
NAME
popt - Parse command line options

SYNOPSIS
#include <popt.h>

poptContext poptGetContext(const char * name, int argc,
const char ** argv,
const struct poptOption * options,
unsigned int flags);

void poptFreeContext(poptContext con);

void poptResetContext(poptContext con);

int poptGetNextOpt(poptContext con);

const char * poptGetOptArg(poptContext con);

const char * poptGetArg(poptContext con);

const char * poptPeekArg(poptContext con);

const char ** poptGetArgs(poptContext con);

const char * poptStrerror(const int error);

const char * poptBadOption(poptContext con, int flags);

int poptReadDefaultConfig(poptContext con, int flags);

int poptReadConfigFile(poptContext con, char * fn);

int poptAddAlias(poptContext con, struct poptAlias alias,
int flags);

int poptParseArgvString(char * s, int * argcPtr,
const char *** argvPtr);

int poptDupArgv(int argc, const char ** argv, int * argcPtr,

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

const char *** argvPtr);

int poptStuffArgs(poptContext con, const char ** argv);

DESCRIPTION
The popt library exists essentially for parsing command-line options. It is found superior in many ways

when compared to parsing the argv array by hand or using the getopt functions getopt() and

getopt_long() [see getopt(3)]. Some specific advantages of popt are: it does not utilize global variables,

thus enabling multiple passes in parsing argv ; it can parse an arbitrary array of argv-style elements,

allowing parsing of command-line-strings from any source; it provides a standard method of option

aliasing (to be discussed at length below.); it can exec external option filters; and, finally, it can

automatically generate help and usage messages for the application.

Like getopt_long(), the popt library supports short and long style options. Recall that a short option
consists of a - character followed by a single alphanumeric character. A long option, common in GNU

utilities, consists of two - characters followed by a string made up of letters, numbers and hyphens.

Long options are optionally allowed to begin with a single -, primarily to allow command-line

compatibility between popt applications and X toolkit applications. Either type of option may be

followed by an argument. A space separates a short option from its arguments; either a space or an =

separates a long option from an argument.

The popt library is highly portable and should work on any POSIX platform. The latest version is

distributed with rpm and is always available from: ftp://ftp.rpm.org/pub/rpm/dist.

It may be redistributed under the X consortium license, see the file COPYING in the popt source

distribution for details.

BASIC POPT USAGE
1. THE OPTION TABLE

Applications provide popt with information on their command-line options by means of an "option

table," i.e., an array of struct poptOption structures:

#include <popt.h>

struct poptOption {

const char * longName; /* may be NULL */

char shortName; /* may be ’\0’ */

unsigned int argInfo; /* type of argument expected after the option */

void * arg; /* depends on argInfo */

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

int val; /* 0 means don’t return, just update arg */

const char * descrip; /* description for autohelp -- may be NULL */

const char * argDescrip; /* argument description for autohelp -- may be NULL*/

};

Each member of the table defines a single option that may be passed to the program. Long and short

options are considered a single option that may occur in two different forms. The first two members,

longName and shortName, define the names of the option; the first is a long name, while the latter is a

single character.

The argInfo member tells popt what type of argument is expected after the option. If no argument is

expected, POPT_ARG_NONE should be used. The valid values of argInfo are shown in the following

table:

Value Description arg
Type

POPT_ARG_NONE No argument int

expected

POPT_ARG_STRING No type checking to be performedchar

*

POPT_ARG_ARGV No type checking to be performedchar

**

POPT_ARG_SHORT A short argument is short

expected

POPT_ARG_INT An integer argument is int

expected

POPT_ARG_LONG A long integer is long

expected

POPT_ARG_LONGLONGA long long integer is long long

expected

POPT_ARG_VAL Integer value taken from int

val

POPT_ARG_FLOAT A float argument is float

expected

POPT_ARG_DOUBLE A double argument is double

expected

For numeric values, if the argInfo value is bitwise or’d with one of POPT_ARGFLAG_OR,

POPT_ARGFLAG_AND, or POPT_ARGFLAG_XOR, the value is saved by performing an OR, AND,

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

or XOR. If the argInfo value is bitwise or’d with POPT_ARGFLAG_NOT, the value will be negated

before saving. For the common operations of setting and/or clearing bits, POPT_BIT_SET and

POPT_BIT_CLR have the appropriate flags set to perform bit operations.

If the argInfo value is bitwise or’d with POPT_ARGFLAG_ONEDASH, the long argument may be

given with a single - instead of two. For example, if --longopt is an option with

POPT_ARGFLAG_ONEDASH, is specified, -longopt is accepted as well.

