
NAME
ptrace - process tracing and debugging

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/ptrace.h>

int

ptrace(int request, pid_t pid, caddr_t addr, int data);

DESCRIPTION
The ptrace() system call provides tracing and debugging facilities. It allows one process (the tracing

process) to control another (the traced process). The tracing process must first attach to the traced

process, and then issue a series of ptrace() system calls to control the execution of the process, as well as

access process memory and register state. For the duration of the tracing session, the traced process will

be "re-parented", with its parent process ID (and resulting behavior) changed to the tracing process. It is

permissible for a tracing process to attach to more than one other process at a time. When the tracing

process has completed its work, it must detach the traced process; if a tracing process exits without first

detaching all processes it has attached, those processes will be killed.

Most of the time, the traced process runs normally, but when it receives a signal (see sigaction(2)), it

stops. The tracing process is expected to notice this via wait(2) or the delivery of a SIGCHLD signal,

examine the state of the stopped process, and cause it to terminate or continue as appropriate. The signal

may be a normal process signal, generated as a result of traced process behavior, or use of the kill(2)

system call; alternatively, it may be generated by the tracing facility as a result of attaching, stepping by

the tracing process, or an event in the traced process. The tracing process may choose to intercept the

signal, using it to observe process behavior (such as SIGTRAP), or forward the signal to the process if

appropriate. The ptrace() system call is the mechanism by which all this happens.

A traced process may report additional signal stops corresponding to events in the traced process. These

additional signal stops are reported as SIGTRAP or SIGSTOP signals. The tracing process can use the

PT_LWPINFO request to determine which events are associated with a SIGTRAP or SIGSTOP signal.

Note that multiple events may be associated with a single signal. For example, events indicated by the

PL_FLAG_BORN, PL_FLAG_FORKED, and PL_FLAG_EXEC flags are also reported as a system call

exit event (PL_FLAG_SCX). The signal stop for a new child process enabled via PTRACE_FORK will

report a SIGSTOP signal. All other additional signal stops use SIGTRAP.

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



DETACH AND TERMINATION
Normally, exiting tracing process should wait for all pending debugging events and then detach from all

alive traced processes before exiting using PT_DETACH request. If tracing process exits without

detaching, for instance due to abnormal termination, the destiny of the traced children processes is

determined by the kern.kill_on_debugger_exit sysctl control.

If the control is set to the default value 1, such traced processes are terminated. If set to zero, kernel

implicitly detaches traced processes. Traced processes are un-stopped if needed, and then continue the

execution without tracing. Kernel drops any SIGTRAP signals queued to the traced children, which

could be either generated by not yet consumed debug events, or sent by other means, the later should not

be done anyway.

SELECTING THE TARGET
The pid argument of the call specifies the target on which to perform the requested operation. For

operations affecting the global process state, the process ID is typically passed there. Similarly, for

operations affecting only a thread, the thread ID needs to be passed.

Still, for global operations, the ID of any thread can be used as the target, and system will perform the

request on the process owning that thread. If a thread operation got the process ID as pid, the system

randomly selects a thread from among the threads owned by the process. For single-threaded processes

there is no difference between specifying process or thread ID as the target.

DISABLING PTRACE
The ptrace subsystem provides rich facilities to manipulate other processes state. Sometimes it may be

desirable to disallow it either completely, or limit its scope. The following controls are provided for

this:

security.bsd.allow_ptrace Setting this sysctl to zero makes ptrace return ENOSYS always

as if the syscall is not implemented by the kernel.

security.bsd.unprivileged_proc_debug Setting this sysctl to zero disallows the use of ptrace() by

unprivileged processes.

security.bsd.see_other_uids Setting this sysctl to zero prevents ptrace() requests from

targeting processes with a real user identifier different from the

caller’s. These requests will fail with error ESRCH.

security.bsd.see_other_gids Setting this sysctl to zero disallows ptrace() requests from

processes that have no groups in common with the target

process, considering their sets of real and supplementary groups.

