
NAME
psql - PostgreSQL interactive terminal

SYNOPSIS
psql [option...] [dbname [username]]

DESCRIPTION
psql is a terminal-based front-end to PostgreSQL. It enables you to type in queries interactively, issue

them to PostgreSQL, and see the query results. Alternatively, input can be from a file or from

command line arguments. In addition, psql provides a number of meta-commands and various

shell-like features to facilitate writing scripts and automating a wide variety of tasks.

OPTIONS
-a
--echo-all

Print all nonempty input lines to standard output as they are read. (This does not apply to lines

read interactively.) This is equivalent to setting the variable ECHO to all.

-A
--no-align

Switches to unaligned output mode. (The default output mode is aligned.) This is equivalent to

\pset format unaligned.

-b
--echo-errors

Print failed SQL commands to standard error output. This is equivalent to setting the variable

ECHO to errors.

-c command

--command=command

Specifies that psql is to execute the given command string, command. This option can be repeated

and combined in any order with the -f option. When either -c or -f is specified, psql does not read

commands from standard input; instead it terminates after processing all the -c and -f options in

sequence.

command must be either a command string that is completely parsable by the server (i.e., it

contains no psql-specific features), or a single backslash command. Thus you cannot mix SQL and

psql meta-commands within a -c option. To achieve that, you could use repeated -c options or pipe

the string into psql, for example:

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

psql -c ’\x’ -c ’SELECT * FROM foo;’

or

echo ’\x \\ SELECT * FROM foo;’ | psql

(\\ is the separator meta-command.)

Each SQL command string passed to -c is sent to the server as a single request. Because of this,

the server executes it as a single transaction even if the string contains multiple SQL commands,

unless there are explicit BEGIN/COMMIT commands included in the string to divide it into

multiple transactions. (See Section 55.2.2.1 for more details about how the server handles

multi-query strings.)

If having several commands executed in one transaction is not desired, use repeated -c commands

or feed multiple commands to psql’s standard input, either using echo as illustrated above, or via a

shell here-document, for example:

psql <<EOF

\x

SELECT * FROM foo;

EOF

--csv
Switches to CSV (Comma-Separated Values) output mode. This is equivalent to \pset format csv.

-d dbname

--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the

first non-option argument on the command line. The dbname can be a connection string. If so,

connection string parameters will override any conflicting command line options.

-e
--echo-queries

Copy all SQL commands sent to the server to standard output as well. This is equivalent to setting

the variable ECHO to queries.

-E
--echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can use this to study

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

psql’s internal operations. This is equivalent to setting the variable ECHO_HIDDEN to on.

-f filename

--file=filename

Read commands from the file filename, rather than standard input. This option can be repeated

and combined in any order with the -c option. When either -c or -f is specified, psql does not read

commands from standard input; instead it terminates after processing all the -c and -f options in

sequence. Except for that, this option is largely equivalent to the meta-command \i.

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-command.

This can be used to intersperse interactive input with input from files. Note however that Readline

is not used in this case (much as if -n had been specified).

Using this option is subtly different from writing psql < filename. In general, both will do what

you expect, but using -f enables some nice features such as error messages with line numbers.

There is also a slight chance that using this option will reduce the start-up overhead. On the other

hand, the variant using the shell’s input redirection is (in theory) guaranteed to yield exactly the

same output you would have received had you entered everything by hand.

-F separator

--field-separator=separator

Use separator as the field separator for unaligned output. This is equivalent to \pset fieldsep or \f.

-h hostname

--host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a

slash, it is used as the directory for the Unix-domain socket.

-H
--html

Switches to HTML output mode. This is equivalent to \pset format html or the \H command.

-l
--list

List all available databases, then exit. Other non-connection options are ignored. This is similar to

the meta-command \list.

When this option is used, psql will connect to the database postgres, unless a different database is

named on the command line (option -d or non-option argument, possibly via a service entry, but

not via an environment variable).

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

-L filename

--log-file=filename

Write all query output into file filename, in addition to the normal output destination.

-n
--no-readline

Do not use Readline for line editing and do not use the command history (see the section called

"Command-Line Editing" below).

-o filename

--output=filename

Put all query output into file filename. This is equivalent to the command \o.

-p port

--port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is

listening for connections. Defaults to the value of the PGPORT environment variable or, if not set,

to the port specified at compile time, usually 5432.

-P assignment

--pset=assignment

Specifies printing options, in the style of \pset. Note that here you have to separate name and value

with an equal sign instead of a space. For example, to set the output format to LaTeX, you could

write -P format=latex.

-q
--quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and various

informational output. If this option is used, none of this happens. This is useful with the -c option.

This is equivalent to setting the variable QUIET to on.

-R separator

--record-separator=separator

Use separator as the record separator for unaligned output. This is equivalent to \pset recordsep.

-s
--single-step

Run in single-step mode. That means the user is prompted before each command is sent to the

server, with the option to cancel execution as well. Use this to debug scripts.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

-S
--single-line

Runs in single-line mode where a newline terminates an SQL command, as a semicolon does.

Note
This mode is provided for those who insist on it, but you are not necessarily encouraged to

use it. In particular, if you mix SQL and meta-commands on a line the order of execution

might not always be clear to the inexperienced user.

-t
--tuples-only

Turn off printing of column names and result row count footers, etc. This is equivalent to \t or

\pset tuples_only.

-T table_options

--table-attr=table_options

Specifies options to be placed within the HTML table tag. See \pset tableattr for details.

-U username

--username=username

Connect to the database as the user username instead of the default. (You must have permission to

do so, of course.)

-v assignment

--set=assignment

--variable=assignment

Perform a variable assignment, like the \set meta-command. Note that you must separate name

and value, if any, by an equal sign on the command line. To unset a variable, leave off the equal

sign. To set a variable with an empty value, use the equal sign but leave off the value. These

assignments are done during command line processing, so variables that reflect connection state

will get overwritten later.

-V
--version

Print the psql version and exit.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is

not available from other sources such as a .pgpass file, the connection attempt will fail. This

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

option can be useful in batch jobs and scripts where no user is present to enter a password.

Note that this option will remain set for the entire session, and so it affects uses of the

meta-command \connect as well as the initial connection attempt.

-W
--password

Force psql to prompt for a password before connecting to a database, even if the password will not

be used.

If the server requires password authentication and a password is not available from other sources

such as a .pgpass file, psql will prompt for a password in any case. However, psql will waste a

connection attempt finding out that the server wants a password. In some cases it is worth typing

-W to avoid the extra connection attempt.

Note that this option will remain set for the entire session, and so it affects uses of the

meta-command \connect as well as the initial connection attempt.

-x
--expanded

Turn on the expanded table formatting mode. This is equivalent to \x or \pset expanded.

-X
--no-psqlrc

Do not read the start-up file (neither the system-wide psqlrc file nor the user’s ~/.psqlrc file).

-z
--field-separator-zero

Set the field separator for unaligned output to a zero byte. This is equivalent to \pset fieldsep_zero.

-0
--record-separator-zero

Set the record separator for unaligned output to a zero byte. This is useful for interfacing, for

example, with xargs -0. This is equivalent to \pset recordsep_zero.

-1
--single-transaction

This option can only be used in combination with one or more -c and/or -f options. It causes psql

to issue a BEGIN command before the first such option and a COMMIT command after the last

one, thereby wrapping all the commands into a single transaction. If any of the commands fails

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

and the variable ON_ERROR_STOP was set, a ROLLBACK command is sent instead. This

ensures that either all the commands complete successfully, or no changes are applied.

If the commands themselves contain BEGIN, COMMIT, or ROLLBACK, this option will not

have the desired effects. Also, if an individual command cannot be executed inside a transaction

block, specifying this option will cause the whole transaction to fail.

-?
--help[=topic]

Show help about psql and exit. The optional topic parameter (defaulting to options) selects which

part of psql is explained: commands describes psql’s backslash commands; options describes the

command-line options that can be passed to psql; and variables shows help about psql

configuration variables.

EXIT STATUS
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own occurs (e.g., out of

memory, file not found), 2 if the connection to the server went bad and the session was not interactive,

and 3 if an error occurred in a script and the variable ON_ERROR_STOP was set.

USAGE
Connecting to a Database

psql is a regular PostgreSQL client application. In order to connect to a database you need to know the

name of your target database, the host name and port number of the server, and what user name you

want to connect as. psql can be told about those parameters via command line options, namely -d, -h,

-p, and -U respectively. If an argument is found that does not belong to any option it will be interpreted

as the database name (or the user name, if the database name is already given). Not all of these options

are required; there are useful defaults. If you omit the host name, psql will connect via a Unix-domain

socket to a server on the local host, or via TCP/IP to localhost on machines that don’t have

Unix-domain sockets. The default port number is determined at compile time. Since the database server

uses the same default, you will not have to specify the port in most cases. The default user name is your

operating-system user name, as is the default database name. Note that you cannot just connect to any

database under any user name. Your database administrator should have informed you about your

access rights.

When the defaults aren’t quite right, you can save yourself some typing by setting the environment

variables PGDATABASE, PGHOST, PGPORT and/or PGUSER to appropriate values. (For additional

environment variables, see Section 34.15.) It is also convenient to have a ~/.pgpass file to avoid

regularly having to type in passwords. See Section 34.16 for more information.

An alternative way to specify connection parameters is in a conninfo string or a URI, which is used

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

instead of a database name. This mechanism give you very wide control over the connection. For

example:

$ psql "service=myservice sslmode=require"
$ psql postgresql://dbmaster:5433/mydb?sslmode=require

This way you can also use LDAP for connection parameter lookup as described in Section 34.18. See

Section 34.1.2 for more information on all the available connection options.

If the connection could not be made for any reason (e.g., insufficient privileges, server is not running

on the targeted host, etc.), psql will return an error and terminate.

If both standard input and standard output are a terminal, then psql sets the client encoding to "auto",

which will detect the appropriate client encoding from the locale settings (LC_CTYPE environment

variable on Unix systems). If this doesn’t work out as expected, the client encoding can be overridden

using the environment variable PGCLIENTENCODING.

Entering SQL Commands
In normal operation, psql provides a prompt with the name of the database to which psql is currently

connected, followed by the string =>. For example:

$ psql testdb
psql (15.8)

Type "help" for help.

testdb=>

At the prompt, the user can type in SQL commands. Ordinarily, input lines are sent to the server when

a command-terminating semicolon is reached. An end of line does not terminate a command. Thus

commands can be spread over several lines for clarity. If the command was sent and executed without

error, the results of the command are displayed on the screen.

If untrusted users have access to a database that has not adopted a secure schema usage pattern, begin

your session by removing publicly-writable schemas from search_path. One can add

options=-csearch_path= to the connection string or issue SELECT

pg_catalog.set_config(’search_path’, ’’, false) before other SQL commands. This consideration is not

specific to psql; it applies to every interface for executing arbitrary SQL commands.