The next element, arg, allows popt to automatically update program variables when the option is used.

If arg is NULL, it is ignored and popt takes no special action. Otherwise it should point to a variable

of the type indicated in the right-most column of the table above. A POPT_ARG_ARGV arg will

(re-)allocate an array of char * string pointers, append the string argument, and add a NULL sentinel at

the end of the array as needed. The target char ** address of a POPT_ARG_ARGV arg should be

initialized to NULL.

If the option takes no argument (argInfo is POPT_ARG_NONE), the variable pointed to by arg is set

to 1 when the option is used. (Incidentally, it will perhaps not escape the attention of hunt-and-peck

typists that the value of POPT_ARG_NONE is 0.) If the option does take an argument, the variable

that arg points to is updated to reflect the value of the argument. Any string is acceptable for

POPT_ARG_STRING and POPT_ARG_ARGV arguments, but POPT_ARG_INT,

POPT_ARG_SHORT, POPT_ARG_LONG, POPT_ARG_LONGLONG, POPT_ARG_FLOAT, and

POPT_ARG_DOUBLE are converted to the appropriate type, and an error returned if the conversion

fails.

POPT_ARG_VAL causes arg to be set to the (integer) value of val when the argument is found. This

is most often useful for mutually-exclusive arguments in cases where it is not an error for multiple

arguments to occur and where you want the last argument specified to win; for example, "rm -i -f".

POPT_ARG_VAL causes the parsing function not to return a value, since the value of val has already

been used.

If the argInfo value is bitwise or’d with POPT_ARGFLAG_OPTIONAL, the argument to the long

option may be omitted. If the long option is used without an argument, a default value of zero or NULL

will be saved (if the arg pointer is present), otherwise behavior will be identical to a long option with

argument.

The next option, val, is the value popt’s parsing function should return when the option is encountered.

If it is 0, the parsing function does not return a value, instead parsing the next command-line argument.

The last two options, descrip and argDescrip are only required if automatic help messages are desired

(automatic usage messages can be generated without them). descrip is a text description of the

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

argument and argDescrip is a short summary of the type of arguments the option expects, or NULL if

the option doesn’t require any arguments.

If popt should automatically provide --usage and --help (-?) options, one line in the table should be the

macro POPT_AUTOHELP. This macro includes another option table (via

POPT_ARG_INCLUDE_TABLE ; see below) in the main one which provides the table entries for

these arguments. When --usage or --help are passed to programs which use popt’s automatic help, popt

displays the appropriate message on stderr as soon as it finds the option, and exits the program with a

return code of 0. If you want to use popt’s automatic help generation in a different way, you need to

explicitly add the option entries to your programs option table instead of using POPT_AUTOHELP.

If the argInfo value is bitwise or’d with POPT_ARGFLAG_DOC_HIDDEN, the argument will not be

shown in help output.

If the argInfo value is bitwise or’d with POPT_ARGFLAG_SHOW_DEFAULT, the initial value of the

arg will be shown in help output.

The final structure in the table should have all the pointer values set to NULL and all the arithmetic

values set to 0, marking the end of the table. The macro POPT_TABLEEND is provided to do that.

There are two types of option table entries which do not specify command line options. When either of

these types of entries are used, the longName element must be NULL and the shortName element must

be ’\0’.

The first of these special entry types allows the application to nest another option table in the current

one; such nesting may extend quite deeply (the actual depth is limited by the program’s stack).

Including other option tables allows a library to provide a standard set of command-line options to

every program which uses it (this is often done in graphical programming toolkits, for example). To do

this, set the argInfo field to POPT_ARG_INCLUDE_TABLE and the arg field to point to the table

which is being included. If automatic help generation is being used, the descrip field should contain an

overall description of the option table being included.

The other special option table entry type tells popt to call a function (a callback) when any option in

that table is found. This is especially useful when included option tables are being used, as the program

which provides the top-level option table doesn’t need to be aware of the other options which are

provided by the included table. When a callback is set for a table, the parsing function never returns

information on an option in the table. Instead, options information must be retained via the callback or

by having popt set a variable through the option’s arg field. Option callbacks should match the

following prototype:

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

void poptCallbackType(poptContext con,
const struct poptOption * opt,
const char * arg, void * data);

The first parameter is the context which is being parsed (see the next section for information on

contexts), opt points to the option which triggered this callback, and arg is the option’s argument. If

the option does not take an argument, arg is NULL. The final parameter, data is taken from the descrip

field of the option table entry which defined the callback. As descrip is a pointer, this allows callback

functions to be passed an arbitrary set of data (though a typecast will have to be used).

