
NAME
pg_upgrade - upgrade a PostgreSQL server instance

SYNOPSIS
pg_upgrade -b oldbindir [-B newbindir] -d oldconfigdir -D newconfigdir [option...]

DESCRIPTION
pg_upgrade (formerly called pg_migrator) allows data stored in PostgreSQL data files to be upgraded

to a later PostgreSQL major version without the data dump/restore typically required for major version

upgrades, e.g., from 9.5.8 to 9.6.4 or from 10.7 to 11.2. It is not required for minor version upgrades,

e.g., from 9.6.2 to 9.6.3 or from 10.1 to 10.2.

Major PostgreSQL releases regularly add new features that often change the layout of the system

tables, but the internal data storage format rarely changes. pg_upgrade uses this fact to perform rapid

upgrades by creating new system tables and simply reusing the old user data files. If a future major

release ever changes the data storage format in a way that makes the old data format unreadable,

pg_upgrade will not be usable for such upgrades. (The community will attempt to avoid such

situations.)

pg_upgrade does its best to make sure the old and new clusters are binary-compatible, e.g., by checking

for compatible compile-time settings, including 32/64-bit binaries. It is important that any external

modules are also binary compatible, though this cannot be checked by pg_upgrade.

pg_upgrade supports upgrades from 9.2.X and later to the current major release of PostgreSQL,

including snapshot and beta releases.

OPTIONS
pg_upgrade accepts the following command-line arguments:

-b bindir

--old-bindir=bindir

the old PostgreSQL executable directory; environment variable PGBINOLD

-B bindir

--new-bindir=bindir

the new PostgreSQL executable directory; default is the directory where pg_upgrade resides;

environment variable PGBINNEW

-c
--check

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

check clusters only, don’t change any data

-d configdir

--old-datadir=configdir

the old database cluster configuration directory; environment variable PGDATAOLD

-D configdir

--new-datadir=configdir

the new database cluster configuration directory; environment variable PGDATANEW

-j njobs

--jobs=njobs

number of simultaneous processes or threads to use

-k
--link

use hard links instead of copying files to the new cluster

-N
--no-sync

By default, pg_upgrade will wait for all files of the upgraded cluster to be written safely to disk.

This option causes pg_upgrade to return without waiting, which is faster, but means that a

subsequent operating system crash can leave the data directory corrupt. Generally, this option is

useful for testing but should not be used on a production installation.

-o options

--old-options options

options to be passed directly to the old postgres command; multiple option invocations are

appended

-O options

--new-options options

options to be passed directly to the new postgres command; multiple option invocations are

appended

-p port

--old-port=port

the old cluster port number; environment variable PGPORTOLD

-P port

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

--new-port=port

the new cluster port number; environment variable PGPORTNEW

-r
--retain

retain SQL and log files even after successful completion

-s dir

--socketdir=dir

directory to use for postmaster sockets during upgrade; default is current working directory;

environment variable PGSOCKETDIR

-U username

--username=username

cluster’s install user name; environment variable PGUSER

-v
--verbose

enable verbose internal logging

-V
--version

display version information, then exit

--clone
Use efficient file cloning (also known as "reflinks" on some systems) instead of copying files to

the new cluster. This can result in near-instantaneous copying of the data files, giving the speed

advantages of -k/--link while leaving the old cluster untouched.

File cloning is only supported on some operating systems and file systems. If it is selected but not

supported, the pg_upgrade run will error. At present, it is supported on Linux (kernel 4.5 or later)

with Btrfs and XFS (on file systems created with reflink support), and on macOS with APFS.

-?
--help

show help, then exit

USAGE
These are the steps to perform an upgrade with pg_upgrade:

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

1.

move the old cluster: If you are using a version-specific installation directory, e.g., /opt/PostgreSQL/15,

you do not need to move the old cluster. The graphical installers all use version-specific installation

directories.

If your installation directory is not version-specific, e.g., /usr/local/pgsql, it is necessary to move the

current PostgreSQL install directory so it does not interfere with the new PostgreSQL installation. Once

the current PostgreSQL server is shut down, it is safe to rename the PostgreSQL installation directory;

assuming the old directory is /usr/local/pgsql, you can do:

mv /usr/local/pgsql /usr/local/pgsql.old

to rename the directory.

