
NAME
procctl - control processes

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/procctl.h>

int

procctl(idtype_t idtype, id_t id, int cmd, void *data);

DESCRIPTION
The procctl() system call provides for control over processes. The idtype and id arguments specify the

set of processes to control. If multiple processes match the identifier, procctl will make a "best effort" to

control as many of the selected processes as possible. An error is only returned if no selected processes

successfully complete the request. The following identifier types are supported:

P_PID Control the process with the process ID id. id zero is a shortcut for the calling process ID.

P_PGID Control processes belonging to the process group with the ID id.

The control request to perform is specified by the cmd argument.

All status changing requests *_CTL require the caller to have the right to debug the target. All status

query requests require the caller to have the right to observe the target.

The following commands are supported:

PROC_ASLR_CTL Controls the Address Space Layout Randomization (ASLR) in the

program images created by execve(2) in the specified process or its

descendants that did not changed the control nor modified it by other

means. The data parameter must point to the integer variable holding one

of the following values:

PROC_ASLR_FORCE_ENABLE Request that ASLR is enabled after

execution, even if it is disabled

system-wide. The image flag and

set-uid might prevent ASLR

enablement still.

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



PROC_ASLR_FORCE_DISABLE Request that ASLR is disabled after

execution. Same notes as for

PROC_ASLR_FORCE_ENABLE

apply.

PROC_ASLR_NOFORCE Use the system-wide configured

policy for ASLR.

PROC_ASLR_STATUS Returns the current status of ASLR enablement for the target process.

The data parameter must point to the integer variable, where one of the

following values is written:

PROC_ASLR_FORCE_ENABLE

PROC_ASLR_FORCE_DISABLE

PROC_ASLR_NOFORCE

If the currently executed image in the process itself has ASLR enabled,

the PROC_ASLR_ACTIVE flag is or-ed with the value listed above.

PROC_PROTMAX_CTL Controls implicit application of PROT_MAX protection equal to the prot

argument of the mmap(2) syscall, in the target process. The data

parameter must point to the integer variable holding one of the following

values:

PROC_PROTMAX_FORCE_ENABLE Enables implicit PROT_MAX

application, even if it is

disabled system-wide by the

sysctl vm.imply_prot_max.

The image flag might still

prevent the enablement.

PROC_PROTMAX_FORCE_DISABLE Request that implicit

application of PROT_MAX be

disabled. Same notes as for

PROC_PROTMAX_FORCE_ENABLE

apply.

PROC_PROTMAX_NOFORCE Use the system-wide

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



configured policy for

PROT_MAX.

PROC_PROTMAX_STATUS

Returns the current status of implicit PROT_MAX enablement for the

target process. The data parameter must point to the integer variable,

where one of the following values is written:

PROC_PROTMAX_FORCE_ENABLE

PROC_PROTMAX_FORCE_DISABLE

PROC_PROTMAX_NOFORCE

If the currently executed image in the process itself has implicit

PROT_MAX application enabled, the PROC_PROTMAX_ACTIVE flag

is or-ed with the value listed above.

PROC_SPROTECT Set process protection state. This is used to mark a process as protected

from being killed if the system exhausts the available memory and swap.

The data parameter must point to an integer containing an operation and

zero or more optional flags. The following operations are supported:

PPROT_SET Mark the selected processes as protected.

PPROT_CLEAR Clear the protected state of selected processes.

The following optional flags are supported:

PPROT_DESCEND Apply the requested operation to all child processes

of each selected process in addition to each selected

process.

PPROT_INHERIT When used with PPROT_SET, mark all future child

processes of each selected process as protected.

Future child processes will also mark all of their

future child processes.

PROC_REAP_ACQUIRE Acquires the reaper status for the current process. Reaper status means

that children orphaned by the reaper’s descendants that were forked after

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



the acquisition of reaper status are reparented to the reaper process. After

system initialization, init(8) is the default reaper.

PROC_REAP_RELEASE Release the reaper state for the current process. The reaper of the current

process becomes the new reaper of the current process’s descendants.

