
NAME
hashinit, hashinit_flags, hashdestroy, phashinit, phashinit_flags - manage kernel hash tables

SYNOPSIS
#include <sys/malloc.h>
#include <sys/systm.h>
#include <sys/queue.h>

void *

hashinit(int nelements, struct malloc_type *type, u_long *hashmask);

void

hashinit_flags(int nelements, struct malloc_type *type, u_long *hashmask, int flags);

void

hashdestroy(void *hashtbl, struct malloc_type *type, u_long hashmask);

void *

phashinit(int nelements, struct malloc_type *type, u_long *nentries);

phashinit_flags(int nelements, struct malloc_type *type, u_long *nentries, int flags);

DESCRIPTION
The hashinit(), hashinit_flags(), phashinit() and phashinit_flags() functions allocate space for hash tables

of size given by the argument nelements.

The hashinit() function allocates hash tables that are sized to largest power of two less than or equal to

argument nelements. The phashinit() function allocates hash tables that are sized to the largest prime

number less than or equal to argument nelements. The hashinit_flags() function operates like hashinit()
but also accepts an additional argument flags which control various options during allocation.

phashinit_flags() function operates like phashinit() but also accepts an additional argument flags which

control various options during allocation. Allocated hash tables are contiguous arrays of

LIST_HEAD(3) entries, allocated using malloc(9), and initialized using LIST_INIT(3). The malloc

arena to be used for allocation is pointed to by argument type.

The hashdestroy() function frees the space occupied by the hash table pointed to by argument hashtbl.

Argument type determines the malloc arena to use when freeing space. The argument hashmask should

be the bit mask returned by the call to hashinit() that allocated the hash table. The argument flags must

be used with one of the following values.

HASHINIT(9) FreeBSD Kernel Developer’s Manual HASHINIT(9)

FreeBSD 14.0-RELEASE-p11 April 29, 2016 FreeBSD 14.0-RELEASE-p11



HASH_NOWAIT Any malloc performed by the hashinit_flags() and phashinit_flags() function

will not be allowed to wait, and therefore may fail.

HASH_WAITOK Any malloc performed by hashinit_flags() and phashinit_flags() function is

allowed to wait for memory. This is also the behavior of hashinit() and

phashinit().

IMPLEMENTATION NOTES
The largest prime hash value chosen by phashinit() is 32749.

RETURN VALUES
The hashinit() function returns a pointer to an allocated hash table and sets the location pointed to by

hashmask to the bit mask to be used for computing the correct slot in the hash table.

The phashinit() function returns a pointer to an allocated hash table and sets the location pointed to by

nentries to the number of rows in the hash table.

EXAMPLES
A typical example is shown below:

...

static LIST_HEAD(foo, foo) *footable;

static u_long foomask;

...

footable = hashinit(32, M_FOO, &foomask);

Here we allocate a hash table with 32 entries from the malloc arena pointed to by M_FOO. The mask

for the allocated hash table is returned in foomask. A subsequent call to hashdestroy() uses the value in

foomask:

...

hashdestroy(footable, M_FOO, foomask);

DIAGNOSTICS
The hashinit() and phashinit() functions will panic if argument nelements is less than or equal to zero.

The hashdestroy() function will panic if the hash table pointed to by hashtbl is not empty.

SEE ALSO
LIST_HEAD(3), malloc(9)

HASHINIT(9) FreeBSD Kernel Developer’s Manual HASHINIT(9)

FreeBSD 14.0-RELEASE-p11 April 29, 2016 FreeBSD 14.0-RELEASE-p11



BUGS
There is no phashdestroy() function, and using hashdestroy() to free a hash table allocated by phashinit()
usually has grave consequences.

HASHINIT(9) FreeBSD Kernel Developer’s Manual HASHINIT(9)

FreeBSD 14.0-RELEASE-p11 April 29, 2016 FreeBSD 14.0-RELEASE-p11