The option table entry which defines a callback has an argInfo of POPT_ARG_CALLBACK, an arg

which points to the callback function, and a descrip field which specifies an arbitrary pointer to be

passed to the callback.

2. CREATING A CONTEXT
popt can interleave the parsing of multiple command-line sets. It allows this by keeping all the state

information for a particular set of command-line arguments in a poptContext data structure, an opaque

type that should not be modified outside the popt library.

New popt contexts are created by poptGetContext():

poptContext poptGetContext(const char * name, int argc,
const char ** argv,
const struct poptOption * options,
unsigned int flags);

The first parameter, name, is used only for alias handling (discussed later). It should be the name of

the application whose options are being parsed, or should be NULL if no option aliasing is desired. The

next two arguments specify the command-line arguments to parse. These are generally passed to

poptGetContext() exactly as they were passed to the program’s main() function. The options

parameter points to the table of command-line options, which was described in the previous section.

The final parameter, flags, can be any bitwise or combination of the following four values:

Value Description
POPT_CONTEXT_NO_EXEC Ignore exec

expansions

POPT_CONTEXT_KEEP_FIRST Do not ignore

argv[0]

POPT_CONTEXT_POSIXMEHARDEROptions cannot follow

arguments

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

POPT_CONTEXT_ARG_OPTS Return the arguments as options of value 0

A poptContext keeps track of which options have already been parsed and which remain, among other

things. If a program wishes to restart option processing of a set of arguments, it can reset the

poptContext by passing the context as the sole argument to poptResetContext().

When argument processing is complete, the process should free the poptContext as it contains

dynamically allocated components. The poptFreeContext() function takes a poptContext as its sole

argument and frees the resources the context is using.

Here are the prototypes of both poptResetContext() and poptFreeContext():

#include <popt.h>
void poptFreeContext(poptContext con);
void poptResetContext(poptContext con);

3. PARSING THE COMMAND LINE
After an application has created a poptContext, it may begin parsing arguments. poptGetNextOpt()
performs the actual argument parsing.

#include <popt.h>
int poptGetNextOpt(poptContext con);

Taking the context as its sole argument, this function parses the next command-line argument found.

After finding the next argument in the option table, the function fills in the object pointed to by the

option table entry’s arg pointer if it is not NULL. If the val entry for the option is non-0, the function

then returns that value. Otherwise, poptGetNextOpt() continues on to the next argument.

poptGetNextOpt() returns -1 when the final argument has been parsed, and other negative values when

errors occur. This makes it a good idea to keep the val elements in the options table greater than 0.

If all of the command-line options are handled through arg pointers, command-line parsing is reduced

to the following line of code:

rc = poptGetNextOpt(poptcon);

Many applications require more complex command-line parsing than this, however, and use the

following structure:

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

while ((rc = poptGetNextOpt(poptcon)) > 0) {

switch (rc) {

/* specific arguments are handled here */

}

}

When returned options are handled, the application needs to know the value of any arguments that were

specified after the option. There are two ways to discover them. One is to ask popt to fill in a variable

with the value of the option through the option table’s arg elements. The other is to use

poptGetOptArg():

#include <popt.h>
char * poptGetOptArg(poptContext con);

This function returns the argument given for the final option returned by poptGetNextOpt(), or it

returns NULL if no argument was specified. The calling function is responsible for deallocating this

string.

4. LEFTOVER ARGUMENTS
Many applications take an arbitrary number of command-line arguments, such as a list of file names.

When popt encounters an argument that does not begin with a -, it assumes it is such an argument and

adds it to a list of leftover arguments. Three functions allow applications to access such arguments:

const char * poptGetArg(poptContext con);
This function returns the next leftover argument and marks it as processed.

const char * poptPeekArg(poptContext con);
The next leftover argument is returned but not marked as processed. This allows an application to

look ahead into the argument list, without modifying the list.

const char ** poptGetArgs(poptContext con);
All the leftover arguments are returned in a manner identical to argv. The final element in the

returned array points to NULL, indicating the end of the arguments.

5. AUTOMATIC HELP MESSAGES
The popt library can automatically generate help messages which describe the options a program

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

accepts. There are two types of help messages which can be generated. Usage messages are a short

messages which lists valid options, but does not describe them. Help messages describe each option on

one (or more) lines, resulting in a longer, but more useful, message. Whenever automatic help

messages are used, the descrip and argDescrip fields struct poptOption members should be filled in for

each option.