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



These requests will fail with error ESRCH.

security.bsd.see_jail_proc Setting this sysctl to zero disallows ptrace() requests from

processes belonging to a different jail than that of the target

process, even if the requesting process’ jail is an ancestor of the

target process’. These requests will fail with error ESRCH.

securelevel and init The init(1) process can only be traced with ptrace if securelevel

is zero.

procctl(2) PROC_TRACE_CTL Process can deny attempts to trace itself with procctl(2)

PROC_TRACE_CTL request. In this case requests return

EPERM error.

TRACING EVENTS
Each traced process has a tracing event mask. An event in the traced process only reports a signal stop if

the corresponding flag is set in the tracing event mask. The current set of tracing event flags include:

PTRACE_EXEC Report a stop for a successful invocation of execve(2). This event is

indicated by the PL_FLAG_EXEC flag in the pl_flags member of struct

ptrace_lwpinfo.

PTRACE_SCE Report a stop on each system call entry. This event is indicated by the

PL_FLAG_SCE flag in the pl_flags member of struct ptrace_lwpinfo.

PTRACE_SCX Report a stop on each system call exit. This event is indicated by the

PL_FLAG_SCX flag in the pl_flags member of struct ptrace_lwpinfo.

PTRACE_SYSCALL Report stops for both system call entry and exit.

PTRACE_FORK This event flag controls tracing for new child processes of a traced process.

When this event flag is enabled, new child processes will enable tracing and

stop before executing their first instruction. The new child process will

include the PL_FLAG_CHILD flag in the pl_flags member of struct

ptrace_lwpinfo. The traced process will report a stop that includes the

PL_FLAG_FORKED flag. The process ID of the new child process will also

be present in the pl_child_pid member of struct ptrace_lwpinfo. If the new

child process was created via vfork(2), the traced process’s stop will also

include the PL_FLAG_VFORKED flag. Note that new child processes will

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



be attached with the default tracing event mask; they do not inherit the event

mask of the traced process.

When this event flag is not enabled, new child processes will execute without

tracing enabled.

PTRACE_LWP This event flag controls tracing of LWP (kernel thread) creation and

destruction. When this event is enabled, new LWPs will stop and report an

event with PL_FLAG_BORN set before executing their first instruction, and

exiting LWPs will stop and report an event with PL_FLAG_EXITED set

before completing their termination.

Note that new processes do not report an event for the creation of their initial

thread, and exiting processes do not report an event for the termination of the

last thread.

PTRACE_VFORK Report a stop event when a parent process resumes after a vfork(2).

When a thread in the traced process creates a new child process via vfork(2),

the stop that reports PL_FLAG_FORKED and PL_FLAG_SCX occurs just

after the child process is created, but before the thread waits for the child

process to stop sharing process memory. If a debugger is not tracing the new

child process, it must ensure that no breakpoints are enabled in the shared

process memory before detaching from the new child process. This means

that no breakpoints are enabled in the parent process either.

The PTRACE_VFORK flag enables a new stop that indicates when the new

child process stops sharing the process memory of the parent process. A

debugger can reinsert breakpoints in the parent process and resume it in

response to this event. This event is indicated by setting the

PL_FLAG_VFORK_DONE flag.

The default tracing event mask when attaching to a process via PT_ATTACH, PT_TRACE_ME, or

PTRACE_FORK includes only PTRACE_EXEC events. All other event flags are disabled.

