
NAME
pmclog_open, pmclog_close, pmclog_read, pmclog_feed - parse event log data generated by hwpmc(4)

LIBRARY
Performance Counters Library (libpmc, -lpmc)

SYNOPSIS
#include <pmclog.h>

void *

pmclog_open(int fd);

void

pmclog_close(void *cookie);

int

pmclog_read(void *cookie, struct pmclog_ev *ev);

int

pmclog_feed(void *cookie, char *data, int len);

DESCRIPTION
These functions provide a way for application programs to extract events from an event stream

generated by hwpmc(4).

A new event log parser is allocated using pmclog_open(). Argument fd may be a file descriptor opened

for reading if the event stream is present in a file, or the constant PMCLOG_FD_NONE for an event

stream present in memory. This function returns a cookie that is passed into the other functions in this

API set.

Function pmclog_read() returns the next available event in the event stream associated with argument

cookie. Argument ev points to an event descriptor that which will contain the result of a successfully

parsed event.

An event descriptor returned by pmclog_read() has the following structure:

struct pmclog_ev {

enum pmclog_state pl_state; /* parser state after ’get_event()’ */

off_t pl_offset; /* byte offset in stream */

size_t pl_count; /* count of records so far */

PMCLOG(3) FreeBSD Library Functions Manual PMCLOG(3)

FreeBSD 14.0-RELEASE-p11 March 26, 2006 FreeBSD 14.0-RELEASE-p11



struct timespec pl_ts; /* log entry timestamp */

enum pmclog_type pl_type; /* log entry kind */

union { /* log entry data */

struct pmclog_ev_callchain pl_cc;

struct pmclog_ev_closelog pl_cl;

struct pmclog_ev_dropnotify pl_d;

struct pmclog_ev_initialize pl_i;

struct pmclog_ev_map_in pl_mi;

struct pmclog_ev_map_out pl_mo;

struct pmclog_ev_pmcallocate pl_a;

struct pmclog_ev_pmcallocatedyn pl_ad;

struct pmclog_ev_pmcattach pl_t;

struct pmclog_ev_pmcdetach pl_d;

struct pmclog_ev_proccsw pl_c;

struct pmclog_ev_procexec pl_x;

struct pmclog_ev_procexit pl_e;

struct pmclog_ev_procfork pl_f;

struct pmclog_ev_sysexit pl_e;

struct pmclog_ev_userdata pl_u;

} pl_u;

};

The current state of the parser is recorded in pl_state. This field can take on the following values:

PMCLOG_EOF (For file based parsers only) An end-of-file condition was encountered

on the configured file descriptor.

PMCLOG_ERROR An error occurred during parsing.

PMCLOG_OK A complete event record was read into *ev.

PMCLOG_REQUIRE_DATA There was insufficient data in the event stream to assemble a complete

event record. For memory based parsers, more data can be fed to the

parser using function pmclog_feed(). For file based parsers, function

pmclog_read() may be retried when data is available on the configured

file descriptor.

The rest of the event structure is valid only if field pl_state contains PMCLOG_OK. Field pl_offset

contains the offset of the current record in the byte stream. Field pl_count contains the serial number of

this event. Field pl_ts contains a timestamp with the system time when the event occurred. Field

PMCLOG(3) FreeBSD Library Functions Manual PMCLOG(3)

FreeBSD 14.0-RELEASE-p11 March 26, 2006 FreeBSD 14.0-RELEASE-p11



pl_type denotes the kind of the event returned in argument *ev and is one of the following:

PMCLOG_TYPE_CLOSELOG A marker indicating a successful close of a log file. This record

will be the last record of a log file.

PMCLOG_TYPE_DROPNOTIFY A marker indicating that hwpmc(4) had to drop data due to a

resource constraint.

PMCLOG_TYPE_INITIALIZE An initialization record. This is the first record in a log file.

PMCLOG_TYPE_MAP_IN A record describing the introduction of a mapping to an

executable object by a kldload(2) or mmap(2) system call.

PMCLOG_TYPE_MAP_OUT A record describing the removal of a mapping to an executable

object by a kldunload(2) or munmap(2) system call.

