
NAME
signal, SIGADDSET, SIGDELSET, SETEMPTYSET, SIGFILLSET, SIGISMEMBER, SIGISEMPTY,

SIGNOTEMPTY, SIGSETEQ, SIGSETNEQ, SIGSETOR, SIGSETAND, SIGSETNAND,

SIGSETCANTMASK, SIG_STOPSIGMASK, SIG_CONTSIGMASK, SIGPENDING, cursig, execsigs,

issignal, killproc, pgsigio, postsig, sigexit, siginit, signotify, trapsignal - kernel signal functions

SYNOPSIS
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/signalvar.h>

void

SIGADDSET(sigset_t set, int signo);

void

SIGDELSET(sigset_t set, int signo);

void

SIGEMPTYSET(sigset_t set);

void

SIGFILLSET(sigset_t set);

int

SIGISMEMBER(sigset_t set, int signo);

int

SIGISEMPTY(sigset_t set);

int

SIGNOTEMPTY(sigset_t set);

int

SIGSETEQ(sigset_t set1, sigset_t set2);

int

SIGSETNEQ(sigset_t set1, sigset_t set2);

void

SIGSETOR(sigset_t set1, sigset_t set2);

SIGNAL(9) FreeBSD Kernel Developer’s Manual SIGNAL(9)

FreeBSD 14.0-RELEASE-p6 July 14, 2023 FreeBSD 14.0-RELEASE-p6

void

SIGSETAND(sigset_t set1, sigset_t set2);

void

SIGSETNAND(sigset_t set1, sigset_t set2);

void

SIG_CANTMASK(sigset_t set);

void

SIG_STOPSIGMASK(sigset_t set);

void

SIG_CONTSIGMASK(sigset_t set);

int

SIGPENDING(struct proc *p);

int

cursig(struct thread *td);

void

execsigs(struct proc *p);

int

issignal(struct thread *td);

void

killproc(struct proc *p, char *why);

void

pgsigio(struct sigio **sigiop, int sig, int checkctty);

void

postsig(int sig);

void

sigexit(struct thread *td, int signum);

void

SIGNAL(9) FreeBSD Kernel Developer’s Manual SIGNAL(9)

FreeBSD 14.0-RELEASE-p6 July 14, 2023 FreeBSD 14.0-RELEASE-p6

siginit(struct proc *p);

void

signotify(struct thread *td);

void

trapsignal(struct thread *td, int sig, u_long code);

DESCRIPTION
The SIGADDSET() macro adds signo to set. No effort is made to ensure that signo is a valid signal

number.

The SIGDELSET() macro removes signo from set. No effort is made to ensure that signo is a valid

signal number.

The SIGEMPTYSET() macro clears all signals in set.

The SIGFILLSET() macro sets all signals in set.

The SIGISMEMBER() macro determines if signo is set in set.

The SIGISEMPTY() macro determines if set does not have any signals set.

The SIGNOTEMPTY() macro determines if set has any signals set.

The SIGSETEQ() macro determines if two signal sets are equal; that is, the same signals are set in both.

The SIGSETNEQ() macro determines if two signal sets differ; that is, if any signal set in one is not set

in the other.

The SIGSETOR() macro ORs the signals set in set2 into set1.

The SIGSETAND() macro ANDs the signals set in set2 into set1.

The SIGSETNAND() macro NANDs the signals set in set2 into set1.

The SIG_CANTMASK() macro clears the SIGKILL and SIGSTOP signals from set. These two signals

cannot be blocked or caught and SIG_CANTMASK() is used in code where signals are manipulated to

ensure this policy is enforced.

SIGNAL(9) FreeBSD Kernel Developer’s Manual SIGNAL(9)

FreeBSD 14.0-RELEASE-p6 July 14, 2023 FreeBSD 14.0-RELEASE-p6

The SIG_STOPSIGMASK() macro clears the SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU signals

from set. SIG_STOPSIGMASK() is used to clear stop signals when a process is waiting for a child to

exit or exec, and when a process is continuing after having been suspended.