The POPT_AUTOHELP macro makes it easy to add --usage and --help messages to your program, and

is described in part 1 of this man page. If more control is needed over your help messages, the

following two functions are available:

#include <popt.h>
void poptPrintHelp(poptContext con, FILE * f, int flags);
void poptPrintUsage(poptContext con, FILE * f, int flags);

poptPrintHelp() displays the standard help message to the stdio file descriptor f, while

poptPrintUsage() displays the shorter usage message. Both functions currently ignore the flags
argument; it is there to allow future changes.

ERROR HANDLING
All of the popt functions that can return errors return integers. When an error occurs, a negative error

code is returned. The following table summarizes the error codes that occur:

Error Description
POPT_ERROR_NOARG Argument missing for an

option.

POPT_ERROR_BADOPT Option’s argument couldn’t be parsed.

POPT_ERROR_UNWANTEDARGOption does not take an

argument.

POPT_ERROR_OPTSTOODEEP Option aliasing nested too

deeply.

POPT_ERROR_BADQUOTE Quotations do not

match.

POPT_ERROR_ERRNO errno set, use

strerror(errno).

POPT_ERROR_BADNUMBER Option couldn’t be converted to

number.

POPT_ERROR_OVERFLOW A given number was too big or

small.

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

POPT_ERROR_BADOPERATIONMutually exclusive logical operations requested.

POPT_ERROR_NULLARG opt->arg should not be

NULL.

POPT_ERROR_MALLOC Memory allocation

failed.

POPT_ERROR_BADCONFIG Config file failed sanity

test.

Here is a more detailed discussion of each error:

POPT_ERROR_NOARG
An option that requires an argument was specified on the command line, but no argument was

given. This can be returned only by poptGetNextOpt().

POPT_ERROR_BADOPT
An option was specified in argv but is not in the option table. This error can be returned only from

poptGetNextOpt().

POPT_ERROR_OPTSTOODEEP
A set of option aliases is nested too deeply. Currently, popt follows options only 10 levels

(POPT_OPTION_DEPTH) to prevent infinite recursion. Only poptGetNextOpt() can return this

error.

POPT_ERROR_BADQUOTE
A parsed string has a quotation mismatch (such as a single quotation mark).

poptParseArgvString(), poptReadConfigFile(), or poptReadDefaultConfig() can return this error.

POPT_ERROR_ERRNO
A system call returned with an error, and errno still contains the error from the system call. Both

poptReadConfigFile() and poptReadDefaultConfig() can return this error.

POPT_ERROR_BADNUMBER
A conversion from a string to a number (int or long) failed due to the string containing non-

numeric characters. This occurs when poptGetNextOpt() is processing an argument of type

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

POPT_ARG_INT, POPT_ARG_SHORT, POPT_ARG_LONG, POPT_ARG_LONGLONG,

POPT_ARG_FLOAT, or POPT_ARG_DOUBLE.

POPT_ERROR_OVERFLOW
A string-to-number conversion failed because the number was too large or too small. Like

POPT_ERROR_BADNUMBER, this error can occur only when poptGetNextOpt() is processing

an argument of type POPT_ARG_INT, POPT_ARG_SHORT, POPT_ARG_LONG,

POPT_ARG_LONGLONG, POPT_ARG_FLOAT, or POPT_ARG_DOUBLE.

POPT_ERROR_BADOPERATION
More than one logical operation (AND, OR, XOR) was specified for an option, or

POPT_ARGFLAG_RANDOM was specified but the platform does not support the random()
function. This can be returned only by poptSaveLongLong(), poptSaveLong(), poptSaveInt(),
poptSaveShort() and poptGetNextOpt().

POPT_ERROR_NULLARG
An operation was invoked on a null target arg (including zero-length string arguments). In the

poptBitsArgs() case, this includes an empty leftover argv array. This can only be returned by the

poptBits*() and poptSave*() functions, poptConfigFileToString() and poptGetNextOpt().

POPT_ERROR_MALLOC
Memory allocation failed. This can only be returned by poptReadFile(), poptDupArgv(),
poptParseArgvString(), poptConfigFileToString() and poptGetNextOpt().

POPT_ERROR_BADCONFIG
The popt configuration files are corrupted. This can only be returned by poptReadConfigFile() and

poptReadConfigFiles().