Whenever a command is executed, psql also polls for asynchronous notification events generated by

LISTEN and NOTIFY.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

While C-style block comments are passed to the server for processing and removal, SQL-standard

comments are removed by psql.

Meta-Commands
Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is

processed by psql itself. These commands make psql more useful for administration or scripting.

Meta-commands are often called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any

arguments. The arguments are separated from the command verb and each other by any number of

whitespace characters.

To include whitespace in an argument you can quote it with single quotes. To include a single quote in

an argument, write two single quotes within single-quoted text. Anything contained in single quotes is

furthermore subject to C-like substitutions for \n (new line), \t (tab), \b (backspace), \r (carriage return),

\f (form feed), \digits (octal), and \xdigits (hexadecimal). A backslash preceding any other character

within single-quoted text quotes that single character, whatever it is.

If an unquoted colon (:) followed by a psql variable name appears within an argument, it is replaced by

the variable’s value, as described in SQL Interpolation below. The forms :’variable_name’ and

:"variable_name" described there work as well. The :{?variable_name} syntax allows testing whether a

variable is defined. It is substituted by TRUE or FALSE. Escaping the colon with a backslash protects

it from substitution.

Within an argument, text that is enclosed in backquotes (‘) is taken as a command line that is passed to

the shell. The output of the command (with any trailing newline removed) replaces the backquoted text.

Within the text enclosed in backquotes, no special quoting or other processing occurs, except that

appearances of :variable_name where variable_name is a psql variable name are replaced by the

variable’s value. Also, appearances of :’variable_name’ are replaced by the variable’s value suitably

quoted to become a single shell command argument. (The latter form is almost always preferable,

unless you are very sure of what is in the variable.) Because carriage return and line feed characters

cannot be safely quoted on all platforms, the :’variable_name’ form prints an error message and does

not substitute the variable value when such characters appear in the value.

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow

the syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (") protect

letters from case conversion and allow incorporation of whitespace into the identifier. Within double

quotes, paired double quotes reduce to a single double quote in the resulting name. For example,

FOO"BAR"BAZ is interpreted as fooBARbaz, and "A weird"" name" becomes A weird" name.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

Parsing for arguments stops at the end of the line, or when another unquoted backslash is found. An

unquoted backslash is taken as the beginning of a new meta-command. The special sequence \\ (two

backslashes) marks the end of arguments and continues parsing SQL commands, if any. That way SQL

and psql commands can be freely mixed on a line. But in any case, the arguments of a meta-command

cannot continue beyond the end of the line.

Many of the meta-commands act on the current query buffer. This is simply a buffer holding whatever

SQL command text has been typed but not yet sent to the server for execution. This will include

previous input lines as well as any text appearing before the meta-command on the same line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not unaligned, it is

set to unaligned. This command is kept for backwards compatibility. See \pset for a more general

solution.

\c or \connect [-reuse-previous=on|off] [dbname [username] [host] [port] | conninfo]

Establishes a new connection to a PostgreSQL server. The connection parameters to use can be

specified either using a positional syntax (one or more of database name, user, host, and port), or

using a conninfo connection string as detailed in Section 34.1.1. If no arguments are given, a new

connection is made using the same parameters as before.

Specifying any of dbname, username, host or port as - is equivalent to omitting that parameter.

The new connection can re-use connection parameters from the previous connection; not only

database name, user, host, and port, but other settings such as sslmode. By default, parameters are

re-used in the positional syntax, but not when a conninfo string is given. Passing a first argument

of -reuse-previous=on or -reuse-previous=off overrides that default. If parameters are re-used,

then any parameter not explicitly specified as a positional parameter or in the conninfo string is

taken from the existing connection’s parameters. An exception is that if the host setting is changed

from its previous value using the positional syntax, any hostaddr setting present in the existing

connection’s parameters is dropped. Also, any password used for the existing connection will be

re-used only if the user, host, and port settings are not changed. When the command neither

specifies nor reuses a particular parameter, the libpq default is used.

If the new connection is successfully made, the previous connection is closed. If the connection

attempt fails (wrong user name, access denied, etc.), the previous connection will be kept if psql is

in interactive mode. But when executing a non-interactive script, the old connection is closed and

an error is reported. That may or may not terminate the script; if it does not, all database-accessing

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

commands will fail until another \connect command is successfully executed. This distinction was

chosen as a user convenience against typos on the one hand, and a safety mechanism that scripts

are not accidentally acting on the wrong database on the other hand. Note that whenever a

\connect command attempts to re-use parameters, the values re-used are those of the last

successful connection, not of any failed attempts made subsequently. However, in the case of a

non-interactive \connect failure, no parameters are allowed to be re-used later, since the script

would likely be expecting the values from the failed \connect to be re-used.

Examples:

=> \c mydb myuser host.dom 6432

=> \c service=foo

=> \c "host=localhost port=5432 dbname=mydb connect_timeout=10 sslmode=disable"

=> \c -reuse-previous=on sslmode=require -- changes only sslmode

=> \c postgresql://tom@localhost/mydb?application_name=myapp

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such title. This

command is equivalent to \pset title title. (The name of this command derives from "caption", as it

was previously only used to set the caption in an HTML table.)

\cd [directory]

Changes the current working directory to directory. Without argument, changes to the current

user’s home directory.

Tip
To print your current working directory, use \! pwd.

\conninfo

Outputs information about the current database connection.

\copy { table [(column_list)] } from { ’filename’ | program ’command’ | stdin | pstdin } [[with] (

option [, ...])] [where condition]

\copy { table [(column_list)] | (query) } to { ’filename’ | program ’command’ | stdout | pstdout } [[

with] (option [, ...])]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY command, but

instead of the server reading or writing the specified file, psql reads or writes the file and routes

the data between the server and the local file system. This means that file accessibility and

privileges are those of the local user, not the server, and no SQL superuser privileges are required.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

When program is specified, command is executed by psql and the data passed from or to

command is routed between the server and the client. Again, the execution privileges are those of

the local user, not the server, and no SQL superuser privileges are required.

For \copy ... from stdin, data rows are read from the same source that issued the command,

continuing until \. is read or the stream reaches EOF. This option is useful for populating tables

in-line within an SQL script file. For \copy ... to stdout, output is sent to the same place as psql

command output, and the COPY count command status is not printed (since it might be confused

with a data row). To read/write psql’s standard input or output regardless of the current command

source or \o option, write from pstdin or to pstdout.

The syntax of this command is similar to that of the SQL COPY command. All options other than

the data source/destination are as specified for COPY. Because of this, special parsing rules apply

to the \copy meta-command. Unlike most other meta-commands, the entire remainder of the line

is always taken to be the arguments of \copy, and neither variable interpolation nor backquote

expansion are performed in the arguments.

Tip
Another way to obtain the same result as \copy ... to is to use the SQL COPY ... TO

STDOUT command and terminate it with \g filename or \g |program. Unlike \copy, this

method allows the command to span multiple lines; also, variable interpolation and

backquote expansion can be used.

Tip
These operations are not as efficient as the SQL COPY command with a file or program data

source or destination, because all data must pass through the client/server connection. For

large amounts of data the SQL command might be preferable. Also, because of this

pass-through method, \copy ... from in CSV mode will erroneously treat a \. data value alone

on a line as an end-of-input marker.

\copyright

Shows the copyright and distribution terms of PostgreSQL.

\crosstabview [colV [colH [colD [sortcolH]]]]

Executes the current query buffer (like \g) and shows the results in a crosstab grid. The query must

return at least three columns. The output column identified by colV becomes a vertical header and

the output column identified by colH becomes a horizontal header. colD identifies the output

column to display within the grid. sortcolH identifies an optional sort column for the horizontal

header.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

Each column specification can be a column number (starting at 1) or a column name. The usual

SQL case folding and quoting rules apply to column names. If omitted, colV is taken as column 1

and colH as column 2. colH must differ from colV. If colD is not specified, then there must be

exactly three columns in the query result, and the column that is neither colV nor colH is taken to

be colD.

The vertical header, displayed as the leftmost column, contains the values found in column colV,

in the same order as in the query results, but with duplicates removed.

The horizontal header, displayed as the first row, contains the values found in column colH, with

duplicates removed. By default, these appear in the same order as in the query results. But if the

optional sortcolH argument is given, it identifies a column whose values must be integer numbers,

and the values from colH will appear in the horizontal header sorted according to the

corresponding sortcolH values.

Inside the crosstab grid, for each distinct value x of colH and each distinct value y of colV, the cell

located at the intersection (x,y) contains the value of the colD column in the query result row for

which the value of colH is x and the value of colV is y. If there is no such row, the cell is empty. If

there are multiple such rows, an error is reported.

\d[S+] [pattern]

For each relation (table, view, materialized view, index, sequence, or foreign table) or composite

type matching the pattern, show all columns, their types, the tablespace (if not the default) and any

special attributes such as NOT NULL or defaults. Associated indexes, constraints, rules, and

triggers are also shown. For foreign tables, the associated foreign server is shown as well.

("Matching the pattern" is defined in Patterns below.)

For some types of relation, \d shows additional information for each column: column values for

sequences, indexed expressions for indexes, and foreign data wrapper options for foreign tables.

The command form \d+ is identical, except that more information is displayed: any comments

associated with the columns of the table are shown, as is the presence of OIDs in the table, the

view definition if the relation is a view, a non-default replica identity setting and the access

method name if the relation has an access method.

By default, only user-created objects are shown; supply a pattern or the S modifier to include

system objects.

Note
If \d is used without a pattern argument, it is equivalent to \dtvmsE which will show a list of

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

all visible tables, views, materialized views, sequences and foreign tables. This is purely a

convenience measure.

\da[S] [pattern]

Lists aggregate functions, together with their return type and the data types they operate on. If

pattern is specified, only aggregates whose names match the pattern are shown. By default, only

user-created objects are shown; supply a pattern or the S modifier to include system objects.

\dA[+] [pattern]

Lists access methods. If pattern is specified, only access methods whose names match the pattern

are shown. If + is appended to the command name, each access method is listed with its associated

handler function and description.

\dAc[+] [access-method-pattern [input-type-pattern]]

Lists operator classes (see Section 38.16.1). If access-method-pattern is specified, only operator

classes associated with access methods whose names match that pattern are listed. If

input-type-pattern is specified, only operator classes associated with input types whose names

match that pattern are listed. If + is appended to the command name, each operator class is listed

with its associated operator family and owner.

\dAf[+] [access-method-pattern [input-type-pattern]]

Lists operator families (see Section 38.16.5). If access-method-pattern is specified, only operator

families associated with access methods whose names match that pattern are listed. If

input-type-pattern is specified, only operator families associated with input types whose names

match that pattern are listed. If + is appended to the command name, each operator family is listed

with its owner.

