
NAME
pkg_printf, pkg_fprintf, pkg_dprintf, pkg_snprintf, pkg_asprintf, pkg_vprintf, pkg_vfprintf,
pkg_vdprintf, pkg_vsnprintf, pkg_vasprintf - formatted output of package data

LIBRARY
library "libpkg"

SYNOPSIS
#include <pkg.h>

int

pkg_printf(const char * restrict format, ...);

int

pkg_fprintf(FILE * restrict stream, const char * restrict format, ...);

int

pkg_dprintf(int fd, const char * restrict format, ...);

int

pkg_snprintf(char * restrict str, size_t size, const char * restrict format, ...);

int

pkg_asprintf(char **ret, const char * restrict format, ...);

#include <stdarg.h>

int

pkg_vprintf(const char * restrict format, va_list ap);

int

pkg_vfprintf(FILE * restrict stream, const char * restrict format, va_list ap);

int

pkg_vdprintf(int fd, const char * restrict format, va_list ap);

int

pkg_vsnprintf(char * restrict str, size_t size, const char * restrict format, va_list ap);

int

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

pkg_vasprintf(char **ret, const char * restrict format, va_list ap);

DESCRIPTION
The pkg_printf() family of functions produces output of package data according to a format as described

below, analogously to the similarly named printf(3) family of functions. The pkg_printf() and

pkg_vprintf() functions write output to stdout, the standard output stream; pkg_fprintf() and

pkg_vfprintf() write output to the given output stream; pkg_dprintf() and pkg_vdprintf() write output to

the given file descriptor; pkg_snprintf() and pkg_vsnprintf() write to the character string str;

pkg_asprintf() and pkg_vasprintf() dynamically allocate a new string with malloc(3) to write to.

These functions write the output under the control of a format string that specifies how subsequent

arguments (or arguments accessed via the variable-length argument facilities of stdarg(3)) are converted

for output.

These functions return the number of characters printed (not including the trailing ‘\0’ used to end

output to strings) or a negative value if an output error occurs, except for pkg_snprintf() or

pkg_vsnprintf() which return the number of characters that would have been printed if the size were

unlimited (again, not including the final ‘\0’).

The pkg_asprintf() and pkg_vasprintf() functions set *ret to be a pointer to a buffer sufficiently large to

hold the formatted string. This pointer should be passed to free(3) to release the allocated storage when

it is no longer needed. If sufficient space cannot be allocated, pkg_asprintf() and pkg_vasprintf() will

return -1 and set ret to be a NULL pointer.

The pkg_snprintf() and pkg_vsnprintf() functions will write at most size-1 of the characters printed into

the output string (the size’th character then gets the terminating ‘\0’); if the return value is greater than

or equal to the size argument, the string was too short and some of the printed characters were discarded.

The output is always null-terminated.

The format string is composed of zero or more directives: ordinary characters (not %), which are copied

unchanged to the output stream; and conversion specifications, each of which results in fetching zero or

more subsequent arguments. Each conversion specification is introduced by the % character. The

arguments must correspond properly with the conversion specifier. After the %, the following appear in

sequence:

+o Zero or more of the following flags:

? The value should be converted to the "first alternate form".

For integer valued conversions (I, s, t and x) this is a humanized form as a floating point

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

value scaled to the range 0 - 1000 followed by the SI powers-of-10 scale factor. See

SCALE FACTORS.

For array valued conversions (A, B, C, D, F, G, L, O, U, d, and r) generate "0" if there

are no items in the array, "1" otherwise.

For formats returning file modes (Dp or Fp) print the mode in the style of strmode(3).

For boolean valued formats (dk, rk, a and k) generate either "yes" or "no" for ‘true’ and

‘false’ respectively.

For the licence logic format (l) generate "" (empty), "&" or "|" for types ‘SINGLE’,

‘AND’ and ‘OR’ respectively.

The value should be converted to the "second alternate form".

For the integer valued conversions (I, s, t, x) this is a "humanized" form as a floating

point value scaled to the range 0 - 1024 followed by the IEE/IEC and SI powers-of-2

scale factor. See SCALE FACTORS.

For array valued conversions (A, B, C, D, F, G, L, O, U, d, and r) generate the number

of items in the array.

For formats returning file modes (Dp or Fp) print the mode as an octal integer with a

leading 0.

For boolean valued formats (dk, rk, a and k) generate either "(*)" or "" (empty) for

‘true’ and ‘false’ respectively.

For the licence logic format (l) generate "==", "&&" or "||" for types ‘SINGLE’, ‘AND’

and ‘OR’ respectively.

