
NAME
polling - device polling support

SYNOPSIS
options DEVICE_POLLING

DESCRIPTION
Device polling (polling for brevity) refers to a technique that lets the operating system periodically poll

devices, instead of relying on the devices to generate interrupts when they need attention. This might

seem inefficient and counterintuitive, but when done properly, polling gives more control to the

operating system on when and how to handle devices, with a number of advantages in terms of system

responsiveness and performance.

In particular, polling reduces the overhead for context switches which is incurred when servicing

interrupts, and gives more control on the scheduling of the CPU between various tasks (user processes,

software interrupts, device handling) which ultimately reduces the chances of livelock in the system.

Principles of Operation
In the normal, interrupt-based mode, devices generate an interrupt whenever they need attention. This in

turn causes a context switch and the execution of an interrupt handler which performs whatever

processing is needed by the device. The duration of the interrupt handler is potentially unbounded

unless the device driver has been programmed with real-time concerns in mind (which is generally not

the case for FreeBSD drivers). Furthermore, under heavy traffic load, the system might be persistently

processing interrupts without being able to complete other work, either in the kernel or in userland.

Device polling disables interrupts by polling devices at appropriate times, i.e., on clock interrupts and

within the idle loop. This way, the context switch overhead is removed. Furthermore, the operating

system can control accurately how much work to spend in handling device events, and thus prevent

livelock by reserving some amount of CPU to other tasks.

Enabling polling also changes the way software network interrupts are scheduled, so there is never the

risk of livelock because packets are not processed to completion.

Enabling polling
Currently only network interface drivers support the polling feature. It is turned on and off with help of

ifconfig(8) command.

The historic kern.polling.enable, which enabled polling for all interfaces, can be replaced with the

following code:

POLLING(4) FreeBSD Kernel Interfaces Manual POLLING(4)

FreeBSD 14.2-RELEASE December 26, 2020 FreeBSD 14.2-RELEASE

for i in ‘ifconfig -l‘ ;

do ifconfig $i polling; # use -polling to disable

done

MIB Variables
The operation of polling is controlled by the following sysctl(8) MIB variables:

kern.polling.user_frac

When polling is enabled, and provided that there is some work to do, up to this percent of the

CPU cycles is reserved to userland tasks, the remaining fraction being available for polling
processing. Default is 50.

kern.polling.burst

Maximum number of packets grabbed from each network interface in each timer tick. This

number is dynamically adjusted by the kernel, according to the programmed user_frac,

burst_max, CPU speed, and system load.

kern.polling.each_burst

The burst above is split into smaller chunks of this number of packets, going round-robin among

all interfaces registered for polling. This prevents the case that a large burst from a single

interface can saturate the IP interrupt queue (net.inet.ip.intr_queue_maxlen). Default is 5.

kern.polling.burst_max

Upper bound for kern.polling.burst. Note that when polling is enabled, each interface can

receive at most (HZ * burst_max) packets per second unless there are spare CPU cycles available

for polling in the idle loop. This number should be tuned to match the expected load (which can

be quite high with GigE cards). Default is 150 which is adequate for 100Mbit network and

HZ=1000.

kern.polling.idle_poll

Controls if polling is enabled in the idle loop. There are no reasons (other than power saving or

bugs in the scheduler’s handling of idle priority kernel threads) to disable this.

kern.polling.reg_frac

Controls how often (every reg_frac / HZ seconds) the status registers of the device are checked

for error conditions and the like. Increasing this value reduces the load on the bus, but also

delays the error detection. Default is 20.

kern.polling.handlers

How many active devices have registered for polling.

POLLING(4) FreeBSD Kernel Interfaces Manual POLLING(4)

FreeBSD 14.2-RELEASE December 26, 2020 FreeBSD 14.2-RELEASE

kern.polling.short_ticks

kern.polling.lost_polls

kern.polling.pending_polls

kern.polling.residual_burst

kern.polling.phase

kern.polling.suspect

kern.polling.stalled

Debugging variables.

SUPPORTED DEVICES
Device polling requires explicit modifications to the device drivers. As of this writing, the bge(4), dc(4),

em(4), fwe(4), fwip(4), fxp(4), igb(4), nfe(4), nge(4), re(4), rl(4), sis(4), ste(4), stge(4), vge(4), vr(4),

and xl(4) devices are supported, with others in the works. The modifications are rather straightforward,

consisting in the extraction of the inner part of the interrupt service routine and writing a callback

function, *_poll(), which is invoked to probe the device for events and process them. (See the

conditionally compiled sections of the devices mentioned above for more details.)

As in the worst case the devices are only polled on clock interrupts, in order to reduce the latency in

processing packets, it is not advisable to decrease the frequency of the clock below 1000 Hz.

HISTORY
Device polling first appeared in FreeBSD 4.6 and FreeBSD 5.0.

AUTHORS
Device polling was written by Luigi Rizzo <luigi@iet.unipi.it>.

POLLING(4) FreeBSD Kernel Interfaces Manual POLLING(4)

FreeBSD 14.2-RELEASE December 26, 2020 FreeBSD 14.2-RELEASE