\dAo[+] [access-method-pattern [operator-family-pattern]]

Lists operators associated with operator families (see Section 38.16.2). If access-method-pattern is

specified, only members of operator families associated with access methods whose names match

that pattern are listed. If operator-family-pattern is specified, only members of operator families

whose names match that pattern are listed. If + is appended to the command name, each operator

is listed with its sort operator family (if it is an ordering operator).

\dAp[+] [access-method-pattern [operator-family-pattern]]

Lists support functions associated with operator families (see Section 38.16.3). If

access-method-pattern is specified, only functions of operator families associated with access

methods whose names match that pattern are listed. If operator-family-pattern is specified, only

functions of operator families whose names match that pattern are listed. If + is appended to the

command name, functions are displayed verbosely, with their actual parameter lists.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

\db[+] [pattern]

Lists tablespaces. If pattern is specified, only tablespaces whose names match the pattern are

shown. If + is appended to the command name, each tablespace is listed with its associated

options, on-disk size, permissions and description.

\dc[S+] [pattern]

Lists conversions between character-set encodings. If pattern is specified, only conversions whose

names match the pattern are listed. By default, only user-created objects are shown; supply a

pattern or the S modifier to include system objects. If + is appended to the command name, each

object is listed with its associated description.

\dconfig[+] [pattern]

Lists server configuration parameters and their values. If pattern is specified, only parameters

whose names match the pattern are listed. Without a pattern, only parameters that are set to

non-default values are listed. (Use \dconfig * to see all parameters.) If + is appended to the

command name, each parameter is listed with its data type, context in which the parameter can be

set, and access privileges (if non-default access privileges have been granted).

\dC[+] [pattern]

Lists type casts. If pattern is specified, only casts whose source or target types match the pattern

are listed. If + is appended to the command name, each object is listed with its associated

description.

\dd[S] [pattern]

Shows the descriptions of objects of type constraint, operator class, operator family, rule, and

trigger. All other comments may be viewed by the respective backslash commands for those

object types.

\dd displays descriptions for objects matching the pattern, or of visible objects of the appropriate

type if no argument is given. But in either case, only objects that have a description are listed. By

default, only user-created objects are shown; supply a pattern or the S modifier to include system

objects.

Descriptions for objects can be created with the COMMENT SQL command.

\dD[S+] [pattern]

Lists domains. If pattern is specified, only domains whose names match the pattern are shown. By

default, only user-created objects are shown; supply a pattern or the S modifier to include system

objects. If + is appended to the command name, each object is listed with its associated

permissions and description.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

\ddp [pattern]

Lists default access privilege settings. An entry is shown for each role (and schema, if applicable)

for which the default privilege settings have been changed from the built-in defaults. If pattern is

specified, only entries whose role name or schema name matches the pattern are listed.

The ALTER DEFAULT PRIVILEGES command is used to set default access privileges. The

meaning of the privilege display is explained in Section 5.7.

\dE[S+] [pattern]

\di[S+] [pattern]

\dm[S+] [pattern]

\ds[S+] [pattern]

\dt[S+] [pattern]

\dv[S+] [pattern]

In this group of commands, the letters E, i, m, s, t, and v stand for foreign table, index,

materialized view, sequence, table, and view, respectively. You can specify any or all of these

letters, in any order, to obtain a listing of objects of these types. For example, \dti lists tables and

indexes. If + is appended to the command name, each object is listed with its persistence status

(permanent, temporary, or unlogged), physical size on disk, and associated description if any. If

pattern is specified, only objects whose names match the pattern are listed. By default, only

user-created objects are shown; supply a pattern or the S modifier to include system objects.

\des[+] [pattern]

Lists foreign servers (mnemonic: "external servers"). If pattern is specified, only those servers

whose name matches the pattern are listed. If the form \des+ is used, a full description of each

server is shown, including the server’s access privileges, type, version, options, and description.

\det[+] [pattern]

Lists foreign tables (mnemonic: "external tables"). If pattern is specified, only entries whose table

name or schema name matches the pattern are listed. If the form \det+ is used, generic options and

the foreign table description are also displayed.

\deu[+] [pattern]

Lists user mappings (mnemonic: "external users"). If pattern is specified, only those mappings

whose user names match the pattern are listed. If the form \deu+ is used, additional information

about each mapping is shown.

Caution
\deu+ might also display the user name and password of the remote user, so care should be

taken not to disclose them.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

\dew[+] [pattern]

Lists foreign-data wrappers (mnemonic: "external wrappers"). If pattern is specified, only those

foreign-data wrappers whose name matches the pattern are listed. If the form \dew+ is used, the

access privileges, options, and description of the foreign-data wrapper are also shown.

\df[anptwS+] [pattern [arg_pattern ...]]

Lists functions, together with their result data types, argument data types, and function types,

which are classified as "agg" (aggregate), "normal", "procedure", "trigger", or "window". To

display only functions of specific type(s), add the corresponding letters a, n, p, t, or w to the

command. If pattern is specified, only functions whose names match the pattern are shown. Any

additional arguments are type-name patterns, which are matched to the type names of the first,

second, and so on arguments of the function. (Matching functions can have more arguments than

what you specify. To prevent that, write a dash - as the last arg_pattern.) By default, only

user-created objects are shown; supply a pattern or the S modifier to include system objects. If the

form \df+ is used, additional information about each function is shown, including volatility,

parallel safety, owner, security classification, access privileges, language, source code and

description.

\dF[+] [pattern]

Lists text search configurations. If pattern is specified, only configurations whose names match

the pattern are shown. If the form \dF+ is used, a full description of each configuration is shown,

including the underlying text search parser and the dictionary list for each parser token type.

\dFd[+] [pattern]

Lists text search dictionaries. If pattern is specified, only dictionaries whose names match the

pattern are shown. If the form \dFd+ is used, additional information is shown about each selected

dictionary, including the underlying text search template and the option values.

\dFp[+] [pattern]

Lists text search parsers. If pattern is specified, only parsers whose names match the pattern are

shown. If the form \dFp+ is used, a full description of each parser is shown, including the

underlying functions and the list of recognized token types.

\dFt[+] [pattern]

Lists text search templates. If pattern is specified, only templates whose names match the pattern

are shown. If the form \dFt+ is used, additional information is shown about each template,

including the underlying function names.

\dg[S+] [pattern]

Lists database roles. (Since the concepts of "users" and "groups" have been unified into "roles",

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

this command is now equivalent to \du.) By default, only user-created roles are shown; supply the

S modifier to include system roles. If pattern is specified, only those roles whose names match the

pattern are listed. If the form \dg+ is used, additional information is shown about each role;

currently this adds the comment for each role.

\dl[+]

This is an alias for \lo_list, which shows a list of large objects. If + is appended to the command

name, each large object is listed with its associated permissions, if any.

\dL[S+] [pattern]

Lists procedural languages. If pattern is specified, only languages whose names match the pattern

are listed. By default, only user-created languages are shown; supply the S modifier to include

system objects. If + is appended to the command name, each language is listed with its call

handler, validator, access privileges, and whether it is a system object.

\dn[S+] [pattern]

Lists schemas (namespaces). If pattern is specified, only schemas whose names match the pattern

are listed. By default, only user-created objects are shown; supply a pattern or the S modifier to

include system objects. If + is appended to the command name, each object is listed with its

associated permissions and description, if any.

\do[S+] [pattern [arg_pattern [arg_pattern]]]

Lists operators with their operand and result types. If pattern is specified, only operators whose

names match the pattern are listed. If one arg_pattern is specified, only prefix operators whose

right argument’s type name matches that pattern are listed. If two arg_patterns are specified, only

binary operators whose argument type names match those patterns are listed. (Alternatively, write

- for the unused argument of a unary operator.) By default, only user-created objects are shown;

supply a pattern or the S modifier to include system objects. If + is appended to the command

name, additional information about each operator is shown, currently just the name of the

underlying function.

\dO[S+] [pattern]

Lists collations. If pattern is specified, only collations whose names match the pattern are listed.

By default, only user-created objects are shown; supply a pattern or the S modifier to include

system objects. If + is appended to the command name, each collation is listed with its associated

description, if any. Note that only collations usable with the current database’s encoding are

shown, so the results may vary in different databases of the same installation.

\dp [pattern]

Lists tables, views and sequences with their associated access privileges. If pattern is specified,

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

only tables, views and sequences whose names match the pattern are listed.

The GRANT and REVOKE commands are used to set access privileges. The meaning of the

privilege display is explained in Section 5.7.

\dP[itn+] [pattern]

Lists partitioned relations. If pattern is specified, only entries whose name matches the pattern are

listed. The modifiers t (tables) and i (indexes) can be appended to the command, filtering the kind

of relations to list. By default, partitioned tables and indexes are listed.

If the modifier n ("nested") is used, or a pattern is specified, then non-root partitioned relations are

included, and a column is shown displaying the parent of each partitioned relation.

If + is appended to the command name, the sum of the sizes of each relation’s partitions is also

displayed, along with the relation’s description. If n is combined with +, two sizes are shown: one

including the total size of directly-attached leaf partitions, and another showing the total size of all

partitions, including indirectly attached sub-partitions.

\drds [role-pattern [database-pattern]]

Lists defined configuration settings. These settings can be role-specific, database-specific, or both.

role-pattern and database-pattern are used to select specific roles and databases to list,

respectively. If omitted, or if * is specified, all settings are listed, including those not role-specific

or database-specific, respectively.

The ALTER ROLE and ALTER DATABASE commands are used to define per-role and

per-database configuration settings.

\dRp[+] [pattern]

Lists replication publications. If pattern is specified, only those publications whose names match

the pattern are listed. If + is appended to the command name, the tables and schemas associated

with each publication are shown as well.

\dRs[+] [pattern]

Lists replication subscriptions. If pattern is specified, only those subscriptions whose names match

the pattern are listed. If + is appended to the command name, additional properties of the

subscriptions are shown.

\dT[S+] [pattern]

Lists data types. If pattern is specified, only types whose names match the pattern are listed. If + is

appended to the command name, each type is listed with its internal name and size, its allowed

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

values if it is an enum type, and its associated permissions. By default, only user-created objects

are shown; supply a pattern or the S modifier to include system objects.

\du[S+] [pattern]

Lists database roles. (Since the concepts of "users" and "groups" have been unified into "roles",

this command is now equivalent to \dg.) By default, only user-created roles are shown; supply the

S modifier to include system roles. If pattern is specified, only those roles whose names match the

pattern are listed. If the form \du+ is used, additional information is shown about each role;

currently this adds the comment for each role.

\dx[+] [pattern]

Lists installed extensions. If pattern is specified, only those extensions whose names match the

pattern are listed. If the form \dx+ is used, all the objects belonging to each matching extension are

listed.

\dX [pattern]

Lists extended statistics. If pattern is specified, only those extended statistics whose names match

the pattern are listed.