The SIG_CONTSIGMASK() macro clears the SIGCONT signal from set. SIG_CONTSIGMASK() is

called when a process is stopped.

The SIGPENDING() macro determines if the given process has any pending signals that are not masked.

If the process has a pending signal and the process is currently being traced, SIGPENDING() will return

true even if the signal is masked.

The cursig() function returns the signal number that should be delivered to process td->td_proc. If there

are no signals pending, zero is returned.

The execsigs() function resets the signal set and signal stack of a process in preparation for an execve(2).

The process lock for p must be held before execsigs() is called.

The issignal() function determines if there are any pending signals for process td->td_proc that should be

caught, or cause this process to terminate or interrupt its current system call. If process td->td_proc is

currently being traced, ignored signals will be handled and the process is always stopped. Stop signals

are handled and cleared right away by issignal() unless the process is a member of an orphaned process

group and the stop signal originated from a TTY. The process spin lock for td->td_proc may be

acquired and released. The sigacts structure td->td_proc->p_sigacts must be locked before calling

issignal() and may be released and reacquired during the call. The process lock for td->td_proc must be

acquired before calling issignal() and may be released and reacquired during the call. Default signal

actions are not taken for system processes and init.

The killproc() function delivers SIGKILL to p. why is logged as the reason why the process was killed.

The pgsigio() function sends the signal sig to the process or process group sigiop->sio_pgid. If

checkctty is non-zero, the signal is only delivered to processes in the process group that have a

controlling terminal. If sigiop->sio_pgid is for a process (> 0), the lock for sigiop->sio_proc is acquired

and released. If sigiop->sio_pgid is for a process group (< 0), the process group lock for

sigiop->sio_pgrp is acquired and released. The lock sigio_lock is acquired and released.

The postsig() function handles the actual delivery of the signal sig. postsig() is called from ast() after the

kernel has been notified that a signal should be delivered (via a call to signotify(), which causes the flag

PS_NEEDSIGCHK to be set). The process lock for process that owns curthread must be held before

postsig() is called, and the current process cannot be 0. The lock for the p_sigacts field of the current

process must be held before postsig() is called, and may be released and reacquired.

SIGNAL(9) FreeBSD Kernel Developer’s Manual SIGNAL(9)

FreeBSD 14.0-RELEASE-p6 July 14, 2023 FreeBSD 14.0-RELEASE-p6

The sigexit() function causes the process that owns td to exit with a return value of signal number sig. If

required, the process will dump core. The process lock for the process that owns td must be held before

sigexit() is called.

The siginit() function is called during system initialization to cause every signal with a default property

of SA_IGNORE (except SIGCONT) to be ignored by p. The process lock for p is acquired and

released, as is the lock for sigacts structure p->p_sigacts. The only process that siginit() is ever called

for is proc0.

The signotify() function flags that there are unmasked signals pending that ast() should handle. The

process lock for process td->td_proc must be held before signotify() is called, and the thread lock is

acquired and released.

The trapsignal() function sends a signal that is the result of a trap to process td->td_proc. If the process

is not being traced and the signal can be delivered immediately, trapsignal() will deliver it directly;

otherwise, trapsignal() will call psignal(9) to cause the signal to be delivered. The process lock for

td->td_proc is acquired and released. The lock for the p_sigacts field of td->td_proc is acquired and

released.

RETURN VALUES
The SIGISMEMBER(), SIGISEMPTY(), SIGNOTEMPTY(), SIGSETEQ(), SIGSETNEQ(), and

SIGPENDING() macros all return non-zero (true) if the condition they are checking is found to be true;

otherwise, zero (false) is returned.

The cursig() function returns either a valid signal number or zero.

issignal() returns either a valid signal number or zero.

SEE ALSO
pgsignal(9), psignal(9)

AUTHORS
This manual page was written by Chad David <davidc@FreeBSD.org>.

SIGNAL(9) FreeBSD Kernel Developer’s Manual SIGNAL(9)

FreeBSD 14.0-RELEASE-p6 July 14, 2023 FreeBSD 14.0-RELEASE-p6