2.

source installs, build the new version: Build the new PostgreSQL source with configure flags that are

compatible with the old cluster. pg_upgrade will check pg_controldata to make sure all settings are

compatible before starting the upgrade.

3.

the new PostgreSQL binaries: Install the new server’s binaries and support files. pg_upgrade is included

in a default installation.

For source installs, if you wish to install the new server in a custom location, use the prefix variable:

make prefix=/usr/local/pgsql.new install

4.

the new PostgreSQL cluster: Initialize the new cluster using initdb. Again, use compatible initdb flags that

match the old cluster. Many prebuilt installers do this step automatically. There is no need to start the new

cluster.

5.

extension shared object files: Many extensions and custom modules, whether from contrib or another

source, use shared object files (or DLLs), e.g., pgcrypto.so. If the old cluster used these, shared object

files matching the new server binary must be installed in the new cluster, usually via operating system

commands. Do not load the schema definitions, e.g., CREATE EXTENSION pgcrypto, because these will

be duplicated from the old cluster. If extension updates are available, pg_upgrade will report this and

create a script that can be run later to update them.

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

6.

custom full-text search files: Copy any custom full text search files (dictionary, synonym, thesaurus, stop

words) from the old to the new cluster.

7.

authentication: pg_upgrade will connect to the old and new servers several times, so you might want to set

authentication to peer in pg_hba.conf or use a ~/.pgpass file (see Section 34.16).

8.

both servers: Make sure both database servers are stopped using, on Unix, e.g.:

pg_ctl -D /opt/PostgreSQL/9.6 stop

pg_ctl -D /opt/PostgreSQL/15 stop

or on Windows, using the proper service names:

NET STOP postgresql-9.6

NET STOP postgresql-15

Streaming replication and log-shipping standby servers must be running during this shutdown so

they receive all changes.

9.

for standby server upgrades: If you are upgrading standby servers using methods outlined in section Step

11, verify that the old standby servers are caught up by running pg_controldata against the old primary

and standby clusters. Verify that the "Latest checkpoint location" values match in all clusters. Also, make

sure wal_level is not set to minimal in the postgresql.conf file on the new primary cluster.

10.

pg_upgrade: Always run the pg_upgrade binary of the new server, not the old one. pg_upgrade requires

the specification of the old and new cluster’s data and executable (bin) directories. You can also specify

user and port values, and whether you want the data files linked or cloned instead of the default copy

behavior.

If you use link mode, the upgrade will be much faster (no file copying) and use less disk space, but you

will not be able to access your old cluster once you start the new cluster after the upgrade. Link mode also

requires that the old and new cluster data directories be in the same file system. (Tablespaces and pg_wal

can be on different file systems.) Clone mode provides the same speed and disk space advantages but does

not cause the old cluster to be unusable once the new cluster is started. Clone mode also requires that the

old and new data directories be in the same file system. This mode is only available on certain operating

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

systems and file systems.

The --jobs option allows multiple CPU cores to be used for

copying/linking of files and to dump and restore database schemas

in parallel; a good place to start is the maximum of the number of

CPU cores and tablespaces. This option can dramatically reduce

the time to upgrade a multi-database server running on a

multiprocessor machine.

For Windows users, you must be logged into an administrative

account, and then start a shell as the postgres user and set the

proper path:

RUNAS /USER:postgres "CMD.EXE"

SET PATH=%PATH%;C:\Program Files\PostgreSQL\15\bin;

and then run pg_upgrade with quoted directories, e.g.:

pg_upgrade.exe

--old-datadir "C:/Program Files/PostgreSQL/9.6/data"

--new-datadir "C:/Program Files/PostgreSQL/15/data"

--old-bindir "C:/Program Files/PostgreSQL/9.6/bin"

--new-bindir "C:/Program Files/PostgreSQL/15/bin"

Once started, pg_upgrade will verify the two clusters are compatible and then do the upgrade. You

can use pg_upgrade --check to perform only the checks, even if the old server is still running.

pg_upgrade --check will also outline any manual adjustments you will need to make after the

upgrade. If you are going to be using link or clone mode, you should use the option --link or

--clone with --check to enable mode-specific checks. pg_upgrade requires write permission in the

current directory.

