
NAME
pmclog_open, pmclog_close, pmclog_read, pmclog_feed - parse event log data generated by hwpmc(4)

LIBRARY
Performance Counters Library (libpmc, -lpmc)

SYNOPSIS
#include <pmclog.h>

void *

pmclog_open(int fd);

void

pmclog_close(void *cookie);

int

pmclog_read(void *cookie, struct pmclog_ev *ev);

int

pmclog_feed(void *cookie, char *data, int len);

DESCRIPTION
These functions provide a way for application programs to extract events from an event stream

generated by hwpmc(4).

A new event log parser is allocated using pmclog_open(). Argument fd may be a file descriptor opened

for reading if the event stream is present in a file, or the constant PMCLOG_FD_NONE for an event

stream present in memory. This function returns a cookie that is passed into the other functions in this

API set.

Function pmclog_read() returns the next available event in the event stream associated with argument

cookie. Argument ev points to an event descriptor that which will contain the result of a successfully

parsed event.

An event descriptor returned by pmclog_read() has the following structure:

struct pmclog_ev {

enum pmclog_state pl_state; /* parser state after ’get_event()’ */

off_t pl_offset; /* byte offset in stream */

size_t pl_count; /* count of records so far */
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struct timespec pl_ts; /* log entry timestamp */

enum pmclog_type pl_type; /* log entry kind */

union { /* log entry data */

struct pmclog_ev_callchain pl_cc;

struct pmclog_ev_closelog pl_cl;

struct pmclog_ev_dropnotify pl_d;

struct pmclog_ev_initialize pl_i;

struct pmclog_ev_map_in pl_mi;

struct pmclog_ev_map_out pl_mo;

struct pmclog_ev_pmcallocate pl_a;

struct pmclog_ev_pmcallocatedyn pl_ad;

struct pmclog_ev_pmcattach pl_t;

struct pmclog_ev_pmcdetach pl_d;

struct pmclog_ev_proccsw pl_c;

struct pmclog_ev_procexec pl_x;

struct pmclog_ev_procexit pl_e;

struct pmclog_ev_procfork pl_f;

struct pmclog_ev_sysexit pl_e;

struct pmclog_ev_userdata pl_u;

} pl_u;

};

The current state of the parser is recorded in pl_state. This field can take on the following values:

PMCLOG_EOF (For file based parsers only) An end-of-file condition was encountered

on the configured file descriptor.

PMCLOG_ERROR An error occurred during parsing.

PMCLOG_OK A complete event record was read into *ev.

PMCLOG_REQUIRE_DATA There was insufficient data in the event stream to assemble a complete

event record. For memory based parsers, more data can be fed to the

parser using function pmclog_feed(). For file based parsers, function

pmclog_read() may be retried when data is available on the configured

file descriptor.

The rest of the event structure is valid only if field pl_state contains PMCLOG_OK. Field pl_offset

contains the offset of the current record in the byte stream. Field pl_count contains the serial number of

this event. Field pl_ts contains a timestamp with the system time when the event occurred. Field
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pl_type denotes the kind of the event returned in argument *ev and is one of the following:

PMCLOG_TYPE_CLOSELOG A marker indicating a successful close of a log file. This record

will be the last record of a log file.

PMCLOG_TYPE_DROPNOTIFY A marker indicating that hwpmc(4) had to drop data due to a

resource constraint.

PMCLOG_TYPE_INITIALIZE An initialization record. This is the first record in a log file.

PMCLOG_TYPE_MAP_IN A record describing the introduction of a mapping to an

executable object by a kldload(2) or mmap(2) system call.

PMCLOG_TYPE_MAP_OUT A record describing the removal of a mapping to an executable

object by a kldunload(2) or munmap(2) system call.

PMCLOG_TYPE_PCSAMPLE A record containing an instruction pointer sample.

PMCLOG_TYPE_PMCALLOCATE A record describing a PMC allocation operation.

PMCLOG_TYPE_PMCATTACH A record describing a PMC attach operation.

PMCLOG_TYPE_PMCDETACH A record describing a PMC detach operation.

PMCLOG_TYPE_PROCCSW A record describing a PMC reading at the time of a process

context switch.

PMCLOG_TYPE_PROCEXEC A record describing an execve(2) by a target process.

PMCLOG_TYPE_PROCEXIT A record describing the accumulated PMC reading for a process

at the time of _exit(2).

PMCLOG_TYPE_PROCFORK A record describing a fork(2) by a target process.

PMCLOG_TYPE_SYSEXIT A record describing a process exit, sent to processes owning

system-wide sampling PMCs.

PMCLOG_TYPE_USERDATA A record containing user data.

Function pmclog_feed() is used with parsers configured to parse memory based event streams. It is
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intended to be called when function pmclog_read() indicates the need for more data by a returning

PMCLOG_REQUIRE_DATA in field pl_state of its event structure argument. Argument data points to

the start of a memory buffer containing fresh event data. Argument len indicates the number of data

bytes available. The memory range [data, data + len] must remain valid till the next time pmclog_read()

returns an error. It is an error to use pmclog_feed() on a parser configured to parse file data.

Function pmclog_close() releases the internal state allocated by a prior call to pmclog_open().

RETURN VALUES
Function pmclog_open() will return a non-NULL value if successful or NULL otherwise.

Function pmclog_read() will return 0 in case a complete event record was successfully read, or will

return -1 and will set the pl_state field of the event record to the appropriate code in case of an error.

Function pmclog_feed() will return 0 on success or -1 in case of failure.

EXAMPLES
A template for using the log file parsing API is shown below in pseudocode:

void *parser; /* cookie */

struct pmclog_ev ev; /* parsed event */

int fd; /* file descriptor */

fd = open(filename, O_RDONLY); /* open log file */

parser = pmclog_open(fd); /* initialize parser */

if (parser == NULL)

--handle an out of memory error--;

/* read and parse data */

while (pmclog_read(parser, &ev) == 0) {

assert(ev.pl_state == PMCLOG_OK);

/* process the event */

switch (ev.pl_type) {

case PMCLOG_TYPE_ALLOCATE:

--process a pmc allocation record--

break;

case PMCLOG_TYPE_PROCCSW:

--process a thread context switch record--

break;

case PMCLOG_TYPE_CALLCHAIN:
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--process a callchain sample--

break;

--and so on--

}

}

/* examine parser state */

switch (ev.pl_state) {

case PMCLOG_EOF:

--normal termination--

break;

case PMCLOG_ERROR:

--look at errno here--

break;

case PMCLOG_REQUIRE_DATA:

--arrange for more data to be available for parsing--

break;

default:

assert(0);

/*NOTREACHED*/

}

pmclog_close(parser); /* cleanup */

ERRORS
A call to pmclog_init_parser() may fail with any of the errors returned by malloc(3).

A call to pmclog_read() for a file based parser may fail with any of the errors returned by read(2).

SEE ALSO
read(2), malloc(3), pmc(3), hwpmc(4), pmcstat(8)

HISTORY
The pmclog API first appeared in FreeBSD 6.0.
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