
NAME
printf, uprintf, tprintf, log - formatted output conversion

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>

int

printf(const char *fmt, ...);

void

tprintf(struct proc *p, int pri, const char *fmt, ...);

int

uprintf(const char *fmt, ...);

int

vprintf(const char *fmt, va_list ap);

#include <sys/syslog.h>

void

log(int pri, const char *fmt, ...);

void

vlog(int pri, const char *fmt, va_list ap);

DESCRIPTION
The printf family of functions are similar to the printf(3) family of functions. The different functions

each use a different output stream. The uprintf() function outputs to the current process’ controlling tty,

while printf() writes to the console as well as to the logging facility. The tprintf() function outputs to the

tty associated with the process p and the logging facility if pri is not -1. The log() function sends the

message to the kernel logging facility, using the log level as indicated by pri, and to the console if no

process is yet reading the log.

Each of these related functions use the fmt parameter in the same manner as printf(3). However, printf
adds two other conversion specifiers and omits one.

The %b identifier expects two arguments: an int and a char *. These are used as a register value and a

print mask for decoding bitmasks. The print mask is made up of two parts: the base and the arguments.

PRINTF(9) FreeBSD Kernel Developer’s Manual PRINTF(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2023 FreeBSD 14.0-RELEASE-p6



The base value is the output base (radix) expressed as an octal value; for example, \10 gives octal and

\20 gives hexadecimal. The arguments are made up of a sequence of bit identifiers. Each bit identifier

begins with an octal value which is the number of the bit (starting from 1) this identifier describes. The

rest of the identifier is a string of characters containing the name of the bit. The string is terminated by

either the bit number at the start of the next bit identifier or NUL for the last bit identifier.

The %D identifier is meant to assist in hexdumps. It requires two arguments: a u_char * pointer and a

char * string. The memory pointed to by the pointer is output in hexadecimal one byte at a time. The

string is used as a delimiter between individual bytes. If present, a width directive will specify the

number of bytes to display. By default, 16 bytes of data are output.

The %n conversion specifier is not supported.

The log() function uses syslog(3) level values LOG_DEBUG through LOG_EMERG for its pri

parameter (mistakenly called ‘priority’ here). Alternatively, if a pri of -1 is given, the message will be

appended to the last log message started by a previous call to log(). As these messages are generated by

the kernel itself, the facility will always be LOG_KERN.

RETURN VALUES
The printf() and the uprintf() functions return the number of characters displayed.

EXAMPLES
This example demonstrates the use of the %b and %D conversion specifiers. The function

void

printf_test(void)

{

printf("reg=%b\n", 3, "\10\2BITTWO\1BITONE");

printf("out: %4D\n", "AAZZ", ":");

}

will produce the following output:

reg=3<BITTWO,BITONE>

out: 41:41:5a:5a

The call

log(LOG_DEBUG, "%s%d: been there.\n", sc->sc_name, sc->sc_unit);

PRINTF(9) FreeBSD Kernel Developer’s Manual PRINTF(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2023 FreeBSD 14.0-RELEASE-p6



will add the appropriate debug message at priority "kern.debug" to the system log.

SEE ALSO
printf(3), syslog(3)

PRINTF(9) FreeBSD Kernel Developer’s Manual PRINTF(9)

FreeBSD 14.0-RELEASE-p6 April 25, 2023 FreeBSD 14.0-RELEASE-p6