PTRACE REQUESTS
The request argument specifies what operation is being performed; the meaning of the rest of the

arguments depends on the operation, but except for one special case noted below, all ptrace() calls are

made by the tracing process, and the pid argument specifies the process ID of the traced process or a

corresponding thread ID. The request argument can be:

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



PT_TRACE_ME This request is the only one used by the traced process; it declares that

the process expects to be traced by its parent. All the other arguments

are ignored. (If the parent process does not expect to trace the child, it

will probably be rather confused by the results; once the traced process

stops, it cannot be made to continue except via ptrace().) When a process

has used this request and calls execve(2) or any of the routines built on it

(such as execv(3)), it will stop before executing the first instruction of

the new image. Also, any setuid or setgid bits on the executable being

executed will be ignored. If the child was created by vfork(2) system

call or rfork(2) call with the RFMEM flag specified, the debugging

events are reported to the parent only after the execve(2) is executed.

PT_READ_I, PT_READ_D These requests read a single int of data from the traced process’s address

space. Traditionally, ptrace() has allowed for machines with distinct

address spaces for instruction and data, which is why there are two

requests: conceptually, PT_READ_I reads from the instruction space

and PT_READ_D reads from the data space. In the current FreeBSD

implementation, these two requests are completely identical. The addr

argument specifies the address (in the traced process’s virtual address

space) at which the read is to be done. This address does not have to

meet any alignment constraints. The value read is returned as the return

value from ptrace().

PT_WRITE_I, PT_WRITE_D These requests parallel PT_READ_I and PT_READ_D, except that they

write rather than read. The data argument supplies the value to be

written.

PT_IO This request allows reading and writing arbitrary amounts of data in the

traced process’s address space. The addr argument specifies a pointer to

a struct ptrace_io_desc, which is defined as follows:

struct ptrace_io_desc {

int piod_op; /* I/O operation */

void *piod_offs; /* child offset */

void *piod_addr; /* parent offset */

size_t piod_len; /* request length */

};

/*

* Operations in piod_op.

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



*/

#define PIOD_READ_D 1 /* Read from D space */

#define PIOD_WRITE_D 2 /* Write to D space */

#define PIOD_READ_I 3 /* Read from I space */

#define PIOD_WRITE_I 4 /* Write to I space */

The data argument is ignored. The actual number of bytes read or

written is stored in piod_len upon return.

PT_CONTINUE The traced process continues execution. The addr argument is an

address specifying the place where execution is to be resumed (a new

value for the program counter), or (caddr_t)1 to indicate that execution is

to pick up where it left off. The data argument provides a signal number

to be delivered to the traced process as it resumes execution, or 0 if no

signal is to be sent.

PT_STEP The traced process is single stepped one instruction. The addr argument

should be passed (caddr_t)1. The data argument provides a signal

number to be delivered to the traced process as it resumes execution, or

0 if no signal is to be sent.

PT_KILL The traced process terminates, as if PT_CONTINUE had been used with

SIGKILL given as the signal to be delivered.

PT_ATTACH This request allows a process to gain control of an otherwise unrelated

process and begin tracing it. It does not need any cooperation from the

process to trace. In this case, pid specifies the process ID of the process

to trace, and the other two arguments are ignored. This request requires

that the target process must have the same real UID as the tracing

process, and that it must not be executing a setuid or setgid executable.

(If the tracing process is running as root, these restrictions do not apply.)

The tracing process will see the newly-traced process stop and may then

control it as if it had been traced all along.

PT_DETACH This request is like PT_CONTINUE, except that it does not allow

specifying an alternate place to continue execution, and after it succeeds,

the traced process is no longer traced and continues execution normally.

PT_GETREGS This request reads the traced process’s machine registers into the "struct

reg" (defined in <machine/reg.h>) pointed to by addr.

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



PT_SETREGS This request is the converse of PT_GETREGS; it loads the traced

process’s machine registers from the "struct reg" (defined in

<machine/reg.h>) pointed to by addr.

PT_GETFPREGS This request reads the traced process’s floating-point registers into the

"struct fpreg" (defined in <machine/reg.h>) pointed to by addr.

PT_SETFPREGS This request is the converse of PT_GETFPREGS; it loads the traced

process’s floating-point registers from the "struct fpreg" (defined in

<machine/reg.h>) pointed to by addr.