PMCLOG_TYPE_PCSAMPLE A record containing an instruction pointer sample.

PMCLOG_TYPE_PMCALLOCATE A record describing a PMC allocation operation.

PMCLOG_TYPE_PMCATTACH A record describing a PMC attach operation.

PMCLOG_TYPE_PMCDETACH A record describing a PMC detach operation.

PMCLOG_TYPE_PROCCSW A record describing a PMC reading at the time of a process

context switch.

PMCLOG_TYPE_PROCEXEC A record describing an execve(2) by a target process.

PMCLOG_TYPE_PROCEXIT A record describing the accumulated PMC reading for a process

at the time of _exit(2).

PMCLOG_TYPE_PROCFORK A record describing a fork(2) by a target process.

PMCLOG_TYPE_SYSEXIT A record describing a process exit, sent to processes owning

system-wide sampling PMCs.

PMCLOG_TYPE_USERDATA A record containing user data.

Function pmclog_feed() is used with parsers configured to parse memory based event streams. It is

PMCLOG(3) FreeBSD Library Functions Manual PMCLOG(3)

FreeBSD 14.0-RELEASE-p11 March 26, 2006 FreeBSD 14.0-RELEASE-p11



intended to be called when function pmclog_read() indicates the need for more data by a returning

PMCLOG_REQUIRE_DATA in field pl_state of its event structure argument. Argument data points to

the start of a memory buffer containing fresh event data. Argument len indicates the number of data

bytes available. The memory range [data, data + len] must remain valid till the next time pmclog_read()

returns an error. It is an error to use pmclog_feed() on a parser configured to parse file data.

Function pmclog_close() releases the internal state allocated by a prior call to pmclog_open().

RETURN VALUES
Function pmclog_open() will return a non-NULL value if successful or NULL otherwise.

Function pmclog_read() will return 0 in case a complete event record was successfully read, or will

return -1 and will set the pl_state field of the event record to the appropriate code in case of an error.

Function pmclog_feed() will return 0 on success or -1 in case of failure.

EXAMPLES
A template for using the log file parsing API is shown below in pseudocode:

void *parser; /* cookie */

struct pmclog_ev ev; /* parsed event */

int fd; /* file descriptor */

fd = open(filename, O_RDONLY); /* open log file */

parser = pmclog_open(fd); /* initialize parser */

if (parser == NULL)

--handle an out of memory error--;

/* read and parse data */

while (pmclog_read(parser, &ev) == 0) {

assert(ev.pl_state == PMCLOG_OK);

/* process the event */

switch (ev.pl_type) {

case PMCLOG_TYPE_ALLOCATE:

--process a pmc allocation record--

break;

case PMCLOG_TYPE_PROCCSW:

--process a thread context switch record--

break;

case PMCLOG_TYPE_CALLCHAIN:

PMCLOG(3) FreeBSD Library Functions Manual PMCLOG(3)

FreeBSD 14.0-RELEASE-p11 March 26, 2006 FreeBSD 14.0-RELEASE-p11



--process a callchain sample--

break;

--and so on--

}

}

/* examine parser state */

switch (ev.pl_state) {

case PMCLOG_EOF:

--normal termination--

break;

case PMCLOG_ERROR:

--look at errno here--

break;

case PMCLOG_REQUIRE_DATA:

--arrange for more data to be available for parsing--

break;

default:

assert(0);

/*NOTREACHED*/

}

pmclog_close(parser); /* cleanup */

ERRORS
A call to pmclog_init_parser() may fail with any of the errors returned by malloc(3).

A call to pmclog_read() for a file based parser may fail with any of the errors returned by read(2).

SEE ALSO
read(2), malloc(3), pmc(3), hwpmc(4), pmcstat(8)

HISTORY
The pmclog API first appeared in FreeBSD 6.0.

PMCLOG(3) FreeBSD Library Functions Manual PMCLOG(3)

FreeBSD 14.0-RELEASE-p11 March 26, 2006 FreeBSD 14.0-RELEASE-p11