0 (zero) Zero padding. For all integer valued conversions and humanized numbers the

converted value is padded on the left with zeros rather than blanks. For string valued

conversions, this has no effect and the converted value is padded on the left with blanks.

- A negative field width flag; the converted value is to be left adjusted on the field

boundary. The converted value is padded on the right with blanks, rather than on the

left with blanks or zeros. Applies to all scalar-valued conversions. "-" overrides a "0" if

both are given.

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

‘ ’ (space) A blank should be left before a positive number produced by a signed conversion (I, s, t,
or x).

+ A sign must always be placed before an integer or humanized number produced by a

numerical conversion. A "+" overrides a space if both are used.

‘’’ Numerical (integer) conversions should be grouped and separated by thousands using

the non-monetary separator returned by localeconv(3). Has no visible effect in the

default "C" locale.

+o An optional decimal digit string specifying a minimum field width. If the converted value has fewer

characters than the field width, it will be padded with spaces (or zeroes, if the zero-padding flag has

been given and the conversion supports it) on the left (or spaces on the right, if the left-adjustment

flag has been given) to fill out the field width.

+o One or two characters that specify the type of conversion to be applied.

+o An optional "row format" for array valued conversions (A, B, C, D, F, G, L, O, U, d, and r) or the

timestamp value conversion (t). Which conversion characters are permissible in the row format is

context dependent. See the FORMAT CODES section for details.

SCALE FACTORS
Humanized number conversions scale the number to lie within the range 1 - 1000 (power of ten

conversions using the ? format modifier) or 1 - 1024 (power of two conversions using the # format

modifier) and append a scale factor as follows:

The SI power of ten suffixes are

Suffix Description Multiplier
(none) 1

k kilo 1,000

M mega 1,000,000

G giga 1,000,000,000

T tera 1,000,000,000,000

P peta 1,000,000,000,000,000

E exa 1,000,000,000,000,000,000

The IEE/IEC (and now also SI) power of two suffixes are:

Suffix Description Multiplier

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

(none) 1

Ki kibi 1,024

Mi mebi 1,048,576

Gi gibi 1,073,741,824

Ti tebi 1,099,511,627,776

Pi pebi 1,125,899,906,842,624

Ei exbi 1,152,921,504,606,846,976

FORMAT CODES
Format codes will format the output classified as the type shown in square brackets. %I is unique in that

it can only be used inside a "row format." All other format codes may be used stand-alone. When used

in this fashion they will consume one argument of the indicated type from the function’s argument list.

The array valued format codes (A, B, C, D, F, G, L, O, U, d, and r) and the timestamp format code (t)
can be followed by a "row format". They will use a default row format (detailed below) if one is not

given explicitly.

The row format is bracketed by the character sequences %{ and %} and, for array values only, may be

optionally divided into two by the character sequence %|. For array values, it contains one or two strings

containing any number of a context sensitive subset of format conversions from those described here.

For timestamp values it contains any number of format conversion specifiers with meanings as described

in strftime(3).

The first or only format string is repeatedly processed for each of the array items in turn. The optional

second format string is processed as a separator between each of the array items. If no row format is

given, output will be generated according to a default format, detailed below.

Within a "row format" string, you may use any of the single-character non-array valued format codes

except for %S, but only the two-character format codes which correspond to the parent item and have

the same first character. Array valued format codes may not be used within row formats, nor may you

embed one "row format" within another. Only one argument, a struct pkg * pointer is consumed from

the argument list. Thus this is a legal format string:

"%B%{%n-%v:%Bn%|\n%}"

which serves to print out a list of the shared libraries required by the programs within the package, each

prefixed by the package name and version.

The conversion specifiers and their meanings are:

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

%A Annotations [array] struct pkg *

Default row format %A%{%An: %Av\n%|%}

%An
Annotation tag name [string] struct pkg_note *

%Av
Annotation value [string] struct pkg_note *

%B Required shared libraries [array] struct pkg *

Default row format: %B%{%Bn\n%|%}

%Bn Required shared library name [string] struct pkg_shlib *

%C Categories [array] struct pkg *

Default row format: %C%{%Cn%|, %}

%Cn Category name [string] struct pkg_category *

%D Directories [array] struct pkg *

Default row format: %D%{%Dn\n%|%}

%Dg
Directory ownership: group name [string] struct pkg_dir *

%Dn
Directory path name [string] struct pkg_dir *

%Dp
Directory permissions [mode] struct pkg_dir *

%Du
Directory ownership: user name [string] struct pkg_dir *

%F Files [array] struct pkg *

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

Default row format: %F%{%Fn\n%|%}

%Fg File ownership: group name [string] struct pkg_file *

%Fn File path name [string] struct pkg_file *

%Fp File permissions [mode] struct pkg_file *

%Fs File SHA256 checksum [string] struct pkg_file *

%Fu File ownership: user name [string] struct pkg_file *

%G Groups [array] struct pkg *

Default row format: %G%{%Gn\n%|%}

%Gn
Group name [string] struct pkg_group *

%I Row counter [integer].