PT_GETDBREGS This request reads the traced process’s debug registers into the "struct

dbreg" (defined in <machine/reg.h>) pointed to by addr.

PT_SETDBREGS This request is the converse of PT_GETDBREGS; it loads the traced

process’s debug registers from the "struct dbreg" (defined in

<machine/reg.h>) pointed to by addr.

PT_GETREGSET This request reads the registers from the traced process. The data

argument specifies the register set to read, with the addr argument

pointing at a struct iovec where the iov_base field points to a register set

specific structure to hold the registers, and the iov_len field holds the

length of the structure.

PT_SETREGSET This request writes to the registers of the traced process. The data

argument specifies the register set to write to, with the addr argument

pointing at a struct iovec where the iov_base field points to a register set

specific structure to hold the registers, and the iov_len field holds the

length of the structure. If iov_base is NULL the kernel will return the

expected length of the register set specific structure in the iov_len field

and not change the target register set.

PT_LWPINFO This request can be used to obtain information about the kernel thread,

also known as light-weight process, that caused the traced process to

stop. The addr argument specifies a pointer to a struct ptrace_lwpinfo,

which is defined as follows:

struct ptrace_lwpinfo {

lwpid_t pl_lwpid;

int pl_event;

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



int pl_flags;

sigset_t pl_sigmask;

sigset_t pl_siglist;

siginfo_t pl_siginfo;

char pl_tdname[MAXCOMLEN + 1];

pid_t pl_child_pid;

u_int pl_syscall_code;

u_int pl_syscall_narg;

};

The data argument is to be set to the size of the structure known to the

caller. This allows the structure to grow without affecting older

programs.

The fields in the struct ptrace_lwpinfo have the following meaning:

pl_lwpid

LWP id of the thread

pl_event

Event that caused the stop. Currently defined events are:

PL_EVENT_NONE No reason given

PL_EVENT_SIGNAL Thread stopped due to the pending

signal

pl_flags

Flags that specify additional details about observed stop.

Currently defined flags are:

PL_FLAG_SCE

The thread stopped due to system call entry, right after

the kernel is entered. The debugger may examine syscall

arguments that are stored in memory and registers

according to the ABI of the current process, and modify

them, if needed.

PL_FLAG_SCX

The thread is stopped immediately before syscall is

returning to the usermode. The debugger may examine

system call return values in the ABI-defined registers

and/or memory.

PL_FLAG_EXEC

When PL_FLAG_SCX is set, this flag may be

additionally specified to inform that the program being

executed by debuggee process has been changed by

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



successful execution of a system call from the execve(2)

family.

PL_FLAG_SI

Indicates that pl_siginfo member of struct ptrace_lwpinfo

contains valid information.

PL_FLAG_FORKED

Indicates that the process is returning from a call to

fork(2) that created a new child process. The process

identifier of the new process is available in the

pl_child_pid member of struct ptrace_lwpinfo.

PL_FLAG_CHILD

The flag is set for first event reported from a new child

which is automatically attached when PTRACE_FORK is

enabled.

PL_FLAG_BORN

This flag is set for the first event reported from a new

LWP when PTRACE_LWP is enabled. It is reported

along with PL_FLAG_SCX.

PL_FLAG_EXITED

This flag is set for the last event reported by an exiting

LWP when PTRACE_LWP is enabled. Note that this

event is not reported when the last LWP in a process

exits. The termination of the last thread is reported via a

normal process exit event.

PL_FLAG_VFORKED

Indicates that the thread is returning from a call to

vfork(2) that created a new child process. This flag is set

in addition to PL_FLAG_FORKED.