PROC_REAP_STATUS Provides information about the reaper of the specified process, or the

process itself when it is a reaper. The data argument must point to a

procctl_reaper_status structure which is filled in by the syscall on

successful return.

struct procctl_reaper_status {

u_int rs_flags;

u_int rs_children;

u_int rs_descendants;

pid_t rs_reaper;

pid_t rs_pid;

};

The rs_flags may have the following flags returned:

REAPER_STATUS_OWNED The specified process has acquired

reaper status and has not released it.

When the flag is returned, the specified

process id, pid, identifies the reaper,

otherwise the rs_reaper field of the

structure is set to the pid of the reaper

for the specified process id.

REAPER_STATUS_REALINIT The specified process is the root of the

reaper tree, i.e., init(8).

The rs_children field returns the number of children of the reaper among

the descendants. It is possible to have a child whose reaper is not the

specified process, since the reaper for any existing children is not reset on

the PROC_REAP_ACQUIRE operation. The rs_descendants field

returns the total number of descendants of the reaper(s), not counting

descendants of the reaper in the subtree. The rs_reaper field returns the

reaper pid. The rs_pid returns the pid of one reaper child if there are any

descendants.

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



PROC_REAP_GETPIDS Queries the list of descendants of the reaper of the specified process. The

request takes a pointer to a procctl_reaper_pids structure in the data

parameter.

struct procctl_reaper_pids {

u_int rp_count;

struct procctl_reaper_pidinfo *rp_pids;

};

When called, the rp_pids field must point to an array of

procctl_reaper_pidinfo structures, to be filled in on return, and the

rp_count field must specify the size of the array, into which no more than

rp_count elements will be filled in by the kernel.

The struct procctl_reaper_pidinfo structure provides some information

about one of the reaper’s descendants. Note that for a descendant that is

not a child, it may be incorrectly identified because of a race in which the

original child process exited and the exited process’s pid was reused for

an unrelated process.

struct procctl_reaper_pidinfo {

pid_t pi_pid;

pid_t pi_subtree;

u_int pi_flags;

};

The pi_pid field is the process id of the descendant. The pi_subtree field

provides the pid of the child of the reaper, which is the (grand-)parent of

the process. The pi_flags field returns the following flags, further

describing the descendant:

REAPER_PIDINFO_VALID Set to indicate that the

procctl_reaper_pidinfo structure was

filled in by the kernel. Zero-filling the

rp_pids array and testing the

REAPER_PIDINFO_VALID flag

allows the caller to detect the end of the

returned array.

REAPER_PIDINFO_CHILD The pi_pid field identifies the direct

child of the reaper.

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



REAPER_PIDINFO_REAPER The reported process is itself a reaper.

The descendants of the subordinate

reaper are not reported.

REAPER_PIDINFO_ZOMBIE The reported process is in the zombie

state, ready to be reaped.

REAPER_PIDINFO_STOPPED

The reported process is stopped by a

SIGSTOP/SIGTSTP signal.

REAPER_PIDINFO_EXITING The reported process is in the process of

exiting (but not yet a zombie).

PROC_REAP_KILL Request to deliver a signal to some subset of the descendants of the

reaper. The data parameter must point to a procctl_reaper_kill structure,

which is used both for parameters and status return.

struct procctl_reaper_kill {

int rk_sig;

u_int rk_flags;

pid_t rk_subtree;

u_int rk_killed;

pid_t rk_fpid;

};

The rk_sig field specifies the signal to be delivered. Zero is not a valid

signal number, unlike for kill(2). The rk_flags field further directs the

operation. It is or-ed from the following flags:

REAPER_KILL_CHILDREN Deliver the specified signal only to direct

children of the reaper.

REAPER_KILL_SUBTREE Deliver the specified signal only to

descendants that were forked by the direct

child with pid specified in the rk_subtree

field.

If neither the REAPER_KILL_CHILDREN nor the

REAPER_KILL_SUBTREE flags are specified, all current descendants

of the reaper are signalled.