Obviously, no one should be accessing the clusters during the upgrade. pg_upgrade defaults to

running servers on port 50432 to avoid unintended client connections. You can use the same port

number for both clusters when doing an upgrade because the old and new clusters will not be

running at the same time. However, when checking an old running server, the old and new port

numbers must be different.

If an error occurs while restoring the database schema, pg_upgrade will exit and you will have to

revert to the old cluster as outlined in Step 17 below. To try pg_upgrade again, you will need to

modify the old cluster so the pg_upgrade schema restore succeeds. If the problem is a contrib

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

module, you might need to uninstall the contrib module from the old cluster and install it in the

new cluster after the upgrade, assuming the module is not being used to store user data.

11.

streaming replication and log-shipping standby servers: If you used link mode and have Streaming

Replication (see Section 27.2.5) or Log-Shipping (see Section 27.2) standby servers, you can follow these

steps to quickly upgrade them. You will not be running pg_upgrade on the standby servers, but rather

rsync on the primary. Do not start any servers yet.

If you did not use link mode, do not have or do not want to use rsync, or want an easier solution, skip the

instructions in this section and simply recreate the standby servers once pg_upgrade completes and the

new primary is running.

1.

the new PostgreSQL binaries on standby servers: Make sure the new binaries and support files are

installed on all standby servers.

2.

sure the new standby data directories do not exist: Make sure the new standby data directories do not

exist or are empty. If initdb was run, delete the standby servers’ new data directories.

3.

extension shared object files: Install the same extension shared object files on the new standbys that

you installed in the new primary cluster.

4.

standby servers: If the standby servers are still running, stop them now using the above instructions.

5.

configuration files: Save any configuration files from the old standbys’ configuration directories you

need to keep, e.g., postgresql.conf (and any files included by it), postgresql.auto.conf, pg_hba.conf,

because these will be overwritten or removed in the next step.

6.

rsync: When using link mode, standby servers can be quickly upgraded using rsync. To accomplish

this, from a directory on the primary server that is above the old and new database cluster directories,

run this on the primary for each standby server:

rsync --archive --delete --hard-links --size-only --no-inc-recursive old_cluster new_cluster remote_dir

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

where old_cluster and new_cluster are

relative to the current directory on the

primary, and remote_dir is above the

old and new cluster directories on the

standby. The directory structure under

the specified directories on the primary

and standbys must match. Consult the

rsync manual page for details on

specifying the remote directory, e.g.,

rsync --archive --delete --hard-links --size-only --no-inc-recursive /opt/PostgreSQL/9.5 \

/opt/PostgreSQL/9.6 standby.example.com:/opt/PostgreSQL

You can verify what the command will do using rsync’s --dry-run option. While rsync must

be run on the primary for at least one standby, it is possible to run rsync on an upgraded

standby to upgrade other standbys, as long as the upgraded standby has not been started.

What this does is to record the links created by pg_upgrade’s link mode that connect files in

the old and new clusters on the primary server. It then finds matching files in the standby’s

old cluster and creates links for them in the standby’s new cluster. Files that were not linked

on the primary are copied from the primary to the standby. (They are usually small.) This

provides rapid standby upgrades. Unfortunately, rsync needlessly copies files associated with

temporary and unlogged tables because these files don’t normally exist on standby servers.

If you have tablespaces, you will need to run a similar rsync command for each tablespace

directory, e.g.:

rsync --archive --delete --hard-links --size-only --no-inc-recursive /vol1/pg_tblsp/PG_9.5_201510051 \

/vol1/pg_tblsp/PG_9.6_201608131 standby.example.com:/vol1/pg_tblsp

If you have relocated pg_wal outside the data directories, rsync must be run on those

directories too.

7.

streaming replication and log-shipping standby servers: Configure the servers for log shipping. (You

do not need to run pg_backup_start() and pg_backup_stop() or take a file system backup as the

standbys are still synchronized with the primary.) Replication slots are not copied and must be

recreated.

12.

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

pg_hba.conf: If you modified pg_hba.conf, restore its original settings. It might also be

necessary to adjust other configuration files in the new cluster to match the old cluster,

e.g., postgresql.conf (and any files included by it), postgresql.auto.conf.

13.

the new server: The new server can now be safely started, and then any rsync’ed standby servers.