Two functions are available to make it easy for applications to provide good error messages.

const char * poptStrerror(const int error);
This function takes a popt error code and returns a string describing the error, just as with the

standard strerror() function.

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

const char * poptBadOption(poptContext con, int flags);
If an error occurred during poptGetNextOpt(), this function returns the option that caused the

error. If the flags argument is set to POPT_BADOPTION_NOALIAS, the outermost option is

returned. Otherwise, flags should be 0, and the option that is returned may have been specified

through an alias.

These two functions make popt error handling trivial for most applications. When an error is detected

from most of the functions, an error message is printed along with the error string from poptStrerror().
When an error occurs during argument parsing, code similar to the following displays a useful error

message:

fprintf(stderr, "%s: %s\n",

poptBadOption(optCon, POPT_BADOPTION_NOALIAS),

poptStrerror(rc));

OPTION ALIASING
One of the primary benefits of using popt over getopt() is the ability to use option aliasing. This lets

the user specify options that popt expands into other options when they are specified. If the standard

grep program made use of popt, users could add a --text option that expanded to -i -n -E -2 to let them

more easily find information in text files.

1. SPECIFYING ALIASES
Aliases are normally specified in two places: /etc/popt and the .popt file in the user’s home directory

(found through the HOME environment variable). Both files have the same format, an arbitrary

number of lines formatted like this:

appname alias newoption expansion

The appname is the name of the application, which must be the same as the name parameter passed to

poptGetContext(). This allows each file to specify aliases for multiple programs. The alias keyword

specifies that an alias is being defined; currently popt configuration files support only aliases, but other

abilities may be added in the future. The next option is the option that should be aliased, and it may be

either a short or a long option. The rest of the line specifies the expansion for the alias. It is parsed

similarly to a shell command, which allows \, ", and ’ to be used for quoting. If a backslash is the final

character on a line, the next line in the file is assumed to be a logical continuation of the line containing

the backslash, just as in shell.

The following entry would add a --text option to the grep command, as suggested at the beginning of

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

this section.

grep alias --text -i -n -E -2

2. ENABLING ALIASES
An application must enable alias expansion for a poptContext before calling poptGetNextArg() for the

first time. There are three functions that define aliases for a context:

int poptReadDefaultConfig(poptContext con, int flags);
This function reads aliases from /etc/popt and the .popt file in the user’s home directory.

Currently, flags should be NULL, as it is provided only for future expansion.

int poptReadConfigFile(poptContext con, char * fn);
The file specified by fn is opened and parsed as a popt configuration file. This allows programs to

use program-specific configuration files.

int poptAddAlias(poptContext con, struct poptAlias alias,
int flags);

Occasionally, processes want to specify aliases without having to read them from a configuration

file. This function adds a new alias to a context. The flags argument should be 0, as it is currently

reserved for future expansion. The new alias is specified as a struct poptAlias, which is defined as:

struct poptAlias {

const char * longName; /* may be NULL */

char shortName; /* may be ’\0’ */

int argc;

const char ** argv; /* must be free()able */

};

The first two elements, longName and shortName, specify the option that is aliased. The final two,

argc and argv, define the expansion to use when the aliases option is encountered.

PARSING ARGUMENT STRINGS
Although popt is usually used for parsing arguments already divided into an argv-style array, some

programs need to parse strings that are formatted identically to command lines. To facilitate this, popt

provides a function that parses a string into an array of strings, using rules similar to normal shell

parsing.

#include <popt.h>
int poptParseArgvString(char * s, int * argcPtr,

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

char *** argvPtr);
int poptDupArgv(int argc, const char ** argv, int * argcPtr,

const char *** argvPtr);

The string s is parsed into an argv-style array. The integer pointed to by the argcPtr parameter contains

the number of elements parsed, and the final argvPtr parameter contains the address of the newly

created array. The routine poptDupArgv() can be used to make a copy of an existing argument array.

The argvPtr created by poptParseArgvString() or poptDupArgv() is suitable to pass directly to

poptGetContext(). Both routines return a single dynamically allocated contiguous block of storage and

should be free()ed when the application is finished with the storage.

HANDLING EXTRA ARGUMENTS
Some applications implement the equivalent of option aliasing but need to do so through special logic.

The poptStuffArgs() function allows an application to insert new arguments into the current

poptContext.

#include <popt.h>
int poptStuffArgs(poptContext con, const char ** argv);

The passed argv must have a NULL pointer as its final element. When poptGetNextOpt() is next

called, the "stuffed" arguments are the first to be parsed. popt returns to the normal arguments once all

the stuffed arguments have been exhausted.