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



If a signal was delivered to any process, the return value from the request

is zero. In this case, the rk_killed field identifies the number of processes

signalled. The rk_fpid field is set to the pid of the first process for which

signal delivery failed, e.g., due to permission problems. If no such

process exists, the rk_fpid field is set to -1.

PROC_TRACE_CTL Enable or disable tracing of the specified process(es), according to the

value of the integer argument. Tracing includes attachment to the process

using the ptrace(2) and ktrace(2), debugging sysctls, hwpmc(4),

dtrace(1), and core dumping. Possible values for the data argument are:

PROC_TRACE_CTL_ENABLE Enable tracing, after it was

disabled by

PROC_TRACE_CTL_DISABLE.

Only allowed for self.

PROC_TRACE_CTL_DISABLE Disable tracing for the

specified process. Tracing is

re-enabled when the process

changes the executing program

with the execve(2) syscall. A

child inherits the trace settings

from the parent on fork(2).

PROC_TRACE_CTL_DISABLE_EXEC Same as

PROC_TRACE_CTL_DISABLE,

but the setting persists for the

process even after execve(2).

PROC_TRACE_STATUS Returns the current tracing status for the specified process in the integer

variable pointed to by data. If tracing is disabled, data is set to -1. If

tracing is enabled, but no debugger is attached by the ptrace(2) syscall,

data is set to 0. If a debugger is attached, data is set to the pid of the

debugger process.

PROC_TRAPCAP_CTL Controls the capability mode sandbox actions for the specified sandboxed

processes, on a return from any syscall which gives either a

ENOTCAPABLE or ECAPMODE error. If the control is enabled, such

errors from the syscalls cause delivery of the synchronous SIGTRAP

signal to the thread immediately before returning from the syscalls.

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



Possible values for the data argument are:

PROC_TRAPCAP_CTL_ENABLE Enable the SIGTRAP signal

delivery on capability mode access

violations. The enabled mode is

inherited by the children of the

process, and is kept after

fexecve(2) calls.

PROC_TRAPCAP_CTL_DISABLE Disable the signal delivery on

capability mode access violations.

Note that the global sysctl

kern.trap_enotcap might still cause

the signal to be delivered. See

capsicum(4).

On signal delivery, the si_errno member of the siginfo signal handler

parameter is set to the syscall error value, and the si_code member is set

to TRAP_CAP. The system call number is stored in the si_syscall field

of the siginfo signal handler parameter. The other system call parameters

can be read from the ucontext_t but the system call number is typically

stored in the register that also contains the return value and so is

unavailable in the signal handler.

See capsicum(4) for more information about the capability mode.

PROC_TRAPCAP_STATUS Return the current status of signalling capability mode access violations

for the specified process. The integer value pointed to by the data

argument is set to the PROC_TRAPCAP_CTL_ENABLE value if the

process control enables signal delivery, and to

PROC_TRAPCAP_CTL_DISABLE otherwise.

See the note about sysctl kern.trap_enotcap above, which gives

independent global control of signal delivery.

PROC_PDEATHSIG_CTL Request the delivery of a signal when the parent of the calling process

exits. idtype must be P_PID and id must be the either caller’s pid or zero,

with no difference in effect. The value is cleared for child processes and

when executing set-user-ID or set-group-ID binaries. data must point to a

value of type int indicating the signal that should be delivered to the

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



caller. Use zero to cancel a previously requested signal delivery.

PROC_PDEATHSIG_STATUS

Query the current signal number that will be delivered when the parent of

the calling process exits. idtype must be P_PID and id must be the either

caller’s pid or zero, with no difference in effect. data must point to a

memory location that can hold a value of type int. If signal delivery has

not been requested, it will contain zero on return.

PROC_STACKGAP_CTL Controls the stack gaps in the specified process. A stack gap is the part

of the growth area for a MAP_STACK mapped region that is reserved

and never filled by memory. Instead, the process is guaranteed to receive

a SIGSEGV signal on accessing pages in the gap. Gaps protect against

stack overflow corrupting memory adjacent to the stack.