This format code may only be used as part of a "row format."

%L Licenses [array] struct pkg *

Default row format: %L%{%Ln%| %l %}

%Ln Licence name [string] struct pkg_license *

%M Package message [string] struct pkg *

%N Repository identity [string] struct pkg *

%O Options [array] struct pkg *

Default row format: %O%{%On %Ov\n%|%}

%On
Option name [string] struct pkg_option *

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

%Ov
Option value [string] struct pkg_option *

%Od
Option default value [string] (if known: will produce an empty string if not.) struct pkg_option *

%OD
Option description [string] (if known: will produce an empty string if not.) struct pkg_option *

%R Repository path - the path relative to the repository root that package may be downloaded from

[string]. struct pkg *

%S Arbitrary character string [string] const char *

%U Users [array] struct pkg *

Default row format: %U%{%Un\n%|%}

%Un
User name [string] struct pkg_user *

%V Old version [string]. Valid only during operations when one version of a package is being

replaced by another. struct pkg *

%a Autoremove flag [boolean] struct pkg *

%b Provided shared libraries [array] struct pkg *

Default row format: %b%{%bn\n%|%}

%bn Provided shared library name [string] struct pkg_shlib *

%c Comment [string] struct pkg *

%d Dependencies [array] struct pkg *

Default row format: %d%{%dn-%dv\n%|%}

%dk Dependency lock status [boolean] struct pkg_dep *

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

%dn Dependency name [string] struct pkg_dep *

%do Dependency origin [string] struct pkg_dep *

%dv Dependency version [string] struct pkg_dep *

%e Description [string] struct pkg *

%i Additional information [string] struct pkg *

%k Locking status [boolean] struct pkg *

%l License logic [licence-logic] struct pkg *

%m Maintainer [string] struct pkg *

%n Package name [string] struct pkg *

%o Origin [string] struct pkg *

%p Prefix [string] struct pkg *

%r Requirements [array] struct pkg *

Default row format: %r%{%rn-%rv\n%|%}

%rk Requirement lock status [boolean] struct pkg_dep *

%rn Requirement name [string] struct pkg_dep *

%ro Requirement origin [string] struct pkg_dep *

%rv Requirement version [string] struct pkg_dep *

%s Package flat size [integer] struct pkg *

%t Installation timestamp [date-time] struct pkg *

%u Package checksum [string] struct pkg *

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

%v Package version [string] struct pkg *

%w Home page URL [string] struct pkg *

%x Package tarball size [integer] struct pkg *

%z Package short checksum [string] struct pkg *

%% A ‘%’ is written. No argument is converted. The complete conversion specification is ‘%%’.

The decimal point character is defined in the program’s locale (category LC_NUMERIC).

In no case does a non-existent or small field width cause truncation of a numeric field; if the result of a

conversion is wider than the field width, the field is expanded to contain the conversion result.

ARRAY VALUES
Effective format modifiers:

? First Alternate Form: 0 if the array is empty, 1 if it has any number of elements within it

Second Alternate Form: The number of elements in the array

STRING VALUES
Effective format modifiers:

- Left align

INTEGER VALUES
Effective format modifiers:

- Left align

? First Alternate Form: humanized number (decimal)

Second Alternate Form: humanized number (binary)

0 Zero pad

‘ ’ Blank for plus

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

+ Explicit + or - sign

‘’’ Thousands separator

BOOLEAN VALUES
The two possible values ‘true’ or ‘false’ may be output in one of three different styles: plain; or alternate

forms 1 and 2 specified using format modifiers.

Value Plain (%a) Alt 1 (%?a) Alt 2 (%#a)
FALSE false no

TRUE true yes (*)

The second alternate form produces no output for false.

Effective format modifiers:

? First Alternate Form

Second Alternate Form

- Left align

FILE MODE VALUES
The file mode is a bitmap representing setid, user, group and other permissions. The plain format prints

it as an octal value, for example:

4755

The first alternate form is similar but adds a leading zero:

04755

Whilst the second alternate form produces a string in the style of strmode(3):

-rwsr-xr-x

Note: there is always a space at the end of the strmode(3) output.