The status of each kind of extended statistics is shown in a column named after its statistic kind

(e.g. Ndistinct). defined means that it was requested when creating the statistics, and NULL

means it wasn’t requested. You can use pg_stats_ext if you’d like to know whether ANALYZE
was run and statistics are available to the planner.

\dy[+] [pattern]

Lists event triggers. If pattern is specified, only those event triggers whose names match the

pattern are listed. If + is appended to the command name, each object is listed with its associated

description.

\e or \edit [filename] [line_number]

If filename is specified, the file is edited; after the editor exits, the file’s content is copied into the

current query buffer. If no filename is given, the current query buffer is copied to a temporary file

which is then edited in the same fashion. Or, if the current query buffer is empty, the most recently

executed query is copied to a temporary file and edited in the same fashion.

If you edit a file or the previous query, and you quit the editor without modifying the file, the

query buffer is cleared. Otherwise, the new contents of the query buffer are re-parsed according to

the normal rules of psql, treating the whole buffer as a single line. Any complete queries are

immediately executed; that is, if the query buffer contains or ends with a semicolon, everything up

to that point is executed and removed from the query buffer. Whatever remains in the query buffer

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

is redisplayed. Type semicolon or \g to send it, or \r to cancel it by clearing the query buffer.

Treating the buffer as a single line primarily affects meta-commands: whatever is in the buffer

after a meta-command will be taken as argument(s) to the meta-command, even if it spans

multiple lines. (Thus you cannot make meta-command-using scripts this way. Use \i for that.)

If a line number is specified, psql will position the cursor on the specified line of the file or query

buffer. Note that if a single all-digits argument is given, psql assumes it is a line number, not a file

name.

Tip
See Environment, below, for how to configure and customize your editor.

\echo text [...]

Prints the evaluated arguments to standard output, separated by spaces and followed by a newline.

This can be useful to intersperse information in the output of scripts. For example:

=> \echo ‘date‘
Tue Oct 26 21:40:57 CEST 1999

If the first argument is an unquoted -n the trailing newline is not written (nor is the first argument).

Tip
If you use the \o command to redirect your query output you might wish to use \qecho instead

of this command. See also \warn.

\ef [function_description [line_number]]

This command fetches and edits the definition of the named function or procedure, in the form of

a CREATE OR REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE command.

Editing is done in the same way as for \edit. If you quit the editor without saving, the statement is

discarded. If you save and exit the editor, the updated command is executed immediately if you

added a semicolon to it. Otherwise it is redisplayed; type semicolon or \g to send it, or \r to cancel.

The target function can be specified by name alone, or by name and arguments, for example

foo(integer, text). The argument types must be given if there is more than one function of the same

name.

If no function is specified, a blank CREATE FUNCTION template is presented for editing.

If a line number is specified, psql will position the cursor on the specified line of the function

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

body. (Note that the function body typically does not begin on the first line of the file.)

Unlike most other meta-commands, the entire remainder of the line is always taken to be the

argument(s) of \ef, and neither variable interpolation nor backquote expansion are performed in

the arguments.

Tip
See Environment, below, for how to configure and customize your editor.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows the current

encoding.

\errverbose

Repeats the most recent server error message at maximum verbosity, as though VERBOSITY

were set to verbose and SHOW_CONTEXT were set to always.

\ev [view_name [line_number]]

This command fetches and edits the definition of the named view, in the form of a CREATE OR
REPLACE VIEW command. Editing is done in the same way as for \edit. If you quit the editor

without saving, the statement is discarded. If you save and exit the editor, the updated command is

executed immediately if you added a semicolon to it. Otherwise it is redisplayed; type semicolon

or \g to send it, or \r to cancel.

If no view is specified, a blank CREATE VIEW template is presented for editing.

If a line number is specified, psql will position the cursor on the specified line of the view

definition.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the

argument(s) of \ev, and neither variable interpolation nor backquote expansion are performed in

the arguments.

\f [string]

Sets the field separator for unaligned query output. The default is the vertical bar (|). It is

equivalent to \pset fieldsep.

\g [(option=value [...])] [filename]

\g [(option=value [...])] [|command]

Sends the current query buffer to the server for execution.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

If parentheses appear after \g, they surround a space-separated list of option=value

formatting-option clauses, which are interpreted in the same way as \pset option value commands,

but take effect only for the duration of this query. In this list, spaces are not allowed around =

signs, but are required between option clauses. If =value is omitted, the named option is changed

in the same way as for \pset option with no explicit value.

If a filename or |command argument is given, the query’s output is written to the named file or

piped to the given shell command, instead of displaying it as usual. The file or command is written

to only if the query successfully returns zero or more tuples, not if the query fails or is a

non-data-returning SQL command.

If the current query buffer is empty, the most recently sent query is re-executed instead. Except for

that behavior, \g without any arguments is essentially equivalent to a semicolon. With arguments,

\g provides a "one-shot" alternative to the \o command, and additionally allows one-shot

adjustments of the output formatting options normally set by \pset.

When the last argument begins with |, the entire remainder of the line is taken to be the command

to execute, and neither variable interpolation nor backquote expansion are performed in it. The

rest of the line is simply passed literally to the shell.

\gdesc

Shows the description (that is, the column names and data types) of the result of the current query

buffer. The query is not actually executed; however, if it contains some type of syntax error, that

error will be reported in the normal way.

If the current query buffer is empty, the most recently sent query is described instead.

\getenv psql_var env_var

Gets the value of the environment variable env_var and assigns it to the psql variable psql_var. If

env_var is not defined in the psql process’s environment, psql_var is not changed. Example:

=> \getenv home HOME
=> \echo :home
/home/postgres

\gexec

Sends the current query buffer to the server, then treats each column of each row of the query’s

output (if any) as an SQL statement to be executed. For example, to create an index on each

column of my_table:

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

=> SELECT format(’create index on my_table(%I)’, attname)
-> FROM pg_attribute
-> WHERE attrelid = ’my_table’::regclass AND attnum > 0
-> ORDER BY attnum
-> \gexec
CREATE INDEX

CREATE INDEX

CREATE INDEX

CREATE INDEX

The generated queries are executed in the order in which the rows are returned, and left-to-right

within each row if there is more than one column. NULL fields are ignored. The generated queries

are sent literally to the server for processing, so they cannot be psql meta-commands nor contain

psql variable references. If any individual query fails, execution of the remaining queries

continues unless ON_ERROR_STOP is set. Execution of each query is subject to ECHO

processing. (Setting ECHO to all or queries is often advisable when using \gexec.) Query logging,

single-step mode, timing, and other query execution features apply to each generated query as

well.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\gset [prefix]

Sends the current query buffer to the server and stores the query’s output into psql variables (see

Variables below). The query to be executed must return exactly one row. Each column of the row

is stored into a separate variable, named the same as the column. For example:

=> SELECT ’hello’ AS var1, 10 AS var2
-> \gset
=> \echo :var1 :var2
hello 10

If you specify a prefix, that string is prepended to the query’s column names to create the variable

names to use:

=> SELECT ’hello’ AS var1, 10 AS var2
-> \gset result_
=> \echo :result_var1 :result_var2
hello 10

If a column result is NULL, the corresponding variable is unset rather than being set.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

If the query fails or does not return one row, no variables are changed.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\gx [(option=value [...])] [filename]

\gx [(option=value [...])] [|command]

\gx is equivalent to \g, except that it forces expanded output mode for this query, as if

expanded=on were included in the list of \pset options. See also \x.

\h or \help [command]

Gives syntax help on the specified SQL command. If command is not specified, then psql will list

all the commands for which syntax help is available. If command is an asterisk (*), then syntax

help on all SQL commands is shown.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the

argument(s) of \help, and neither variable interpolation nor backquote expansion are performed in

the arguments.

Note
To simplify typing, commands that consists of several words do not have to be quoted. Thus

it is fine to type \help alter table.

\H or \html

Turns on HTML query output format. If the HTML format is already on, it is switched back to the

default aligned text format. This command is for compatibility and convenience, but see \pset
about setting other output options.

\i or \include filename

Reads input from the file filename and executes it as though it had been typed on the keyboard.

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-command.

This can be used to intersperse interactive input with input from files. Note that Readline behavior

will be used only if it is active at the outermost level.

Note
If you want to see the lines on the screen as they are read you must set the variable ECHO to

all.

\if expression

\elif expression

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

\else

\endif

This group of commands implements nestable conditional blocks. A conditional block must begin

with an \if and end with an \endif. In between there may be any number of \elif clauses, which

may optionally be followed by a single \else clause. Ordinary queries and other types of backslash

commands may (and usually do) appear between the commands forming a conditional block.

The \if and \elif commands read their argument(s) and evaluate them as a Boolean expression. If

the expression yields true then processing continues normally; otherwise, lines are skipped until a

matching \elif, \else, or \endif is reached. Once an \if or \elif test has succeeded, the arguments of

later \elif commands in the same block are not evaluated but are treated as false. Lines following

an \else are processed only if no earlier matching \if or \elif succeeded.

The expression argument of an \if or \elif command is subject to variable interpolation and

backquote expansion, just like any other backslash command argument. After that it is evaluated

like the value of an on/off option variable. So a valid value is any unambiguous case-insensitive

match for one of: true, false, 1, 0, on, off, yes, no. For example, t, T, and tR will all be considered

to be true.

Expressions that do not properly evaluate to true or false will generate a warning and be treated as

false.

Lines being skipped are parsed normally to identify queries and backslash commands, but queries

are not sent to the server, and backslash commands other than conditionals (\if, \elif, \else, \endif)
are ignored. Conditional commands are checked only for valid nesting. Variable references in

skipped lines are not expanded, and backquote expansion is not performed either.

All the backslash commands of a given conditional block must appear in the same source file. If

EOF is reached on the main input file or an \include-ed file before all local \if-blocks have been

closed, then psql will raise an error.

Here is an example:

-- check for the existence of two separate records in the database and store

-- the results in separate psql variables

SELECT

EXISTS(SELECT 1 FROM customer WHERE customer_id = 123) as is_customer,

EXISTS(SELECT 1 FROM employee WHERE employee_id = 456) as is_employee

\gset

\if :is_customer

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

SELECT * FROM customer WHERE customer_id = 123;

\elif :is_employee

\echo ’is not a customer but is an employee’

SELECT * FROM employee WHERE employee_id = 456;

\else

\if yes

\echo ’not a customer or employee’

\else

\echo ’this will never print’

\endif

\endif

\ir or \include_relative filename

The \ir command is similar to \i, but resolves relative file names differently. When executing in

interactive mode, the two commands behave identically. However, when invoked from a script, \ir

interprets file names relative to the directory in which the script is located, rather than the current

working directory.

\l[+] or \list[+] [pattern]

List the databases in the server and show their names, owners, character set encodings, and access

privileges. If pattern is specified, only databases whose names match the pattern are listed. If + is

appended to the command name, database sizes, default tablespaces, and descriptions are also

displayed. (Size information is only available for databases that the current user can connect to.)