EXAMPLE
The following example is a simplified version of the program "robin" which appears in Chapter 15 of

the text cited below. Robin has been stripped of everything but its argument-parsing logic, slightly

reworked, and renamed "parse." It may prove useful in illustrating at least some of the features of the

extremely rich popt library.

#include <popt.h>

#include <stdio.h>

#include <stdlib.h>

void usage(poptContext optCon, int exitcode, char *error, char *addl) {

poptPrintUsage(optCon, stderr, 0);

if (error) fprintf(stderr, "%s: %s\n", error, addl);

exit(exitcode);

}

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

int main(int argc, char *argv[]) {

int c; /* used for argument parsing */

int i = 0; /* used for tracking options */

int speed = 0; /* used in argument parsing to set speed */

int raw = 0; /* raw mode? */

int j;

char buf[BUFSIZ+1];

const char *portname;

poptContext optCon; /* context for parsing command-line options */

struct poptOption optionsTable[] = {

{ "bps", ’b’, POPT_ARG_INT, &speed, 0,

"signaling rate in bits-per-second", "BPS" },

{ "crnl", ’c’, 0, 0, ’c’,

"expand cr characters to cr/lf sequences", NULL },

{ "hwflow", ’h’, 0, 0, ’h’,

"use hardware (RTS/CTS) flow control", NULL },

{ "noflow", ’n’, 0, 0, ’n’,

"use no flow control", NULL },

{ "raw", ’r’, 0, &raw, 0,

"don’t perform any character conversions", NULL },

{ "swflow", ’s’, 0, 0, ’s’,

"use software (XON/XOF) flow control", NULL } ,

POPT_AUTOHELP

{ NULL, 0, 0, NULL, 0 }

};

optCon = poptGetContext(NULL, argc, argv, optionsTable, 0);

poptSetOtherOptionHelp(optCon, "[OPTIONS]* <port>");

if (argc < 2) {

poptPrintUsage(optCon, stderr, 0);

exit(1);

}

/* Now do options processing, get portname */

while ((c = poptGetNextOpt(optCon)) >= 0) {

switch (c) {

case ’c’:

buf[i++] = ’c’;

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

break;

case ’h’:

buf[i++] = ’h’;

break;

case ’s’:

buf[i++] = ’s’;

break;

case ’n’:

buf[i++] = ’n’;

break;

}

}

portname = poptGetArg(optCon);

if((portname == NULL) || !(poptPeekArg(optCon) == NULL))

usage(optCon, 1, "Specify a single port", ".e.g., /dev/cua0");

if (c < -1) {

/* an error occurred during option processing */

fprintf(stderr, "%s: %s\n",

poptBadOption(optCon, POPT_BADOPTION_NOALIAS),

poptStrerror(c));

return 1;

}

/* Print out options, portname chosen */

printf("Options chosen: ");

for(j = 0; j < i ; j++)

printf("-%c ", buf[j]);

if(raw) printf("-r ");

if(speed) printf("-b %d ", speed);

printf("\nPortname chosen: %s\n", portname);

poptFreeContext(optCon);

exit(0);

}

RPM, a popular Linux package management program, makes heavy use of popt’s features. Many of its

command-line arguments are implemented through popt aliases, which makes RPM an excellent

example of how to take advantage of the popt library. For more information on RPM, see

http://www.rpm.org. The popt source code distribution includes test program(s) which use all of the

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

features of the popt libraries in various ways. If a feature isn’t working for you, the popt test code is the

first place to look.

BUGS
None presently known.

AUTHOR
Erik W. Troan <ewt@redhat.com>

This man page is derived in part from Linux Application Development by Michael K. Johnson and Erik

W. Troan, Copyright (c) 1998 by Addison Wesley Longman, Inc., and included in the popt

documentation with the permission of the Publisher and the appreciation of the Authors.

Thanks to Robert Lynch for his extensive work on this man page.

SEE ALSO
getopt(3)

Linux Application Development, by Michael K. Johnson and Erik W. Troan (Addison-Wesley, 1998;

ISBN 0-201-30821-5), Chapter 24.

popt.ps is a Postscript version of the above cited book chapter. It can be found in the source archive for

popt available at: ftp://ftp.rpm.org/pub/rpm.

POPT(3) Linux Programmer’s Manual POPT(3)

June 30, 1998 POPT(3)