Effective format modifiers (all forms):

- Left align

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

Additionally, when the value is printed as an integer (i.e., plain or alternate form 1), these additional

modifiers take effect:

? First Alternate Form: add leading zero to octal integer

0 Zero pad

LICENSE LOGIC VALUES
License-logic is a three-valued type: one of ‘SINGLE’, ‘OR’ or ‘AND’, which shows whether the

package is distributed under the terms of a single license, or when there are several applicable licenses,

whether these should be treated as alternatives or applied in aggregate. There are three different output

styles: plain; or alternate forms 1 and 2 specified using format modifiers.

Logic Plain (%l) Alt 1 (%?l) Alt 2 (%#l)
SINGLE single ==

OR or | ||

AND and & &&

Effective format modifiers:

? First Alternate Form

Second Alternate Form

- Left align

DATE-TIME VALUES
When used outside of a "row format" string may be followed by an optional strftime(3) format, enclosed

in %{ and %}, which will be used to format the timestamp. Otherwise the timestamp is printed as an

integer value of the number of seconds since the Epoch (00:00:00 UTC, 1 January 1970; see time(3)).

Effective format modifiers:

- Left align

Additionally, when the value is printed as an integer (i.e., without strftime(3) format codes enclosed in

%{ and %}, the following format modifiers are also effective:

? First Alternate Form: humanized number (decimal)

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

Second Alternate Form: humanized number (binary)

0 Zero pad

‘ ’ Blank for plus

+ Explicit + or - sign

‘’’ Thousands separator

EXAMPLES
To print the package installation timestamp in the form "Sunday, July 3, 10:02",

#include <pkg.h>

pkg_fprintf(stdout, "%t%{%A, %B %e, %R%}\n", pkg);

To print the package name and version, followed by the name and version of all of the packages it

depends upon, one per line, each indented by one tab stop:

#include <pkg.h>

pkg_printf("%n-%v\n%d%{\t%dn-%dv%|%\n%}\n", pkg, pkg, pkg);

Note that the item separator part of the row format is only printed between individual row items. Thus

to fill the character array buf with a one-line string listing all of the licenses for the package separated by

"and" or "or" as appropriate:

#include <pkg.h>

char buf[256];

pkg_snprintf(buf, sizeof(buf), "%L%{%Ln%| %l %}", pkg);

ERRORS
In addition to the errors documented for the write(2) system call, the pkg_printf() family of functions

may fail if:

[EILSEQ] An invalid wide character code was encountered.

[ENOMEM] Insufficient storage space is available.

SEE ALSO
pkg_create(3), pkg_repos(3), pkg-keywords(5), pkg-lua-script(5), pkg-repository(5), pkg-script(5),

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

pkg-triggers(5), pkg.conf(5), pkg(8), pkg-add(8), pkg-alias(8), pkg-annotate(8), pkg-audit(8),

pkg-autoremove(8), pkg-check(8), pkg-clean(8), pkg-config(8), pkg-create(8), pkg-delete(8),

pkg-fetch(8), pkg-info(8), pkg-install(8), pkg-lock(8), pkg-query(8), pkg-register(8), pkg-repo(8),

pkg-rquery(8), pkg-search(8), pkg-set(8), pkg-shell(8), pkg-shlib(8), pkg-ssh(8), pkg-stats(8),

pkg-triggers(8), pkg-update(8), pkg-updating(8), pkg-upgrade(8), pkg-version(8), pkg-which(8)

BUGS
The pkg_printf family of functions do not correctly handle multibyte characters in the format argument.

There is no way to sort the output of array valued items.

SECURITY CONSIDERATIONS
Equivalents to the sprintf() and vsprintf() functions are not supplied. Instead, use pkg_snprintf() to write

into a fixed length buffer without danger of overflow.

The pkg_printf() family, like the printf() family of functions it is modelled on, is also easily misused in a

manner allowing malicious users to arbitrarily change a running program’s functionality by either

causing the program to print potentially sensitive data "left on the stack", or causing it to generate a

memory fault or bus error by dereferencing an invalid pointer.

Programmers are therefore strongly advised to never pass untrusted strings as the format argument, as an

attacker can put format specifiers in the string to mangle your stack, leading to a possible security hole.

This holds true even if the string was built using a function like snprintf(), as the resulting string may

still contain user-supplied conversion specifiers for later interpolation by pkg_printf().

Always use the proper secure idiom:

pkg_snprintf(buffer, sizeof(buffer), "%s", string);

PKG_PRINTF(3) FreeBSD Library Functions Manual PKG_PRINTF(3)

FreeBSD 14.0-RELEASE-p6 October 20, 2015 FreeBSD 14.0-RELEASE-p6