PL_FLAG_VFORK_DONE

Indicates that the thread has resumed after a child process

created via vfork(2) has stopped sharing its address space

with the traced process.

pl_sigmask

The current signal mask of the LWP

pl_siglist

The current pending set of signals for the LWP. Note that

signals that are delivered to the process would not appear on an

LWP siglist until the thread is selected for delivery.

pl_siginfo

The siginfo that accompanies the signal pending. Only valid for

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



PL_EVENT_SIGNAL stop when PL_FLAG_SI is set in

pl_flags.

pl_tdname

The name of the thread.

pl_child_pid

The process identifier of the new child process. Only valid for a

PL_EVENT_SIGNAL stop when PL_FLAG_FORKED is set in

pl_flags.

pl_syscall_code

The ABI-specific identifier of the current system call. Note that

for indirect system calls this field reports the indirected system

call. Only valid when PL_FLAG_SCE or PL_FLAG_SCX is set

in pl_flags.

pl_syscall_narg

The number of arguments passed to the current system call not

counting the system call identifier. Note that for indirect system

calls this field reports the arguments passed to the indirected

system call. Only valid when PL_FLAG_SCE or

PL_FLAG_SCX is set in pl_flags.

PT_GETNUMLWPS This request returns the number of kernel threads associated with the

traced process.

PT_GETLWPLIST This request can be used to get the current thread list. A pointer to an

array of type lwpid_t should be passed in addr, with the array size

specified by data. The return value from ptrace() is the count of array

entries filled in.

PT_SETSTEP This request will turn on single stepping of the specified process.

Stepping is automatically disabled when a single step trap is caught.

PT_CLEARSTEP This request will turn off single stepping of the specified process.

PT_SUSPEND This request will suspend the specified thread.

PT_RESUME This request will resume the specified thread.

PT_TO_SCE This request will set the PTRACE_SCE event flag to trace all future

system call entries and continue the process. The addr and data

arguments are used the same as for PT_CONTINUE.

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



PT_TO_SCX This request will set the PTRACE_SCX event flag to trace all future

system call exits and continue the process. The addr and data arguments

are used the same as for PT_CONTINUE.

PT_SYSCALL This request will set the PTRACE_SYSCALL event flag to trace all

future system call entries and exits and continue the process. The addr

and data arguments are used the same as for PT_CONTINUE.

PT_GET_SC_ARGS For the thread which is stopped in either PL_FLAG_SCE or

PL_FLAG_SCX state, that is, on entry or exit to a syscall, this request

fetches the syscall arguments.

The arguments are copied out into the buffer pointed to by the addr

pointer, sequentially. Each syscall argument is stored as the machine

word. Kernel copies out as many arguments as the syscall accepts, see

the pl_syscall_narg member of the struct ptrace_lwpinfo, but not more

than the data bytes in total are copied.

PT_GET_SC_RET Fetch the system call return values on exit from a syscall. This request

is only valid for threads stopped in a syscall exit (the PL_FLAG_SCX

state). The addr argument specifies a pointer to a struct ptrace_sc_ret,

which is defined as follows:

struct ptrace_sc_ret {

register_t sr_retval[2];

int sr_error;

};

The data argument is set to the size of the structure.

If the system call completed successfully, sr_error is set to zero and the

return values of the system call are saved in sr_retval. If the system call

failed to execute, sr_error field is set to a positive errno(2) value. If the

system call completed in an unusual fashion, sr_error is set to a negative

value:

ERESTART System call will be restarted.

EJUSTRETURN

System call completed sucessfully but did not set a

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



return value (for example, setcontext(2) and

sigreturn(2)).

PT_FOLLOW_FORK This request controls tracing for new child processes of a traced process.

If data is non-zero, PTRACE_FORK is set in the traced process’s event

tracing mask. If data is zero, PTRACE_FORK is cleared from the traced

process’s event tracing mask.

PT_LWP_EVENTS This request controls tracing of LWP creation and destruction. If data is

non-zero, PTRACE_LWP is set in the traced process’s event tracing

mask. If data is zero, PTRACE_LWP is cleared from the traced

process’s event tracing mask.

PT_GET_EVENT_MASK This request reads the traced process’s event tracing mask into the

integer pointed to by addr. The size of the integer must be passed in

data.