14.

processing: If any post-upgrade processing is required, pg_upgrade will issue warnings as it completes. It

will also generate script files that must be run by the administrator. The script files will connect to each

database that needs post-upgrade processing. Each script should be run using:

psql --username=postgres --file=script.sql postgres

The scripts can be run in any order and can be deleted once they have been run.

Caution
In general it is unsafe to access tables referenced in rebuild scripts until the rebuild scripts

have run to completion; doing so could yield incorrect results or poor performance. Tables

not referenced in rebuild scripts can be accessed immediately.

15.

Because optimizer statistics are not transferred by pg_upgrade, you will be instructed to run a command to

regenerate that information at the end of the upgrade. You might need to set connection parameters to

match your new cluster.

16.

old cluster: Once you are satisfied with the upgrade, you can delete the old cluster’s data directories by

running the script mentioned when pg_upgrade completes. (Automatic deletion is not possible if you have

user-defined tablespaces inside the old data directory.) You can also delete the old installation directories

(e.g., bin, share).

17.

to old cluster: If, after running pg_upgrade, you wish to revert to the old cluster, there are several options:

+o

the --check option was used, the old cluster was unmodified; it can be restarted.

+o

the --link option was not used, the old cluster was unmodified; it can be restarted.

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

+o

the --link option was used, the data files might be shared between the old and new cluster:

+o

pg_upgrade aborted before linking started, the old cluster was unmodified; it can be restarted.

+o

you did not start the new cluster, the old cluster was unmodified except that, when linking

started, a .old suffix was appended to $PGDATA/global/pg_control. To reuse the old cluster,

remove the .old suffix from $PGDATA/global/pg_control; you can then restart the old cluster.

+o

you did start the new cluster, it has written to shared files and it is unsafe to use the old cluster.

The old cluster will need to be restored from backup in this case.

NOTES
pg_upgrade creates various working files, such as schema dumps, stored within pg_upgrade_output.d

in the directory of the new cluster. Each run creates a new subdirectory named with a timestamp

formatted as per ISO 8601 (%Y%m%dT%H%M%S), where all its generated files are stored.

pg_upgrade_output.d and its contained files will be removed automatically if pg_upgrade completes

successfully; but in the event of trouble, the files there may provide useful debugging information.

pg_upgrade launches short-lived postmasters in the old and new data directories. Temporary Unix

socket files for communication with these postmasters are, by default, made in the current working

directory. In some situations the path name for the current directory might be too long to be a valid

socket name. In that case you can use the -s option to put the socket files in some directory with a

shorter path name. For security, be sure that that directory is not readable or writable by any other

users. (This is not supported on Windows.)

All failure, rebuild, and reindex cases will be reported by pg_upgrade if they affect your installation;

post-upgrade scripts to rebuild tables and indexes will be generated automatically. If you are trying to

automate the upgrade of many clusters, you should find that clusters with identical database schemas

require the same post-upgrade steps for all cluster upgrades; this is because the post-upgrade steps are

based on the database schemas, and not user data.

For deployment testing, create a schema-only copy of the old cluster, insert dummy data, and upgrade

that.

pg_upgrade does not support upgrading of databases containing table columns using these reg*

OID-referencing system data types:

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

regcollation

regconfig

regdictionary

regnamespace

regoper

regoperator

regproc

regprocedure

(regclass, regrole, and regtype can be upgraded.)

If you want to use link mode and you do not want your old cluster to be modified when the new cluster

is started, consider using the clone mode. If that is not available, make a copy of the old cluster and

upgrade that in link mode. To make a valid copy of the old cluster, use rsync to create a dirty copy of

the old cluster while the server is running, then shut down the old server and run rsync --checksum
again to update the copy with any changes to make it consistent. (--checksum is necessary because

rsync only has file modification-time granularity of one second.) You might want to exclude some

files, e.g., postmaster.pid, as documented in Section 26.3.3. If your file system supports file system

snapshots or copy-on-write file copies, you can use that to make a backup of the old cluster and

tablespaces, though the snapshot and copies must be created simultaneously or while the database

server is down.

SEE ALSO
initdb(1), pg_ctl(1), pg_dump(1), postgres(1)

PG_UPGRADE(1) PostgreSQL 15.8 Documentation PG_UPGRADE(1)

PostgreSQL 15.8 2024 PG_UPGRADE(1)