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename. Note that this is

subtly different from the server function lo_export, which acts with the permissions of the user

that the database server runs as and on the server’s file system.

Tip
Use \lo_list to find out the large object’s OID.

\lo_import filename [comment]

Stores the file into a PostgreSQL large object. Optionally, it associates the given comment with

the object. Example:

foo=> \lo_import ’/home/peter/pictures/photo.xcf’ ’a picture of me’
lo_import 152801

The response indicates that the large object received object ID 152801, which can be used to

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

access the newly-created large object in the future. For the sake of readability, it is recommended

to always associate a human-readable comment with every object. Both OIDs and comments can

be viewed with the \lo_list command.

Note that this command is subtly different from the server-side lo_import because it acts as the

local user on the local file system, rather than the server’s user and file system.

\lo_list[+]

Shows a list of all PostgreSQL large objects currently stored in the database, along with any

comments provided for them. If + is appended to the command name, each large object is listed

with its associated permissions, if any.

\lo_unlink loid

Deletes the large object with OID loid from the database.

Tip
Use \lo_list to find out the large object’s OID.

\o or \out [filename]

\o or \out [|command]

Arranges to save future query results to the file filename or pipe future results to the shell

command command. If no argument is specified, the query output is reset to the standard output.

If the argument begins with |, then the entire remainder of the line is taken to be the command to

execute, and neither variable interpolation nor backquote expansion are performed in it. The rest

of the line is simply passed literally to the shell.

"Query results" includes all tables, command responses, and notices obtained from the database

server, as well as output of various backslash commands that query the database (such as \d); but

not error messages.

Tip
To intersperse text output in between query results, use \qecho.

\p or \print

Print the current query buffer to the standard output. If the current query buffer is empty, the most

recently executed query is printed instead.

\password [username]

Changes the password of the specified user (by default, the current user). This command prompts

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

for the new password, encrypts it, and sends it to the server as an ALTER ROLE command. This

makes sure that the new password does not appear in cleartext in the command history, the server

log, or elsewhere.

\prompt [text] name

Prompts the user to supply text, which is assigned to the variable name. An optional prompt string,

text, can be specified. (For multiword prompts, surround the text with single quotes.)

By default, \prompt uses the terminal for input and output. However, if the -f command line

switch was used, \prompt uses standard input and standard output.

\pset [option [value]]

This command sets options affecting the output of query result tables. option indicates which

option is to be set. The semantics of value vary depending on the selected option. For some

options, omitting value causes the option to be toggled or unset, as described under the particular

option. If no such behavior is mentioned, then omitting value just results in the current setting

being displayed.

\pset without any arguments displays the current status of all printing options.

Adjustable printing options are:

border

The value must be a number. In general, the higher the number the more borders and lines the

tables will have, but details depend on the particular format. In HTML format, this will

translate directly into the border=... attribute. In most other formats only values 0 (no

border), 1 (internal dividing lines), and 2 (table frame) make sense, and values above 2 will

be treated the same as border = 2. The latex and latex-longtable formats additionally allow a

value of 3 to add dividing lines between data rows.

columns

Sets the target width for the wrapped format, and also the width limit for determining

whether output is wide enough to require the pager or switch to the vertical display in

expanded auto mode. Zero (the default) causes the target width to be controlled by the

environment variable COLUMNS, or the detected screen width if COLUMNS is not set. In

addition, if columns is zero then the wrapped format only affects screen output. If columns is

nonzero then file and pipe output is wrapped to that width as well.

csv_fieldsep

Specifies the field separator to be used in CSV output format. If the separator character

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

appears in a field’s value, that field is output within double quotes, following standard CSV

rules. The default is a comma.

expanded (or x)

If value is specified it must be either on or off, which will enable or disable expanded mode,

or auto. If value is omitted the command toggles between the on and off settings. When

expanded mode is enabled, query results are displayed in two columns, with the column

name on the left and the data on the right. This mode is useful if the data wouldn’t fit on the

screen in the normal "horizontal" mode. In the auto setting, the expanded mode is used

whenever the query output has more than one column and is wider than the screen;

otherwise, the regular mode is used. The auto setting is only effective in the aligned and

wrapped formats. In other formats, it always behaves as if the expanded mode is off.

fieldsep

Specifies the field separator to be used in unaligned output format. That way one can create,

for example, tab-separated output, which other programs might prefer. To set a tab as field

separator, type \pset fieldsep ’\t’. The default field separator is ’|’ (a vertical bar).

fieldsep_zero

Sets the field separator to use in unaligned output format to a zero byte.

footer

If value is specified it must be either on or off which will enable or disable display of the

table footer (the (n rows) count). If value is omitted the command toggles footer display on or

off.

format

Sets the output format to one of aligned, asciidoc, csv, html, latex, latex-longtable, troff-ms,

unaligned, or wrapped. Unique abbreviations are allowed.

aligned format is the standard, human-readable, nicely formatted text output; this is the

default.

unaligned format writes all columns of a row on one line, separated by the currently active

field separator. This is useful for creating output that might be intended to be read in by other

programs, for example, tab-separated or comma-separated format. However, the field

separator character is not treated specially if it appears in a column’s value; so CSV format

may be better suited for such purposes.

csv format

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

writes column values separated by commas, applying the quoting rules described in RFC
4180. This output is compatible with the CSV format of the server’s COPY command. A

header line with column names is generated unless the tuples_only parameter is on. Titles

and footers are not printed. Each row is terminated by the system-dependent end-of-line

character, which is typically a single newline (\n) for Unix-like systems or a carriage return

and newline sequence (\r\n) for Microsoft Windows. Field separator characters other than

comma can be selected with \pset csv_fieldsep.

wrapped format is like aligned but wraps wide data values across lines to make the output fit

in the target column width. The target width is determined as described under the columns

option. Note that psql will not attempt to wrap column header titles; therefore, wrapped

format behaves the same as aligned if the total width needed for column headers exceeds the

target.

The asciidoc, html, latex, latex-longtable, and troff-ms formats put out tables that are

intended to be included in documents using the respective mark-up language. They are not

complete documents! This might not be necessary in HTML, but in LaTeX you must have a

complete document wrapper. The latex format uses LaTeX’s tabular environment. The

latex-longtable format requires the LaTeX longtable and booktabs packages.

linestyle

Sets the border line drawing style to one of ascii, old-ascii, or unicode. Unique abbreviations

are allowed. (That would mean one letter is enough.) The default setting is ascii. This option

only affects the aligned and wrapped output formats.

ascii style uses plain ASCII characters. Newlines in data are shown using a + symbol in the

right-hand margin. When the wrapped format wraps data from one line to the next without a

newline character, a dot (.) is shown in the right-hand margin of the first line, and again in the

left-hand margin of the following line.

old-ascii style uses plain ASCII characters, using the formatting style used in PostgreSQL 8.4

and earlier. Newlines in data are shown using a : symbol in place of the left-hand column

separator. When the data is wrapped from one line to the next without a newline character, a ;

symbol is used in place of the left-hand column separator.

unicode style uses Unicode box-drawing characters. Newlines in data are shown using a

carriage return symbol in the right-hand margin. When the data is wrapped from one line to

the next without a newline character, an ellipsis symbol is shown in the right-hand margin of

the first line, and again in the left-hand margin of the following line.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

When the border setting is greater than zero, the linestyle option also determines the

characters with which the border lines are drawn. Plain ASCII characters work everywhere,

but Unicode characters look nicer on displays that recognize them.

null

Sets the string to be printed in place of a null value. The default is to print nothing, which can

easily be mistaken for an empty string. For example, one might prefer \pset null ’(null)’.

numericlocale

If value is specified it must be either on or off which will enable or disable display of a

locale-specific character to separate groups of digits to the left of the decimal marker. If

value is omitted the command toggles between regular and locale-specific numeric output.

pager

Controls use of a pager program for query and psql help output. When the pager option is off,

the pager program is not used. When the pager option is on, the pager is used when

appropriate, i.e., when the output is to a terminal and will not fit on the screen. The pager

option can also be set to always, which causes the pager to be used for all terminal output

regardless of whether it fits on the screen. \pset pager without a value toggles pager use on

and off.

If the environment variable PSQL_PAGER or PAGER is set, output to be paged is piped to

the specified program. Otherwise a platform-dependent default program (such as more) is

used.

When using the \watch command to execute a query repeatedly, the environment variable

PSQL_WATCH_PAGER is used to find the pager program instead, on Unix systems. This is

configured separately because it may confuse traditional pagers, but can be used to send

output to tools that understand psql’s output format (such as pspg --stream).

pager_min_lines

If pager_min_lines is set to a number greater than the page height, the pager program will not

be called unless there are at least this many lines of output to show. The default setting is 0.

recordsep

Specifies the record (line) separator to use in unaligned output format. The default is a

newline character.

recordsep_zero

Sets the record separator to use in unaligned output format to a zero byte.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

tableattr (or T)

In HTML format, this specifies attributes to be placed inside the table tag. This could for

example be cellpadding or bgcolor. Note that you probably don’t want to specify border here,

as that is already taken care of by \pset border. If no value is given, the table attributes are

unset.

In latex-longtable format, this controls the proportional width of each column containing a

left-aligned data type. It is specified as a whitespace-separated list of values, e.g., ’0.2 0.2

0.6’. Unspecified output columns use the last specified value.

title (or C)

Sets the table title for any subsequently printed tables. This can be used to give your output

descriptive tags. If no value is given, the title is unset.

tuples_only (or t)

If value is specified it must be either on or off which will enable or disable tuples-only mode.

If value is omitted the command toggles between regular and tuples-only output. Regular

output includes extra information such as column headers, titles, and various footers. In

tuples-only mode, only actual table data is shown.

unicode_border_linestyle

Sets the border drawing style for the unicode line style to one of single or double.

unicode_column_linestyle

Sets the column drawing style for the unicode line style to one of single or double.

unicode_header_linestyle

Sets the header drawing style for the unicode line style to one of single or double.

Illustrations of how these different formats look can be seen in Examples, below.

Tip
There are various shortcut commands for \pset. See \a, \C, \f, \H, \t, \T, and \x.

\q or \quit

Quits the psql program. In a script file, only execution of that script is terminated.

\qecho text [...]

This command is identical to \echo except that the output will be written to the query output

channel, as set by \o.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

\r or \reset

Resets (clears) the query buffer.

\s [filename]

Print psql’s command line history to filename. If filename is omitted, the history is written to the

standard output (using the pager if appropriate). This command is not available if psql was built

without Readline support.

\set [name [value [...]]]

Sets the psql variable name to value, or if more than one value is given, to the concatenation of all

of them. If only one argument is given, the variable is set to an empty-string value. To unset a

variable, use the \unset command.

\set without any arguments displays the names and values of all currently-set psql variables.

Valid variable names can contain letters, digits, and underscores. See Variables below for details.

