
NAME
read, readv, pread, preadv - read input

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

ssize_t

read(int fd, void *buf, size_t nbytes);

ssize_t

pread(int fd, void *buf, size_t nbytes, off_t offset);

#include <sys/uio.h>

ssize_t

readv(int fd, const struct iovec *iov, int iovcnt);

ssize_t

preadv(int fd, const struct iovec *iov, int iovcnt, off_t offset);

DESCRIPTION
The read() system call attempts to read nbytes of data from the object referenced by the descriptor fd

into the buffer pointed to by buf. The readv() system call performs the same action, but scatters the

input data into the iovcnt buffers specified by the members of the iov array: iov[0], iov[1], ...,

iov[iovcnt-1]. The pread() and preadv() system calls perform the same functions, but read from the

specified position in the file without modifying the file pointer.

For readv() and preadv(), the iovec structure is defined as:

struct iovec {

void *iov_base; /* Base address. */

size_t iov_len; /* Length. */

};

Each iovec entry specifies the base address and length of an area in memory where data should be

placed. The readv() system call will always fill an area completely before proceeding to the next.

READ(2) FreeBSD System Calls Manual READ(2)

FreeBSD 14.2-RELEASE February 10, 2024 FreeBSD 14.2-RELEASE



On objects capable of seeking, the read() starts at a position given by the pointer associated with fd (see

lseek(2)). Upon return from read(), the pointer is incremented by the number of bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of the pointer

associated with such an object is undefined.

Upon successful completion, read(), readv(), pread() and preadv() return the number of bytes actually

read and placed in the buffer. The system guarantees to read the number of bytes requested if the

descriptor references a normal file that has that many bytes left before the end-of-file, but in no other

case.

In accordance with IEEE Std 1003.1-2004 ("POSIX.1"), both read(2) and write(2) syscalls are atomic

with respect to each other in the effects on file content, when they operate on regular files. If two

threads each call one of the read(2) or write(2), syscalls, each call will see either all of the changes of the

other call, or none of them. The FreeBSD kernel implements this guarantee by locking the file ranges

affected by the calls.

RETURN VALUES
If successful, the number of bytes actually read is returned. Upon reading end-of-file, zero is returned.

Otherwise, a -1 is returned and the global variable errno is set to indicate the error.

ERRORS
The read(), readv(), pread() and preadv() system calls will succeed unless:

[EBADF] The fd argument is not a valid file or socket descriptor open for reading.

[ECONNRESET] The fd argument refers to a socket, and the remote socket end is forcibly closed.

[EFAULT] The buf argument points outside the allocated address space.

[EIO] An I/O error occurred while reading from the file system.

[EINTEGRITY] Corrupted data was detected while reading from the file system.

[EBUSY] Failed to read from a file, e.g. /proc/<pid>/regs while <pid> is not stopped

[EINTR] A read from a slow device (i.e. one that might block for an arbitrary amount of

time) was interrupted by the delivery of a signal before any data arrived.

[EINVAL] The pointer associated with fd was negative.

READ(2) FreeBSD System Calls Manual READ(2)

FreeBSD 14.2-RELEASE February 10, 2024 FreeBSD 14.2-RELEASE



[EAGAIN] The file was marked for non-blocking I/O, and no data were ready to be read.

[EISDIR] The file descriptor is associated with a directory. Directories may only be read

directly by root if the filesystem supports it and the security.bsd.allow_read_dir

sysctl MIB is set to a non-zero value. For most scenarios, the readdir(3) function

should be used instead.

[EOPNOTSUPP] The file descriptor is associated with a file system and file type that do not allow

regular read operations on it.

[EOVERFLOW] The file descriptor is associated with a regular file, nbytes is greater than 0, offset

is before the end-of-file, and offset is greater than or equal to the offset maximum

established for this file system.

[EINVAL] The value nbytes is greater than SSIZE_MAX (or greater than INT_MAX, if the

sysctl debug.iosize_max_clamp is non-zero).

In addition, readv() and preadv() may return one of the following errors:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than IOV_MAX.

[EINVAL] One of the iov_len values in the iov array was negative.

[EINVAL] The sum of the iov_len values in the iov array is greater than SSIZE_MAX (or

greater than INT_MAX, if the sysctl debug.iosize_max_clamp is non-zero).

[EFAULT] Part of the iov array points outside the process’s allocated address space.

The pread() and preadv() system calls may also return the following errors:

[EINVAL] The offset value was negative.

[ESPIPE] The file descriptor is associated with a pipe, socket, or FIFO.

SEE ALSO
dup(2), fcntl(2), getdirentries(2), open(2), pipe(2), select(2), socket(2), socketpair(2), fread(3), readdir(3)

STANDARDS
The read() system call is expected to conform to IEEE Std 1003.1-1990 ("POSIX.1"). The readv() and

pread() system calls are expected to conform to X/Open Portability Guide Issue 4, Version 2

READ(2) FreeBSD System Calls Manual READ(2)

FreeBSD 14.2-RELEASE February 10, 2024 FreeBSD 14.2-RELEASE



("XPG4.2").

HISTORY
The preadv() system call appeared in FreeBSD 6.0. The pread() function appeared in AT&T System V

Release 4 UNIX. The readv() system call appeared in 4.2BSD. The read() function appeared in

Version 1 AT&T UNIX.

READ(2) FreeBSD System Calls Manual READ(2)

FreeBSD 14.2-RELEASE February 10, 2024 FreeBSD 14.2-RELEASE