The data argument must point to an integer variable containing flags.

The following flags are allowed:

PROC_STACKGAP_ENABLE This flag is only accepted for

consistency with

PROC_STACKGAP_STATUS.

If stack gaps are enabled, the

flag is ignored. If disabled, the

flag causes an EINVAL error to

be returned. After gaps are

disabled in a process, they can

only be re-enabled when an

execve(2) is performed.

PROC_STACKGAP_DISABLE Disable stack gaps for the

process. For existing stacks,

the gap is no longer a reserved

part of the growth area and can

be filled by memory on access.

PROC_STACKGAP_ENABLE_EXEC Enable stack gaps for programs

started after an execve(2) by the

specified process.

PROC_STACKGAP_DISABLE_EXEC Inherit disabled stack gaps state

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



after execve(2). In other words,

if the currently executing

program has stack gaps

disabled, they are kept disabled

on exec. If gaps were enabled,

they are kept enabled after

exec.

The stack gap state is inherited from the parent on fork(2).

PROC_STACKGAP_STATUS

Returns the current stack gap state for the specified process. data must

point to an integer variable, which is used to return a bitmask consisting

of the following flags:

PROC_STACKGAP_ENABLE Stack gaps are enabled.

PROC_STACKGAP_DISABLE Stack gaps are disabled.

PROC_STACKGAP_ENABLE_EXEC Stack gaps are enabled in the

process after execve(2).

PROC_STACKGAP_DISABLE_EXEC Stack gaps are disabled in the

process after execve(2).

PROC_NO_NEW_PRIVS_CTL

Allows one to ignore the SUID and SGID bits on the program images

activated by execve(2) in the specified process and its future descendants.

The data parameter must point to the integer variable holding the

following value:

PROC_NO_NEW_PRIVS_ENABLE Request SUID and SGID bits to be

ignored.

It is not possible to disable it once it has been enabled.

PROC_NO_NEW_PRIVS_STATUS

Returns the current status of SUID/SGID enablement for the target

process. The data parameter must point to the integer variable, where one

of the following values is written:

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



PROC_NO_NEW_PRIVS_ENABLE

PROC_NO_NEW_PRIVS_DISABLE

PROC_WXMAP_CTL Controls the ’write exclusive against execution’ permissions for the

mappings in the process address space. It overrides the global settings

established by the kern.elf{32/64}.allow_wx sysctl, and the

corresponding bit in the ELF control note, see elfctl(1).

The data parameter must point to the integer variable holding one of the

following values:

PROC_WX_MAPPINGS_PERMIT Enable creation of

mappings that have both

write and execute

protection attributes, in

the specified process’

address space.

PROC_WX_MAPPINGS_DISALLOW_EXEC In the new address space

created by execve(2),

disallow creation of

mappings that have both

write and execute

permissions.

Once creation of writeable and executable mappings is allowed, it is

impossible (and pointless) to disallow it. The only way to ensure the

absence of such mappings after they were enabled in a given process, is

to set the PROC_WX_MAPPINGS_DISALLOW_EXEC flag and

execve(2) an image.

PROC_WXMAP_STATUS Returns the current status of the ’write exclusive against execution’

enforcement for the specified process. The data parameter must point to

the integer variable, where one of the following values is written:

PROC_WX_MAPPINGS_PERMIT Creation of

simultaneously writable

and executable mapping

is permitted, otherwise

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



the process cannot

create such mappings.

PROC_WX_MAPPINGS_DISALLOW_EXEC After execve(2), the new

address space should

disallow creation of

simultaneously writable

and executable

mappings.

Additionally, if the address space of the process disallows creation of

simultaneously writable and executable mappings and it is guaranteed

that no such mapping was created since address space creation, the

PROC_WXORX_ENFORCE flag is set in the returned value.

x86 MACHINE-SPECIFIC REQUESTS
PROC_KPTI_CTL AMD64 only. Controls the Kernel Page Table Isolation (KPTI) option for the

children of the specified process. For the command to work, the vm.pmap.kpti

tunable must be enabled on boot. It is not possible to change the KPTI setting

for a running process, except at the execve(2), where the address space is

reinitialized.