PT_SET_EVENT_MASK This request sets the traced process’s event tracing mask from the

integer pointed to by addr. The size of the integer must be passed in

data.

PT_VM_TIMESTAMP This request returns the generation number or timestamp of the memory

map of the traced process as the return value from ptrace(). This

provides a low-cost way for the tracing process to determine if the VM

map changed since the last time this request was made.

PT_VM_ENTRY This request is used to iterate over the entries of the VM map of the

traced process. The addr argument specifies a pointer to a struct

ptrace_vm_entry, which is defined as follows:

struct ptrace_vm_entry {

int pve_entry;

int pve_timestamp;

u_long pve_start;

u_long pve_end;

u_long pve_offset;

u_int pve_prot;

u_int pve_pathlen;

long pve_fileid;

uint32_t pve_fsid;

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



char *pve_path;

};

The first entry is returned by setting pve_entry to zero. Subsequent

entries are returned by leaving pve_entry unmodified from the value

returned by previous requests. The pve_timestamp field can be used to

detect changes to the VM map while iterating over the entries. The

tracing process can then take appropriate action, such as restarting. By

setting pve_pathlen to a non-zero value on entry, the pathname of the

backing object is returned in the buffer pointed to by pve_path, provided

the entry is backed by a vnode. The pve_pathlen field is updated with

the actual length of the pathname (including the terminating null

character). The pve_offset field is the offset within the backing object at

which the range starts. The range is located in the VM space at

pve_start and extends up to pve_end (inclusive).

The data argument is ignored.

PT_COREDUMP This request creates a coredump for the stopped program. The addr

argument specifies a pointer to a struct ptrace_coredump, which is

defined as follows:

struct ptrace_coredump {

int pc_fd;

uint32_t pc_flags;

off_t pc_limit;

};

The fields of the structure are:

pc_fd File descriptor to write the dump to. It must refer to a regular

file, opened for writing.

pc_flags Flags. The following flags are defined:

PC_COMPRESS Request compression of the dump.

PC_ALL Include non-dumpable entries into the

dump. The dumper ignores

MAP_NOCORE flag of the process map

entry, but device mappings are not dumped

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



even with PC_ALL set.

pc_limit Maximum size of the coredump. Specify zero for no limit.

The size of struct ptrace_coredump must be passed in data.

PT_SC_REMOTE Request to execute a syscall in the context of the traced process, in the

specified thread. The addr argument must point to the struct

ptrace_sc_remote, which describes the requested syscall and its

arguments, and receives the result. The size of struct ptrace_sc_remote

must be passed in data.

struct ptrace_sc_remote {

struct ptrace_sc_ret pscr_ret;

u_int pscr_syscall;

u_int pscr_nargs;

u_long *pscr_args;

};

The pscr_syscall contains the syscall number to execute, the pscr_nargs

is the number of supplied arguments, which are supplied in the pscr_args

array. Result of the execution is returned in the pscr_ret member. Note

that the request and its result do not affect the returned value from the

currently executed syscall, if any.

PT_COREDUMP and PT_SC_REMOTE usage
The process must be stopped before dumping or initiating a remote system call. A single thread in the

target process is temporarily unsuspended in the kernel to perform the action. If the ptrace call fails

before a thread is unsuspended, there is no event to waitpid(2) for. If a thread was unsuspended, it will

stop again before the ptrace call returns, and the process must be waited upon using waitpid(2) to

consume the new stop event. Since it is hard to deduce whether a thread was unsuspended before an

error occurred, it is recommended to unconditionally perform waitpid(2) with WNOHANG flag after

PT_COREDUMP and PT_SC_REMOTE, and silently accept zero result from it.

For PT_SC_REMOTE, the selected thread must be stopped in the safe place, which is currently defined

as a syscall exit, or a return from kernel to user mode (basically, a signal handler call place). Kernel

returns EBUSY status if attempt is made to execute remote syscall at unsafe stop.

