
NAME
provider-decoder - The OSSL_DECODER library <-> provider functions

SYNOPSIS
#include <openssl/core_dispatch.h>

/*

* None of these are actual functions, but are displayed like this for

* the function signatures for functions that are offered as function

* pointers in OSSL_DISPATCH arrays.

*/

/* Decoder parameter accessor and descriptor */

const OSSL_PARAM *OSSL_FUNC_decoder_gettable_params(void *provctx);

int OSSL_FUNC_decoder_get_params(OSSL_PARAM params[]);

/* Functions to construct / destruct / manipulate the decoder context */

void *OSSL_FUNC_decoder_newctx(void *provctx);

void OSSL_FUNC_decoder_freectx(void *ctx);

const OSSL_PARAM *OSSL_FUNC_decoder_settable_ctx_params(void *provctx);

int OSSL_FUNC_decoder_set_ctx_params(void *ctx, const OSSL_PARAM params[]);

/* Functions to check selection support */

int OSSL_FUNC_decoder_does_selection(void *provctx, int selection);

/* Functions to decode object data */

int OSSL_FUNC_decoder_decode(void *ctx, OSSL_CORE_BIO *in,

int selection,

OSSL_CALLBACK *data_cb, void *data_cbarg,

OSSL_PASSPHRASE_CALLBACK *cb, void *cbarg);

/* Functions to export a decoded object */

int OSSL_FUNC_decoder_export_object(void *ctx,

const void *objref, size_t objref_sz,

OSSL_CALLBACK *export_cb,

void *export_cbarg);

DESCRIPTION
The term "decode" is used throughout this manual. This includes but is not limited to deserialization as

individual decoders can also do decoding into intermediate data formats.

PROVIDER-DECODER(7ossl) OpenSSL PROVIDER-DECODER(7ossl)

3.0.11 2023-09-19 PROVIDER-DECODER(7ossl)



The DECODER operation is a generic method to create a provider-native object reference or

intermediate decoded data from an encoded form read from the given OSSL_CORE_BIO. If the caller

wants to decode data from memory, it should provide a BIO_s_mem(3) BIO. The decoded data or

object reference is passed along with eventual metadata to the metadata_cb as OSSL_PARAM(3)

parameters.

The decoder doesn’t need to know more about the OSSL_CORE_BIO pointer than being able to pass it

to the appropriate BIO upcalls (see "Core functions" in provider-base(7)).

The DECODER implementation may be part of a chain, where data is passed from one to the next. For

example, there may be an implementation to decode an object from PEM to DER, and another one that

decodes DER to a provider-native object.

The last decoding step in the decoding chain is usually supposed to create a provider-native object

referenced by an object reference. To import that object into a different provider the

OSSL_FUNC_decoder_export_object() can be called as the final step of the decoding process.

All "functions" mentioned here are passed as function pointers between libcrypto and the provider in

OSSL_DISPATCH(3) arrays via OSSL_ALGORITHM(3) arrays that are returned by the provider’s

provider_query_operation() function (see "Provider Functions" in provider-base(7)).

All these "functions" have a corresponding function type definition named OSSL_FUNC_{name}_fn,

and a helper function to retrieve the function pointer from an OSSL_DISPATCH(3) element named

OSSL_FUNC_{name}. For example, the "function" OSSL_FUNC_decoder_decode() has these:

typedef int

(OSSL_FUNC_decoder_decode_fn)(void *ctx, OSSL_CORE_BIO *in,

int selection,

OSSL_CALLBACK *data_cb, void *data_cbarg,

OSSL_PASSPHRASE_CALLBACK *cb, void *cbarg);

static ossl_inline OSSL_FUNC_decoder_decode_fn*

OSSL_FUNC_decoder_decode(const OSSL_DISPATCH *opf);

OSSL_DISPATCH(3) arrays are indexed by numbers that are provided as macros in

openssl-core_dispatch.h(7), as follows:

OSSL_FUNC_decoder_get_params OSSL_FUNC_DECODER_GET_PARAMS

OSSL_FUNC_decoder_gettable_params OSSL_FUNC_DECODER_GETTABLE_PARAMS

OSSL_FUNC_decoder_newctx OSSL_FUNC_DECODER_NEWCTX

PROVIDER-DECODER(7ossl) OpenSSL PROVIDER-DECODER(7ossl)

3.0.11 2023-09-19 PROVIDER-DECODER(7ossl)



OSSL_FUNC_decoder_freectx OSSL_FUNC_DECODER_FREECTX

OSSL_FUNC_decoder_set_ctx_params OSSL_FUNC_DECODER_SET_CTX_PARAMS

OSSL_FUNC_decoder_settable_ctx_params OSSL_FUNC_DECODER_SETTABLE_CTX_PARAMS

OSSL_FUNC_decoder_does_selection OSSL_FUNC_DECODER_DOES_SELECTION

OSSL_FUNC_decoder_decode OSSL_FUNC_DECODER_DECODE

OSSL_FUNC_decoder_export_object OSSL_FUNC_DECODER_EXPORT_OBJECT

Names and properties
The name of an implementation should match the target type of object it decodes. For example, an

implementation that decodes an RSA key should be named "RSA". Likewise, an implementation that

decodes DER data from PEM input should be named "DER".

Properties can be used to further specify details about an implementation:

input

This property is used to specify what format of input the implementation can decode.

This property is mandatory.