Variable names are case-sensitive.

Certain variables are special, in that they control psql’s behavior or are automatically set to reflect

connection state. These variables are documented in Variables, below.

Note
This command is unrelated to the SQL command SET.

\setenv name [value]

Sets the environment variable name to value, or if the value is not supplied, unsets the

environment variable. Example:

testdb=> \setenv PAGER less
testdb=> \setenv LESS -imx4F

\sf[+] function_description

This command fetches and shows the definition of the named function or procedure, in the form of

a CREATE OR REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE command.

The definition is printed to the current query output channel, as set by \o.

The target function can be specified by name alone, or by name and arguments, for example

foo(integer, text). The argument types must be given if there is more than one function of the same

name.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

If + is appended to the command name, then the output lines are numbered, with the first line of

the function body being line 1.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the

argument(s) of \sf, and neither variable interpolation nor backquote expansion are performed in

the arguments.

\sv[+] view_name

This command fetches and shows the definition of the named view, in the form of a CREATE OR
REPLACE VIEW command. The definition is printed to the current query output channel, as set

by \o.

If + is appended to the command name, then the output lines are numbered from 1.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the

argument(s) of \sv, and neither variable interpolation nor backquote expansion are performed in

the arguments.

\t

Toggles the display of output column name headings and row count footer. This command is

equivalent to \pset tuples_only and is provided for convenience.

\T table_options

Specifies attributes to be placed within the table tag in HTML output format. This command is

equivalent to \pset tableattr table_options.

\timing [on | off]

With a parameter, turns displaying of how long each SQL statement takes on or off. Without a

parameter, toggles the display between on and off. The display is in milliseconds; intervals longer

than 1 second are also shown in minutes:seconds format, with hours and days fields added if

needed.

\unset name

Unsets (deletes) the psql variable name.

Most variables that control psql’s behavior cannot be unset; instead, an \unset command is

interpreted as setting them to their default values. See Variables below.

\w or \write filename

\w or \write |command

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

Writes the current query buffer to the file filename or pipes it to the shell command command. If

the current query buffer is empty, the most recently executed query is written instead.

If the argument begins with |, then the entire remainder of the line is taken to be the command to

execute, and neither variable interpolation nor backquote expansion are performed in it. The rest

of the line is simply passed literally to the shell.

\warn text [...]

This command is identical to \echo except that the output will be written to psql’s standard error

channel, rather than standard output.

\watch [seconds]

Repeatedly execute the current query buffer (as \g does) until interrupted or the query fails. Wait

the specified number of seconds (default 2) between executions. Each query result is displayed

with a header that includes the \pset title string (if any), the time as of query start, and the delay

interval.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\x [on | off | auto]

Sets or toggles expanded table formatting mode. As such it is equivalent to \pset expanded.

\z [pattern]

Lists tables, views and sequences with their associated access privileges. If a pattern is specified,

only tables, views and sequences whose names match the pattern are listed.

This is an alias for \dp ("display privileges").

\! [command]

With no argument, escapes to a sub-shell; psql resumes when the sub-shell exits. With an

argument, executes the shell command command.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the

argument(s) of \!, and neither variable interpolation nor backquote expansion are performed in the

arguments. The rest of the line is simply passed literally to the shell.

\? [topic]

Shows help information. The optional topic parameter (defaulting to commands) selects which

part of psql is explained: commands describes psql’s backslash commands; options describes the

command-line options that can be passed to psql; and variables shows help about psql

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

configuration variables.

\;

Backslash-semicolon is not a meta-command in the same way as the preceding commands; rather,

it simply causes a semicolon to be added to the query buffer without any further processing.

Normally, psql will dispatch an SQL command to the server as soon as it reaches the

command-ending semicolon, even if more input remains on the current line. Thus for example

entering

select 1; select 2; select 3;

will result in the three SQL commands being individually sent to the server, with each one’s

results being displayed before continuing to the next command. However, a semicolon entered as

\; will not trigger command processing, so that the command before it and the one after are

effectively combined and sent to the server in one request. So for example

select 1\; select 2\; select 3;

results in sending the three SQL commands to the server in a single request, when the

non-backslashed semicolon is reached. The server executes such a request as a single transaction,

unless there are explicit BEGIN/COMMIT commands included in the string to divide it into

multiple transactions. (See Section 55.2.2.1 for more details about how the server handles

multi-query strings.)

Patterns

The various \d commands accept a pattern parameter to specify the object name(s) to be displayed.

In the simplest case, a pattern is just the exact name of the object. The characters within a pattern

are normally folded to lower case, just as in SQL names; for example, \dt FOO will display the

table named foo. As in SQL names, placing double quotes around a pattern stops folding to lower

case. Should you need to include an actual double quote character in a pattern, write it as a pair of

double quotes within a double-quote sequence; again this is in accord with the rules for SQL

quoted identifiers. For example, \dt "FOO""BAR" will display the table named FOO"BAR (not

foo"bar). Unlike the normal rules for SQL names, you can put double quotes around just part of a

pattern, for instance \dt FOO"FOO"BAR will display the table named fooFOObar.

Whenever the pattern parameter is omitted completely, the \d commands display all objects that

are visible in the current schema search path -- this is equivalent to using * as the pattern. (An

object is said to be visible if its containing schema is in the search path and no object of the same

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

kind and name appears earlier in the search path. This is equivalent to the statement that the object

can be referenced by name without explicit schema qualification.) To see all objects in the

database regardless of visibility, use *.* as the pattern.

Within a pattern, * matches any sequence of characters (including no characters) and ? matches

any single character. (This notation is comparable to Unix shell file name patterns.) For example,

\dt int* displays tables whose names begin with int. But within double quotes, * and ? lose these

special meanings and are just matched literally.

A relation pattern that contains a dot (.) is interpreted as a schema name pattern followed by an

object name pattern. For example, \dt foo*.*bar* displays all tables whose table name includes bar

that are in schemas whose schema name starts with foo. When no dot appears, then the pattern

matches only objects that are visible in the current schema search path. Again, a dot within double

quotes loses its special meaning and is matched literally. A relation pattern that contains two dots

(.) is interpreted as a database name followed by a schema name pattern followed by an object

name pattern. The database name portion will not be treated as a pattern and must match the name

of the currently connected database, else an error will be raised.

A schema pattern that contains a dot (.) is interpreted as a database name followed by a schema

name pattern. For example, \dn mydb.*foo* displays all schemas whose schema name includes

foo. The database name portion will not be treated as a pattern and must match the name of the

currently connected database, else an error will be raised.

Advanced users can use regular-expression notations such as character classes, for example [0-9]

to match any digit. All regular expression special characters work as specified in Section 9.7.3,

except for . which is taken as a separator as mentioned above, * which is translated to the

regular-expression notation .*, ? which is translated to ., and $ which is matched literally. You

can emulate these pattern characters at need by writing ? for ., (R+|) for R*, or (R|) for R?. $ is

not needed as a regular-expression character since the pattern must match the whole name, unlike

the usual interpretation of regular expressions (in other words, $ is automatically appended to your

pattern). Write * at the beginning and/or end if you don’t wish the pattern to be anchored. Note

that within double quotes, all regular expression special characters lose their special meanings and

are matched literally. Also, the regular expression special characters are matched literally in

operator name patterns (i.e., the argument of \do).

Advanced Features
Variables

psql provides variable substitution features similar to common Unix command shells. Variables

are simply name/value pairs, where the value can be any string of any length. The name must

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

consist of letters (including non-Latin letters), digits, and underscores.

To set a variable, use the psql meta-command \set. For example,

testdb=> \set foo bar

sets the variable foo to the value bar. To retrieve the content of the variable, precede the name

with a colon, for example:

testdb=> \echo :foo
bar

This works in both regular SQL commands and meta-commands; there is more detail in SQL

Interpolation, below.

If you call \set without a second argument, the variable is set to an empty-string value. To unset

(i.e., delete) a variable, use the command \unset. To show the values of all variables, call \set
without any argument.

Note

The arguments of \set are subject to the same substitution rules as with other commands.

Thus you can construct interesting references such as \set :foo ’something’ and get "soft

links" or "variable variables" of Perl or PHP fame, respectively. Unfortunately (or

fortunately?), there is no way to do anything useful with these constructs. On the other hand,

\set bar :foo is a perfectly valid way to copy a variable.

A number of these variables are treated specially by psql. They represent certain option settings

that can be changed at run time by altering the value of the variable, or in some cases represent

changeable state of psql. By convention, all specially treated variables’ names consist of all

upper-case ASCII letters (and possibly digits and underscores). To ensure maximum compatibility

in the future, avoid using such variable names for your own purposes.

Variables that control psql’s behavior generally cannot be unset or set to invalid values. An \unset

command is allowed but is interpreted as setting the variable to its default value. A \set command

without a second argument is interpreted as setting the variable to on, for control variables that

accept that value, and is rejected for others. Also, control variables that accept the values on and

off will also accept other common spellings of Boolean values, such as true and false.

The specially treated variables are:

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

AUTOCOMMIT

When on (the default), each SQL command is automatically committed upon successful

completion. To postpone commit in this mode, you must enter a BEGIN or START
TRANSACTION SQL command. When off or unset, SQL commands are not committed

until you explicitly issue COMMIT or END. The autocommit-off mode works by issuing an

implicit BEGIN for you, just before any command that is not already in a transaction block

and is not itself a BEGIN or other transaction-control command, nor a command that cannot

be executed inside a transaction block (such as VACUUM).

Note
In autocommit-off mode, you must explicitly abandon any failed transaction by entering

ABORT or ROLLBACK. Also keep in mind that if you exit the session without

committing, your work will be lost.

Note
The autocommit-on mode is PostgreSQL’s traditional behavior, but autocommit-off is

closer to the SQL spec. If you prefer autocommit-off, you might wish to set it in the

system-wide psqlrc file or your ~/.psqlrc file.

COMP_KEYWORD_CASE

Determines which letter case to use when completing an SQL key word. If set to lower or

upper, the completed word will be in lower or upper case, respectively. If set to

preserve-lower or preserve-upper (the default), the completed word will be in the case of the

word already entered, but words being completed without anything entered will be in lower

or upper case, respectively.

DBNAME

The name of the database you are currently connected to. This is set every time you connect

to a database (including program start-up), but can be changed or unset.

ECHO

If set to all, all nonempty input lines are printed to standard output as they are read. (This

does not apply to lines read interactively.) To select this behavior on program start-up, use

the switch -a. If set to queries, psql prints each query to standard output as it is sent to the

server. The switch to select this behavior is -e. If set to errors, then only failed queries are

displayed on standard error output. The switch for this behavior is -b. If set to none (the

default), then no queries are displayed.

ECHO_HIDDEN

When this variable is set to on and a backslash command queries the database, the query is

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

first shown. This feature helps you to study PostgreSQL internals and provide similar

functionality in your own programs. (To select this behavior on program start-up, use the

switch -E.) If you set this variable to the value noexec, the queries are just shown but are not

actually sent to the server and executed. The default value is off.