Note that neither kern.trap_enotcap sysctl setting, nor the corresponding procctl(2) flag

PROC_TRAPCAP_CTL_ENABLE are obeyed during the execution of the syscall by

PT_SC_REMOTE. In other words, SIGTRAP signal is not sent to a process executing in capability

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



mode, which violated a mode access restriction.

Note that due to the mode of execution for the remote syscall, in particular, the setting where only one

thread is allowed to run, the syscall might block on resources owned by suspended threads. This might

result in the target process deadlock. In this situation, the only way out is to kill the target.

ARM MACHINE-SPECIFIC REQUESTS
PT_GETVFPREGS Return the thread’s VFP machine state in the buffer pointed to by addr.

The data argument is ignored.

PT_SETVFPREGS Set the thread’s VFP machine state from the buffer pointed to by addr.

The data argument is ignored.

x86 MACHINE-SPECIFIC REQUESTS
PT_GETXMMREGS Copy the XMM FPU state into the buffer pointed to by the argument

addr. The buffer has the same layout as the 32-bit save buffer for the

machine instruction FXSAVE.

This request is only valid for i386 programs, both on native 32-bit

systems and on amd64 kernels. For 64-bit amd64 programs, the XMM

state is reported as part of the FPU state returned by the PT_GETFPREGS

request.

The data argument is ignored.

PT_SETXMMREGS Load the XMM FPU state for the thread from the buffer pointed to by the

argument addr. The buffer has the same layout as the 32-bit load buffer

for the machine instruction FXRSTOR.

As with PT_GETXMMREGS, this request is only valid for i386

programs.

The data argument is ignored.

PT_GETXSTATE_INFO Report which XSAVE FPU extensions are supported by the CPU and

allowed in userspace programs. The addr argument must point to a

variable of type struct ptrace_xstate_info, which contains the information

on the request return. struct ptrace_xstate_info is defined as follows:

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



struct ptrace_xstate_info {

uint64_t xsave_mask;

uint32_t xsave_len;

};

The xsave_mask field is a bitmask of the currently enabled extensions.

The meaning of the bits is defined in the Intel and AMD processor

documentation. The xsave_len field reports the length of the XSAVE

area for storing the hardware state for currently enabled extensions in the

format defined by the x86 XSAVE machine instruction.

The data argument value must be equal to the size of the struct

ptrace_xstate_info.

PT_GETXSTATE Return the content of the XSAVE area for the thread. The addr argument

points to the buffer where the content is copied, and the data argument

specifies the size of the buffer. The kernel copies out as much content as

allowed by the buffer size. The buffer layout is specified by the layout of

the save area for the XSAVE machine instruction.

PT_SETXSTATE Load the XSAVE state for the thread from the buffer specified by the

addr pointer. The buffer size is passed in the data argument. The buffer

must be at least as large as the struct savefpu (defined in x86/fpu.h) to

allow the complete x87 FPU and XMM state load. It must not be larger

than the XSAVE state length, as reported by the xsave_len field from the

struct ptrace_xstate_info of the PT_GETXSTATE_INFO request. Layout

of the buffer is identical to the layout of the load area for the XRSTOR

machine instruction.

PT_GETFSBASE Return the value of the base used when doing segmented memory

addressing using the %fs segment register. The addr argument points to

an unsigned long variable where the base value is stored.

The data argument is ignored.

PT_GETGSBASE Like the PT_GETFSBASE request, but returns the base for the %gs

segment register.

PT_SETFSBASE Set the base for the %fs segment register to the value pointed to by the

addr argument. addr must point to the unsigned long variable containing

the new base.

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



The data argument is ignored.

PT_SETGSBASE Like the PT_SETFSBASE request, but sets the base for the %gs segment

register.

PowerPC MACHINE-SPECIFIC REQUESTS
PT_GETVRREGS Return the thread’s ALTIVEC machine state in the buffer pointed to by addr.

