
NAME
madvise, posix_madvise - give advice about use of memory

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int

madvise(void *addr, size_t len, int behav);

int

posix_madvise(void *addr, size_t len, int behav);

DESCRIPTION
The madvise() system call allows a process that has knowledge of its memory behavior to describe it to

the system. The posix_madvise() interface is identical, except it returns an error number on error and

does not modify errno, and is provided for standards conformance.

The known behaviors are:

MADV_NORMAL Tells the system to revert to the default paging behavior.

MADV_RANDOM Is a hint that pages will be accessed randomly, and prefetching is likely not

advantageous.

MADV_SEQUENTIAL Causes the VM system to depress the priority of pages immediately preceding

a given page when it is faulted in.

MADV_WILLNEED Causes pages that are in a given virtual address range to temporarily have

higher priority, and if they are in memory, decrease the likelihood of them

being freed. Additionally, the pages that are already in memory will be

immediately mapped into the process, thereby eliminating unnecessary

overhead of going through the entire process of faulting the pages in. This

WILL NOT fault pages in from backing store, but quickly map the pages

already in memory into the calling process.

MADV_DONTNEED Allows the VM system to decrease the in-memory priority of pages in the

specified address range. Consequently, future references to this address range

MADVISE(2) FreeBSD System Calls Manual MADVISE(2)

FreeBSD 14.2-RELEASE July 12, 2015 FreeBSD 14.2-RELEASE



are more likely to incur a page fault.

MADV_FREE Gives the VM system the freedom to free pages, and tells the system that

information in the specified page range is no longer important. This is an

efficient way of allowing malloc(3) to free pages anywhere in the address

space, while keeping the address space valid. The next time that the page is

referenced, the page might be demand zeroed, or might contain the data that

was there before the MADV_FREE call. References made to that address

space range will not make the VM system page the information back in from

backing store until the page is modified again.

MADV_NOSYNC Request that the system not flush the data associated with this map to physical

backing store unless it needs to. Typically this prevents the file system update

daemon from gratuitously writing pages dirtied by the VM system to physical

disk. Note that VM/file system coherency is always maintained, this feature

simply ensures that the mapped data is only flush when it needs to be, usually

by the system pager.

This feature is typically used when you want to use a file-backed shared

memory area to communicate between processes (IPC) and do not particularly

need the data being stored in that area to be physically written to disk. With

this feature you get the equivalent performance with mmap that you would

expect to get with SysV shared memory calls, but in a more controllable and

less restrictive manner. However, note that this feature is not portable across

UNIX platforms (though some may do the right thing by default). For more

information see the MAP_NOSYNC section of mmap(2)

MADV_AUTOSYNC Undoes the effects of MADV_NOSYNC for any future pages dirtied within

the address range. The effect on pages already dirtied is indeterminate - they

may or may not be reverted. You can guarantee reversion by using the

msync(2) or fsync(2) system calls.

MADV_NOCORE Region is not included in a core file.

MADV_CORE Include region in a core file.

MADV_PROTECT Informs the VM system this process should not be killed when the swap space

is exhausted. The process must have superuser privileges. This should be

used judiciously in processes that must remain running for the system to

properly function.

MADVISE(2) FreeBSD System Calls Manual MADVISE(2)

FreeBSD 14.2-RELEASE July 12, 2015 FreeBSD 14.2-RELEASE



Portable programs that call the posix_madvise() interface should use the aliases

POSIX_MADV_NORMAL, POSIX_MADV_SEQUENTIAL, POSIX_MADV_RANDOM,

POSIX_MADV_WILLNEED, and POSIX_MADV_DONTNEED rather than the flags described above.

RETURN VALUES
The madvise() function returns the value 0 if successful; otherwise the value -1 is returned and the

global variable errno is set to indicate the error.

ERRORS
The madvise() system call will fail if:

[EINVAL] The behav argument is not valid.

[ENOMEM] The virtual address range specified by the addr and len arguments is not valid.

[EPERM] MADV_PROTECT was specified and the process does not have superuser

privileges.

SEE ALSO
mincore(2), mprotect(2), msync(2), munmap(2), posix_fadvise(2)

STANDARDS
The posix_madvise() interface conforms to IEEE Std 1003.1-2001 ("POSIX.1").

HISTORY
The madvise() system call first appeared in 4.4BSD.

MADVISE(2) FreeBSD System Calls Manual MADVISE(2)

FreeBSD 14.2-RELEASE July 12, 2015 FreeBSD 14.2-RELEASE