ENCODING

The current client character set encoding. This is set every time you connect to a database

(including program start-up), and when you change the encoding with \encoding, but it can

be changed or unset.

ERROR

true if the last SQL query failed, false if it succeeded. See also SQLSTATE.

FETCH_COUNT

If this variable is set to an integer value greater than zero, the results of SELECT queries are

fetched and displayed in groups of that many rows, rather than the default behavior of

collecting the entire result set before display. Therefore only a limited amount of memory is

used, regardless of the size of the result set. Settings of 100 to 1000 are commonly used when

enabling this feature. Keep in mind that when using this feature, a query might fail after

having already displayed some rows.

Tip
Although you can use any output format with this feature, the default aligned format

tends to look bad because each group of FETCH_COUNT rows will be formatted

separately, leading to varying column widths across the row groups. The other output

formats work better.

HIDE_TABLEAM

If this variable is set to true, a table’s access method details are not displayed. This is mainly

useful for regression tests.

HIDE_TOAST_COMPRESSION

If this variable is set to true, column compression method details are not displayed. This is

mainly useful for regression tests.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not entered into the

history list. If set to a value of ignoredups, lines matching the previous history line are not

entered. A value of ignoreboth combines the two options. If set to none (the default), all lines

read in interactive mode are saved on the history list.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

Note
This feature was shamelessly plagiarized from Bash.

HISTFILE

The file name that will be used to store the history list. If unset, the file name is taken from

the PSQL_HISTORY environment variable. If that is not set either, the default is

~/.psql_history, or %APPDATA%\postgresql\psql_history on Windows. For example,

putting:

\set HISTFILE ~/.psql_history-:DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

Note
This feature was shamelessly plagiarized from Bash.

HISTSIZE

The maximum number of commands to store in the command history (default 500). If set to a

negative value, no limit is applied.

Note
This feature was shamelessly plagiarized from Bash.

HOST

The database server host you are currently connected to. This is set every time you connect to

a database (including program start-up), but can be changed or unset.

IGNOREEOF

If set to 1 or less, sending an EOF character (usually Control+D) to an interactive session of

psql will terminate the application. If set to a larger numeric value, that many consecutive

EOF characters must be typed to make an interactive session terminate. If the variable is set

to a non-numeric value, it is interpreted as 10. The default is 0.

Note
This feature was shamelessly plagiarized from Bash.

LASTOID

The value of the last affected OID, as returned from an INSERT or \lo_import command.

This variable is only guaranteed to be valid until after the result of the next SQL command

has been displayed. PostgreSQL servers since version 12 do not support OID system

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

columns anymore, thus LASTOID will always be 0 following INSERT when targeting such

servers.

LAST_ERROR_MESSAGE

LAST_ERROR_SQLSTATE

The primary error message and associated SQLSTATE code for the most recent failed query

in the current psql session, or an empty string and 00000 if no error has occurred in the

current session.

ON_ERROR_ROLLBACK

When set to on, if a statement in a transaction block generates an error, the error is ignored

and the transaction continues. When set to interactive, such errors are only ignored in

interactive sessions, and not when reading script files. When set to off (the default), a

statement in a transaction block that generates an error aborts the entire transaction. The error

rollback mode works by issuing an implicit SAVEPOINT for you, just before each command

that is in a transaction block, and then rolling back to the savepoint if the command fails.

ON_ERROR_STOP

By default, command processing continues after an error. When this variable is set to on,

processing will instead stop immediately. In interactive mode, psql will return to the

command prompt; otherwise, psql will exit, returning error code 3 to distinguish this case

from fatal error conditions, which are reported using error code 1. In either case, any

currently running scripts (the top-level script, if any, and any other scripts which it may have

in invoked) will be terminated immediately. If the top-level command string contained

multiple SQL commands, processing will stop with the current command.

PORT

The database server port to which you are currently connected. This is set every time you

connect to a database (including program start-up), but can be changed or unset.

PROMPT1

PROMPT2

PROMPT3

These specify what the prompts psql issues should look like. See Prompting below.

QUIET

Setting this variable to on is equivalent to the command line option -q. It is probably not too

useful in interactive mode.

ROW_COUNT

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

The number of rows returned or affected by the last SQL query, or 0 if the query failed or did

not report a row count.

SERVER_VERSION_NAME

SERVER_VERSION_NUM

The server’s version number as a string, for example 9.6.2, 10.1 or 11beta1, and in numeric

form, for example 90602 or 100001. These are set every time you connect to a database

(including program start-up), but can be changed or unset.

SHOW_ALL_RESULTS

When this variable is set to off, only the last result of a combined query (\;) is shown instead

of all of them. The default is on. The off behavior is for compatibility with older versions of

psql.

SHOW_CONTEXT

This variable can be set to the values never, errors, or always to control whether CONTEXT

fields are displayed in messages from the server. The default is errors (meaning that context

will be shown in error messages, but not in notice or warning messages). This setting has no

effect when VERBOSITY is set to terse or sqlstate. (See also \errverbose, for use when you

want a verbose version of the error you just got.)

SINGLELINE

Setting this variable to on is equivalent to the command line option -S.

SINGLESTEP

Setting this variable to on is equivalent to the command line option -s.

SQLSTATE

The error code (see Appendix A) associated with the last SQL query’s failure, or 00000 if it

succeeded.

USER

The database user you are currently connected as. This is set every time you connect to a

database (including program start-up), but can be changed or unset.

VERBOSITY

This variable can be set to the values default, verbose, terse, or sqlstate to control the

verbosity of error reports. (See also \errverbose, for use when you want a verbose version of

the error you just got.)

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

VERSION

VERSION_NAME

VERSION_NUM

These variables are set at program start-up to reflect psql’s version, respectively as a verbose

string, a short string (e.g., 9.6.2, 10.1, or 11beta1), and a number (e.g., 90602 or 100001).

They can be changed or unset.

SQL Interpolation

A key feature of psql variables is that you can substitute ("interpolate") them into regular SQL

statements, as well as the arguments of meta-commands. Furthermore, psql provides facilities for

ensuring that variable values used as SQL literals and identifiers are properly quoted. The syntax

for interpolating a value without any quoting is to prepend the variable name with a colon (:). For

example,

testdb=> \set foo ’my_table’
testdb=> SELECT * FROM :foo;

would query the table my_table. Note that this may be unsafe: the value of the variable is copied

literally, so it can contain unbalanced quotes, or even backslash commands. You must make sure

that it makes sense where you put it.

When a value is to be used as an SQL literal or identifier, it is safest to arrange for it to be quoted.

To quote the value of a variable as an SQL literal, write a colon followed by the variable name in

single quotes. To quote the value as an SQL identifier, write a colon followed by the variable

name in double quotes. These constructs deal correctly with quotes and other special characters

embedded within the variable value. The previous example would be more safely written this way:

testdb=> \set foo ’my_table’
testdb=> SELECT * FROM :"foo";

Variable interpolation will not be performed within quoted SQL literals and identifiers. Therefore,

a construction such as ’:foo’ doesn’t work to produce a quoted literal from a variable’s value (and

it would be unsafe if it did work, since it wouldn’t correctly handle quotes embedded in the value).

One example use of this mechanism is to copy the contents of a file into a table column. First load

the file into a variable and then interpolate the variable’s value as a quoted string:

testdb=> \set content ‘cat my_file.txt‘
testdb=> INSERT INTO my_table VALUES (:’content’);

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

(Note that this still won’t work if my_file.txt contains NUL bytes. psql does not support

embedded NUL bytes in variable values.)

Since colons can legally appear in SQL commands, an apparent attempt at interpolation (that is,

:name, :’name’, or :"name") is not replaced unless the named variable is currently set. In any case,

you can escape a colon with a backslash to protect it from substitution.

The :{?name} special syntax returns TRUE or FALSE depending on whether the variable exists or

not, and is thus always substituted, unless the colon is backslash-escaped.

The colon syntax for variables is standard SQL for embedded query languages, such as ECPG.

The colon syntaxes for array slices and type casts are PostgreSQL extensions, which can

sometimes conflict with the standard usage. The colon-quote syntax for escaping a variable’s

value as an SQL literal or identifier is a psql extension.

Prompting

The prompts psql issues can be customized to your preference. The three variables PROMPT1,

PROMPT2, and PROMPT3 contain strings and special escape sequences that describe the

appearance of the prompt. Prompt 1 is the normal prompt that is issued when psql requests a new

command. Prompt 2 is issued when more input is expected during command entry, for example

because the command was not terminated with a semicolon or a quote was not closed. Prompt 3 is

issued when you are running an SQL COPY FROM STDIN command and you need to type in a

row value on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is

encountered. Depending on the next character, certain other text is substituted instead. Defined

substitutions are:

%M

The full host name (with domain name) of the database server, or [local] if the connection is

over a Unix domain socket, or [local:/dir/name], if the Unix domain socket is not at the

compiled in default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the connection is

over a Unix domain socket.

%>

The port number at which the database server is listening.

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

%n

The database session user name. (The expansion of this value might change during a database

session as the result of the command SET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a #, otherwise a >. (The expansion of this

value might change during a database session as the result of the command SET SESSION
AUTHORIZATION.)

%p

The process ID of the backend currently connected to.

%R

In prompt 1 normally =, but @ if the session is in an inactive branch of a conditional block,

or ^ if in single-line mode, or ! if the session is disconnected from the database (which can

happen if \connect fails). In prompt 2 %R is replaced by a character that depends on why psql

expects more input: - if the command simply wasn’t terminated yet, but * if there is an

unfinished /* ... */ comment, a single quote if there is an unfinished quoted string, a double

quote if there is an unfinished quoted identifier, a dollar sign if there is an unfinished

dollar-quoted string, or (if there is an unmatched left parenthesis. In prompt 3 %R doesn’t

produce anything.

%x

Transaction status: an empty string when not in a transaction block, or * when in a

transaction block, or ! when in a failed transaction block, or ? when the transaction state is

indeterminate (for example, because there is no connection).

%l

The line number inside the current statement, starting from 1.

%digits

The character with the indicated octal code is substituted.

%:name:

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

The value of the psql variable name. See Variables, above, for details.

%‘command‘

The output of command, similar to ordinary "back-tick" substitution.

%[... %]

Prompts can contain terminal control characters which, for example, change the color,

background, or style of the prompt text, or change the title of the terminal window. In order

for the line editing features of Readline to work properly, these non-printing control

characters must be designated as invisible by surrounding them with %[and %]. Multiple

pairs of these can occur within the prompt. For example:

testdb=> \set PROMPT1 ’%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%# ’

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible,

color-capable terminals.

%w

Whitespace of the same width as the most recent output of PROMPT1. This can be used as a

PROMPT2 setting, so that multi-line statements are aligned with the first line, but there is no

visible secondary prompt.