The data argument is ignored.

PT_SETVRREGS Set the thread’s ALTIVEC machine state from the buffer pointed to by addr.

The data argument is ignored.

PT_GETVSRREGS Return doubleword 1 of the thread’s VSX registers VSR0-VSR31 in the buffer

pointed to by addr.

The data argument is ignored.

PT_SETVSRREGS Set doubleword 1 of the thread’s VSX registers VSR0-VSR31 from the buffer

pointed to by addr.

The data argument is ignored.

Additionally, other machine-specific requests can exist.

RETURN VALUES
Most requests return 0 on success and -1 on error. Some requests can cause ptrace() to return -1 as a

non-error value, among them are PT_READ_I and PT_READ_D, which return the value read from the

process memory on success. To disambiguate, errno can be set to 0 before the call and checked

afterwards.

The current ptrace() implementation always sets errno to 0 before calling into the kernel, both for

historic reasons and for consistency with other operating systems. It is recommended to assign zero to

errno explicitly for forward compatibility.

ERRORS
The ptrace() system call may fail if:

[ESRCH]

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



+o No process having the specified process ID exists.

[EINVAL]

+o A process attempted to use PT_ATTACH on itself.

+o The request argument was not one of the legal requests.

+o The signal number (in data) to PT_CONTINUE was neither 0 nor a legal

signal number.

+o PT_GETREGS, PT_SETREGS, PT_GETFPREGS, PT_SETFPREGS,

PT_GETDBREGS, or PT_SETDBREGS was attempted on a process with no

valid register set. (This is normally true only of system processes.)

+o PT_VM_ENTRY was given an invalid value for pve_entry. This can also be

caused by changes to the VM map of the process.

+o The size (in data) provided to PT_LWPINFO was less than or equal to zero, or

larger than the ptrace_lwpinfo structure known to the kernel.

+o The size (in data) provided to the x86-specific PT_GETXSTATE_INFO

request was not equal to the size of the struct ptrace_xstate_info.

+o The size (in data) provided to the x86-specific PT_SETXSTATE request was

less than the size of the x87 plus the XMM save area.

+o The size (in data) provided to the x86-specific PT_SETXSTATE request was

larger than returned in the xsave_len member of the struct ptrace_xstate_info

from the PT_GETXSTATE_INFO request.

+o The base value, provided to the amd64-specific requests PT_SETFSBASE or

PT_SETGSBASE, pointed outside of the valid user address space. This error

will not occur in 32-bit programs.

[EBUSY]

+o PT_ATTACH was attempted on a process that was already being traced.

+o A request attempted to manipulate a process that was being traced by some

process other than the one making the request.

+o A request (other than PT_ATTACH) specified a process that was not stopped.

[EPERM]

+o A request (other than PT_ATTACH) attempted to manipulate a process that

was not being traced at all.

+o An attempt was made to use PT_ATTACH on a process in violation of the

requirements listed under PT_ATTACH above.

[ENOENT]

+o PT_VM_ENTRY previously returned the last entry of the memory map. No

more entries exist.

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11



[ENOMEM]

+o A PT_READ_I, PT_READ_D, PT_WRITE_I, or PT_WRITE_D request

attempted to access an invalid address, or a memory allocation failure

occurred when accessing process memory.

[ENAMETOOLONG]

+o PT_VM_ENTRY cannot return the pathname of the backing object because

the buffer is not big enough. pve_pathlen holds the minimum buffer size

required on return.

SEE ALSO
execve(2), sigaction(2), wait(2), execv(3), i386_clr_watch(3), i386_set_watch(3)

HISTORY
The ptrace() function appeared in Version 6 AT&T UNIX.

PTRACE(2) FreeBSD System Calls Manual PTRACE(2)

FreeBSD 14.0-RELEASE-p11 August 18, 2023 FreeBSD 14.0-RELEASE-p11