The data parameter must point to an integer variable containing one of the

following commands:

PROC_KPTI_CTL_ENABLE_ON_EXEC Enable KPTI after execve(2).

PROC_KPTI_CTL_DISABLE_ON_EXEC Disable KPTI after execve(2).

Only root or a process having the

PRIV_IO privilege might use this

option.

PROC_KPTI_STATUS Returns the current KPTI status for the specified process. data must point to

the integer variable, which returns the following statuses:

PROC_KPTI_CTL_ENABLE_ON_EXEC

PROC_KPTI_CTL_DISABLE_ON_EXEC

The status is or-ed with the PROC_KPTI_STATUS_ACTIVE in case KPTI is

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



active for the current address space of the process.

NOTES
Disabling tracing on a process should not be considered a security feature, as it is bypassable both by the

kernel and privileged processes, and via other system mechanisms. As such, it should not be utilized to

reliably protect cryptographic keying material or other confidential data.

Note that processes can trivially bypass the ’no simultaneously writable and executable mappings’

policy by first marking some mapping as writeable and write code to it, then removing write and adding

execute permission. This may be legitimately required by some programs, such as JIT compilers.

RETURN VALUES
If an error occurs, a value of -1 is returned and errno is set to indicate the error.

ERRORS
The procctl() system call will fail if:

[EFAULT] The data parameter points outside the process’s allocated address space.

[EINVAL] The cmd argument specifies an unsupported command.

The idtype argument specifies an unsupported identifier type.

[EPERM] The calling process does not have permission to perform the requested operation

on any of the selected processes.

[ESRCH] No processes matched the requested idtype and id.

[EINVAL] An invalid operation or flag was passed in data for a PROC_SPROTECT

command.

[EPERM] The idtype argument is not equal to P_PID, or id is not equal to the pid of the

calling process, for PROC_REAP_ACQUIRE or PROC_REAP_RELEASE

requests.

[EINVAL] Invalid or undefined flags were passed to a PROC_REAP_KILL request.

[EINVAL] An invalid or zero signal number was requested for a PROC_REAP_KILL

request.

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11



[EINVAL] The PROC_REAP_RELEASE request was issued by the init(8) process.

[EBUSY] The PROC_REAP_ACQUIRE request was issued by a process that had already

acquired reaper status and has not yet released it.

[EBUSY] The PROC_TRACE_CTL request was issued for a process already being traced.

[EPERM] The PROC_TRACE_CTL request to re-enable tracing of the process

(PROC_TRACE_CTL_ENABLE), or to disable persistence of

PROC_TRACE_CTL_DISABLE on execve(2) was issued for a non-current

process.

[EINVAL] The value of the integer data parameter for the PROC_TRACE_CTL or

PROC_TRAPCAP_CTL request is invalid.

[EINVAL] The PROC_PDEATHSIG_CTL or PROC_PDEATHSIG_STATUS request

referenced an unsupported id, idtype or invalid signal number.

SEE ALSO
dtrace(1), proccontrol(1), protect(1), cap_enter(2), kill(2), ktrace(2), mmap(2), mprotect(2), ptrace(2),

wait(2), capsicum(4), hwpmc(4), init(8)

HISTORY
The procctl() function appeared in FreeBSD 10.0.

The reaper facility is based on a similar feature of Linux and DragonflyBSD, and first appeared in

FreeBSD 10.2.

The PROC_PDEATHSIG_CTL facility is based on the prctl(PR_SET_PDEATHSIG, ...) feature of

Linux, and first appeared in FreeBSD 11.2.

The ASLR support was added to system for the checklists compliance in FreeBSD 13.0.

PROCCTL(2) FreeBSD System Calls Manual PROCCTL(2)

FreeBSD 14.0-RELEASE-p11 April 15, 2023 FreeBSD 14.0-RELEASE-p11