To insert a percent sign into your prompt, write %%. The default prompts are ’%/%R%x%# ’ for

prompts 1 and 2, and ’>> ’ for prompt 3.

Note

This feature was shamelessly plagiarized from tcsh.

Command-Line Editing

psql uses the Readline or libedit library, if available, for convenient line editing and retrieval. The

command history is automatically saved when psql exits and is reloaded when psql starts up. Type

up-arrow or control-P to retrieve previous lines.

You can also use tab completion to fill in partially-typed keywords and SQL object names in

many (by no means all) contexts. For example, at the start of a command, typing ins and pressing

TAB will fill in insert into. Then, typing a few characters of a table or schema name and pressing

TAB will fill in the unfinished name, or offer a menu of possible completions when there’s more

than one. (Depending on the library in use, you may need to press TAB more than once to get a

menu.)

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

Tab completion for SQL object names requires sending queries to the server to find possible

matches. In some contexts this can interfere with other operations. For example, after BEGIN it

will be too late to issue SET TRANSACTION ISOLATION LEVEL if a tab-completion query is

issued in between. If you do not want tab completion at all, you can turn it off permanently by

putting this in a file named .inputrc in your home directory:

$if psql

set disable-completion on

$endif

(This is not a psql but a Readline feature. Read its documentation for further details.)

The -n (--no-readline) command line option can also be useful to disable use of Readline for a

single run of psql. This prevents tab completion, use or recording of command line history, and

editing of multi-line commands. It is particularly useful when you need to copy-and-paste text that

contains TAB characters.

ENVIRONMENT
COLUMNS

If \pset columns is zero, controls the width for the wrapped format and width for determining if

wide output requires the pager or should be switched to the vertical format in expanded auto

mode.

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters (see Section 34.15).

PG_COLOR
Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

PSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e, \ef, and \ev commands. These variables are examined in the order listed; the

first that is set is used. If none of them is set, the default is to use vi on Unix systems or

notepad.exe on Windows systems.

PSQL_EDITOR_LINENUMBER_ARG

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

When \e, \ef, or \ev is used with a line number argument, this variable specifies the command-line

argument used to pass the starting line number to the user’s editor. For editors such as Emacs or

vi, this is a plus sign. Include a trailing space in the value of the variable if there needs to be space

between the option name and the line number. Examples:

PSQL_EDITOR_LINENUMBER_ARG=’+’

PSQL_EDITOR_LINENUMBER_ARG=’--line ’

The default is + on Unix systems (corresponding to the default editor vi, and useful for many other

common editors); but there is no default on Windows systems.

PSQL_HISTORY
Alternative location for the command history file. Tilde (~) expansion is performed.

PSQL_PAGER
PAGER

If a query’s results do not fit on the screen, they are piped through this command. Typical values

are more or less. Use of the pager can be disabled by setting PSQL_PAGER or PAGER to an

empty string, or by adjusting the pager-related options of the \pset command. These variables are

examined in the order listed; the first that is set is used. If neither of them is set, the default is to

use more on most platforms, but less on Cygwin.

PSQL_WATCH_PAGER
When a query is executed repeatedly with the \watch command, a pager is not used by default.

This behavior can be changed by setting PSQL_WATCH_PAGER to a pager command, on Unix

systems. The pspg pager (not part of PostgreSQL but available in many open source software

distributions) can display the output of \watch if started with the option --stream.

PSQLRC
Alternative location of the user’s .psqlrc file. Tilde (~) expansion is performed.

SHELL
Command executed by the \! command.

TMPDIR
Directory for storing temporary files. The default is /tmp.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by

libpq (see Section 34.15).

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

FILES
psqlrc and ~/.psqlrc

Unless it is passed an -X option, psql attempts to read and execute commands from the

system-wide startup file (psqlrc) and then the user’s personal startup file (~/.psqlrc), after

connecting to the database but before accepting normal commands. These files can be used to set

up the client and/or the server to taste, typically with \set and SET commands.

The system-wide startup file is named psqlrc. By default it is sought in the installation’s "system

configuration" directory, which is most reliably identified by running pg_config --sysconfdir.

Typically this directory will be ../etc/ relative to the directory containing the PostgreSQL

executables. The directory to look in can be set explicitly via the PGSYSCONFDIR environment

variable.

The user’s personal startup file is named .psqlrc and is sought in the invoking user’s home

directory. On Windows the personal startup file is instead named

%APPDATA%\postgresql\psqlrc.conf. In either case, this default file path can be overridden by

setting the PSQLRC environment variable.

Both the system-wide startup file and the user’s personal startup file can be made

psql-version-specific by appending a dash and the PostgreSQL major or minor release identifier to

the file name, for example ~/.psqlrc-15 or ~/.psqlrc-15.8. The most specific version-matching file

will be read in preference to a non-version-specific file. These version suffixes are added after

determining the file path as explained above.

.psql_history

The command-line history is stored in the file ~/.psql_history, or

%APPDATA%\postgresql\psql_history on Windows.

The location of the history file can be set explicitly via the HISTFILE psql variable or the

PSQL_HISTORY environment variable.

NOTES
+o

works best with servers of the same or an older major version. Backslash commands are particularly likely

to fail if the server is of a newer version than psql itself. However, backslash commands of the \d family

should work with servers of versions back to 9.2, though not necessarily with servers newer than psql

itself. The general functionality of running SQL commands and displaying query results should also work

with servers of a newer major version, but this cannot be guaranteed in all cases.

If you want to use psql to connect to several servers of different major versions, it is recommended that

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

you use the newest version of psql. Alternatively, you can keep around a copy of psql from each

major version and be sure to use the version that matches the respective server. But in practice,

this additional complication should not be necessary.

+o

PostgreSQL 9.6, the -c option implied -X (--no-psqlrc); this is no longer the case.

+o

PostgreSQL 8.4, psql allowed the first argument of a single-letter backslash command to start directly

after the command, without intervening whitespace. Now, some whitespace is required.

NOTES FOR WINDOWS USERS
psql is built as a "console application". Since the Windows console windows use a different encoding

than the rest of the system, you must take special care when using 8-bit characters within psql. If psql

detects a problematic console code page, it will warn you at startup. To change the console code page,

two things are necessary:

+o

the code page by entering cmd.exe /c chcp 1252. (1252 is a code page that is appropriate for German;

replace it with your value.) If you are using Cygwin, you can put this command in /etc/profile.

+o

the console font to Lucida Console, because the raster font does not work with the ANSI code page.

EXAMPLES
The first example shows how to spread a command over several lines of input. Notice the changing

prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text)
testdb-> ;
CREATE TABLE

Now look at the table definition again:

testdb=> \d my_table
Table "public.my_table"

Column | Type | Collation | Nullable | Default

--------+---------+-----------+----------+---------

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

first | integer | | not null | 0

second | text | | |

Now we change the prompt to something more interesting:

testdb=> \set PROMPT1 ’%n@%m %~%R%# ’
peter@localhost testdb=>

Let’s assume you have filled the table with data and want to take a look at it:

peter@localhost testdb=> SELECT * FROM my_table;

first | second

-------+--------

1 | one

2 | two

3 | three

4 | four

(4 rows)

You can display tables in different ways by using the \pset command:

peter@localhost testdb=> \pset border 2
Border style is 2.

peter@localhost testdb=> SELECT * FROM my_table;
+-------+--------+

| first | second |

+-------+--------+

| 1 | one |

| 2 | two |

| 3 | three |

| 4 | four |

+-------+--------+

(4 rows)

peter@localhost testdb=> \pset border 0
Border style is 0.

peter@localhost testdb=> SELECT * FROM my_table;
first second

----- ------

1 one

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

2 two

3 three

4 four

(4 rows)

peter@localhost testdb=> \pset border 1
Border style is 1.

peter@localhost testdb=> \pset format csv
Output format is csv.

peter@localhost testdb=> \pset tuples_only
Tuples only is on.

peter@localhost testdb=> SELECT second, first FROM my_table;
one,1

two,2

three,3

four,4

peter@localhost testdb=> \pset format unaligned
Output format is unaligned.

peter@localhost testdb=> \pset fieldsep ’\t’
Field separator is " ".

peter@localhost testdb=> SELECT second, first FROM my_table;
one 1

two 2

three 3

four 4

Alternatively, use the short commands:

peter@localhost testdb=> \a \t \x
Output format is aligned.

Tuples only is off.

Expanded display is on.

peter@localhost testdb=> SELECT * FROM my_table;
-[RECORD 1]-

first | 1

second | one

-[RECORD 2]-

first | 2

second | two

-[RECORD 3]-

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

first | 3

second | three

-[RECORD 4]-

first | 4

second | four

Also, these output format options can be set for just one query by using \g:

peter@localhost testdb=> SELECT * FROM my_table
peter@localhost testdb-> \g (format=aligned tuples_only=off expanded=on)
-[RECORD 1]-

first | 1

second | one

-[RECORD 2]-

first | 2

second | two

-[RECORD 3]-

first | 3

second | three

-[RECORD 4]-

first | 4

second | four

Here is an example of using the \df command to find only functions with names matching int*pl and

whose second argument is of type bigint:

testdb=> \df int*pl * bigint
List of functions

Schema | Name | Result data type | Argument data types | Type

------------+---------+------------------+---------------------+------

pg_catalog | int28pl | bigint | smallint, bigint | func

pg_catalog | int48pl | bigint | integer, bigint | func

pg_catalog | int8pl | bigint | bigint, bigint | func

(3 rows)

When suitable, query results can be shown in a crosstab representation with the \crosstabview
command:

testdb=> SELECT first, second, first > 2 AS gt2 FROM my_table;
first | second | gt2

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

-------+--------+-----

1 | one | f

2 | two | f

3 | three | t

4 | four | t

(4 rows)

testdb=> \crosstabview first second
first | one | two | three | four

-------+-----+-----+-------+------

1 | f | | |

2 | | f | |

3 | | | t |

4 | | | | t

(4 rows)

This second example shows a multiplication table with rows sorted in reverse numerical order and

columns with an independent, ascending numerical order.

testdb=> SELECT t1.first as "A", t2.first+100 AS "B", t1.first*(t2.first+100) as "AxB",
testdb(> row_number() over(order by t2.first) AS ord
testdb(> FROM my_table t1 CROSS JOIN my_table t2 ORDER BY 1 DESC
testdb(> \crosstabview "A" "B" "AxB" ord
A | 101 | 102 | 103 | 104

---+-----+-----+-----+-----

4 | 404 | 408 | 412 | 416

3 | 303 | 306 | 309 | 312

2 | 202 | 204 | 206 | 208

1 | 101 | 102 | 103 | 104

(4 rows)

PSQL(1) PostgreSQL 15.8 Documentation PSQL(1)

PostgreSQL 15.8 2024 PSQL(1)