OpenSSL providers recognize the following input types:

pem An implementation with that input type decodes PEM formatted data.

der An implementation with that input type decodes DER formatted data.

msblob

An implementation with that input type decodes MSBLOB formatted data.

pvk An implementation with that input type decodes PVK formatted data.

structure

This property is used to specify the structure that the decoded data is expected to have.

This property is optional.

Structures currently recognised by built-in decoders:

PROVIDER-DECODER(7ossl) OpenSSL PROVIDER-DECODER(7ossl)

3.0.11 2023-09-19 PROVIDER-DECODER(7ossl)



"type-specific"

Type specific structure.

"pkcs8"

Structure according to the PKCS#8 specification.

"SubjectPublicKeyInfo"

Encoding of public keys according to the Subject Public Key Info of RFC 5280.

The possible values of both these properties is open ended. A provider may very well specify input

types and structures that libcrypto doesn’t know anything about.

Subset selections
Sometimes, an object has more than one subset of data that is interesting to treat separately or together.

It’s possible to specify what subsets are to be decoded, with a set of bits selection that are passed in an

int.

This set of bits depend entirely on what kind of provider-side object is to be decoded. For example,

those bits are assumed to be the same as those used with provider-keymgmt(7) (see "Key Objects" in

provider-keymgmt(7)) when the object is an asymmetric keypair - e.g.,

OSSL_KEYMGMT_SELECT_PRIVATE_KEY if the object to be decoded is supposed to contain

private key components.

OSSL_FUNC_decoder_does_selection() should tell if a particular implementation supports any of the

combinations given by selection.

Context functions
OSSL_FUNC_decoder_newctx() returns a context to be used with the rest of the functions.

OSSL_FUNC_decoder_freectx() frees the given ctx as created by OSSL_FUNC_decoder_newctx().

OSSL_FUNC_decoder_set_ctx_params() sets context data according to parameters from params that it

recognises. Unrecognised parameters should be ignored. Passing NULL for params should return true.

OSSL_FUNC_decoder_settable_ctx_params() returns a constant OSSL_PARAM(3) array describing

the parameters that OSSL_FUNC_decoder_set_ctx_params() can handle.

See OSSL_PARAM(3) for further details on the parameters structure used by

OSSL_FUNC_decoder_set_ctx_params() and OSSL_FUNC_decoder_settable_ctx_params().

PROVIDER-DECODER(7ossl) OpenSSL PROVIDER-DECODER(7ossl)

3.0.11 2023-09-19 PROVIDER-DECODER(7ossl)



Export function
When a provider-native object is created by a decoder it would be unsuitable for direct use with a

foreign provider. The export function allows for exporting the object into that foreign provider if the

foreign provider supports the type of the object and provides an import function.

OSSL_FUNC_decoder_export_object() should export the object of size objref_sz referenced by objref

as an OSSL_PARAM(3) array and pass that into the export_cb as well as the given export_cbarg.

Decoding functions
OSSL_FUNC_decoder_decode() should decode the data as read from the OSSL_CORE_BIO in to

produce decoded data or an object to be passed as reference in an OSSL_PARAM(3) array along with

possible other metadata that was decoded from the input. This OSSL_PARAM(3) array is then passed

to the data_cb callback. The selection bits, if relevant, should determine what the input data should

contain. The decoding functions also take an OSSL_PASSPHRASE_CALLBACK(3) function pointer

along with a pointer to application data cbarg, which should be used when a pass phrase prompt is

needed.

It’s important to understand that the return value from this function is interpreted as follows:

True (1)

This means "carry on the decoding process", and is meaningful even though this function couldn’t

decode the input into anything, because there may be another decoder implementation that can

decode it into something.

The data_cb callback should never be called when this function can’t decode the input into

anything.

False (0)

This means "stop the decoding process", and is meaningful when the input could be decoded into

some sort of object that this function understands, but further treatment of that object results into

errors that won’t be possible for some other decoder implementation to get a different result.

The conditions to stop the decoding process are at the discretion of the implementation.

Decoder operation parameters
There are currently no operation parameters currently recognised by the built-in decoders.

Parameters currently recognised by the built-in pass phrase callback:

"info" (OSSL_PASSPHRASE_PARAM_INFO) <UTF8 string>

PROVIDER-DECODER(7ossl) OpenSSL PROVIDER-DECODER(7ossl)

3.0.11 2023-09-19 PROVIDER-DECODER(7ossl)



A string of information that will become part of the pass phrase prompt. This could be used to

give the user information on what kind of object it’s being prompted for.

RETURN VALUES
OSSL_FUNC_decoder_newctx() returns a pointer to a context, or NULL on failure.

OSSL_FUNC_decoder_set_ctx_params() returns 1, unless a recognised parameter was invalid or

caused an error, for which 0 is returned.

OSSL_FUNC_decoder_settable_ctx_params() returns a pointer to an array of constant

OSSL_PARAM(3) elements.

OSSL_FUNC_decoder_does_selection() returns 1 if the decoder implementation supports any of the

selection bits, otherwise 0.

OSSL_FUNC_decoder_decode() returns 1 to signal that the decoding process should continue, or 0 to

signal that it should stop.

SEE ALSO
provider(7)

HISTORY
The DECODER interface was introduced in OpenSSL 3.0.

COPYRIGHT
Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

PROVIDER-DECODER(7ossl) OpenSSL PROVIDER-DECODER(7ossl)

3.0.11 2023-09-19 PROVIDER-DECODER(7ossl)


