dumped. Note that if none of the

extension/schema/table qualifiers find matches, pg_dump will generate an error even without

--strict-names.

This option has no effect on -N/--exclude-schema, -T/--exclude-table, or --exclude-table-data. An

exclude pattern failing to match any objects is not considered an error.

--use-set-session-authorization
Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER
OWNER commands to determine object ownership. This makes the dump more

standards-compatible, but depending on the history of the objects in the dump, might not restore

properly. Also, a dump using SET SESSION AUTHORIZATION will certainly require superuser

privileges to restore correctly, whereas ALTER OWNER requires lesser privileges.

-?
--help

Show help about pg_dump command line arguments, and exit.

The following command-line options control the database connection parameters.

-d dbname

--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the

first non-option argument on the command line. The dbname can be a connection string. If so,

connection string parameters will override any conflicting command line options.

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a

slash, it is used as the directory for the Unix domain socket. The default is taken from the

PGHOST environment variable, if set, else a Unix domain socket connection is attempted.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening

for connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username

--username=username

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is

not available by other means such as a .pgpass file, the connection attempt will fail. This option

can be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_dump to prompt for a password before connecting to a database.

This option is never essential, since pg_dump will automatically prompt for a password if the

server demands password authentication. However, pg_dump will waste a connection attempt

finding out that the server wants a password. In some cases it is worth typing -W to avoid the

extra connection attempt.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dump to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated

user (specified by -U) lacks privileges needed by pg_dump, but can switch to a role with the

required rights. Some installations have a policy against logging in directly as a superuser, and use

of this option allows dumps to be made without violating the policy.

ENVIRONMENT
PGDATABASE
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters.

PG_COLOR
Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by

libpq (see Section 34.15).

DIAGNOSTICS
pg_dump internally executes SELECT statements. If you have problems running pg_dump, make sure

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



you are able to select information from the database using, for example, psql(1). Also, any default

connection settings and environment variables used by the libpq front-end library will apply.

The database activity of pg_dump is normally collected by the cumulative statistics system. If this is

undesirable, you can set parameter track_counts to false via PGOPTIONS or the ALTER USER

command.

NOTES
If your database cluster has any local additions to the template1 database, be careful to restore the

output of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate

definitions of the added objects. To make an empty database without any local additions, copy from

template0 not template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits commands

to disable triggers on user tables before inserting the data, and then commands to re-enable them after

the data has been inserted. If the restore is stopped in the middle, the system catalogs might be left in

the wrong state.

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make

query planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to

ensure optimal performance; see Section 25.1.3 and Section 25.1.6 for more information.

Because pg_dump is used to transfer data to newer versions of PostgreSQL, the output of pg_dump can

be expected to load into PostgreSQL server versions newer than pg_dump’s version. pg_dump can

also dump from PostgreSQL servers older than its own version. (Currently, servers back to version 9.2

are supported.) However, pg_dump cannot dump from PostgreSQL servers newer than its own major

version; it will refuse to even try, rather than risk making an invalid dump. Also, it is not guaranteed

that pg_dump’s output can be loaded into a server of an older major version -- not even if the dump

was taken from a server of that version. Loading a dump file into an older server may require manual

editing of the dump file to remove syntax not understood by the older server. Use of the

--quote-all-identifiers option is recommended in cross-version cases, as it can prevent problems arising

from varying reserved-word lists in different PostgreSQL versions.

When dumping logical replication subscriptions, pg_dump will generate CREATE SUBSCRIPTION
commands that use the connect = false option, so that restoring the subscription does not make remote

connections for creating a replication slot or for initial table copy. That way, the dump can be restored

without requiring network access to the remote servers. It is then up to the user to reactivate the

subscriptions in a suitable way. If the involved hosts have changed, the connection information might

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



have to be changed. It might also be appropriate to truncate the target tables before initiating a new full

table copy. If users intend to copy initial data during refresh they must create the slot with two_phase =

false. After the initial sync, the two_phase option will be automatically enabled by the subscriber if the

subscription had been originally created with two_phase = true option.

EXAMPLES
To dump a database called mydb into an SQL-script file:

$ pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

$ psql -d newdb -f db.sql

To dump a database into a custom-format archive file:

$ pg_dump -Fc mydb > db.dump

To dump a database into a directory-format archive:

$ pg_dump -Fd mydb -f dumpdir

To dump a database into a directory-format archive in parallel with 5 worker jobs:

$ pg_dump -Fd mydb -j 5 -f dumpdir

To reload an archive file into a (freshly created) database named newdb:

$ pg_restore -d newdb db.dump

To reload an archive file into the same database it was dumped from, discarding the current contents of

that database:

$ pg_restore -d postgres --clean --create db.dump

To dump a single table named mytab:

$ pg_dump -t mytab mydb > db.sql

To dump all tables whose names start with emp in the detroit schema, except for the table named

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)



employee_log:

$ pg_dump -t ’detroit.emp*’ -T detroit.employee_log mydb > db.sql

To dump all schemas whose names start with east or west and end in gsm, excluding any schemas

whose names contain the word test:

$ pg_dump -n ’east*gsm’ -n ’west*gsm’ -N ’*test*’ mydb > db.sql

The same, using regular expression notation to consolidate the switches:

$ pg_dump -n ’(east|west)*gsm’ -N ’*test*’ mydb > db.sql

To dump all database objects except for tables whose names begin with ts_:

$ pg_dump -T ’ts_*’ mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the

name; else it will be folded to lower case (see Patterns below). But double quotes are special to the

shell, so in turn they must be quoted. Thus, to dump a single table with a mixed-case name, you need

something like

$ pg_dump -t "\"MixedCaseName\"" mydb > mytab.sql

SEE ALSO
pg_dumpall(1), pg_restore(1), psql(1)

PG_DUMP(1) PostgreSQL 15.4 Documentation PG_DUMP(1)

PostgreSQL 15.4 2023 PG_DUMP(1)


