
NAME
qsort, qsort_b, qsort_r, heapsort, heapsort_b, mergesort, mergesort_b - sort functions

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

void

qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *));

void

qsort_b(void *base, size_t nmemb, size_t size, int (^compar)(const void *, const void *));

void

qsort_r(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *, void *),

void *thunk);

int

heapsort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *));

int

heapsort_b(void *base, size_t nmemb, size_t size, int (^compar)(const void *, const void *));

int

mergesort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *));

int

mergesort_b(void *base, size_t nmemb, size_t size, int (^compar)(const void *, const void *));

#define __STDC_WANT_LIB_EXT1__ 1

errno_t

qsort_s(void *base, rsize_t nmemb, rsize_t size, int (*compar)(const void *, const void *, void *),

void *thunk);

DESCRIPTION
The qsort() function is a modified partition-exchange sort, or quicksort. The heapsort() function is a

modified selection sort. The mergesort() function is a modified merge sort with exponential search

QSORT(3) FreeBSD Library Functions Manual QSORT(3)

FreeBSD 14.0-RELEASE-p6 April 19, 2023 FreeBSD 14.0-RELEASE-p6



intended for sorting data with pre-existing order.

The qsort() and heapsort() functions sort an array of nmemb objects, the initial member of which is

pointed to by base. The size of each object is specified by size. The mergesort() function behaves

similarly, but requires that size be greater than "sizeof(void *) / 2".

The contents of the array base are sorted in ascending order according to a comparison function pointed

to by compar, which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero if the first

argument is considered to be respectively less than, equal to, or greater than the second.

The qsort_r() function behaves identically to qsort(), except that it takes an additional argument, thunk,

which is passed unchanged as the last argument to function pointed to compar. This allows the

comparison function to access additional data without using global variables, and thus qsort_r() is

suitable for use in functions which must be reentrant. The qsort_b() function behaves identically to

qsort(), except that it takes a block, rather than a function pointer.

The algorithms implemented by qsort(), qsort_r(), and heapsort() are not stable, that is, if two members

compare as equal, their order in the sorted array is undefined. The heapsort_b() function behaves

identically to heapsort(), except that it takes a block, rather than a function pointer. The mergesort()
algorithm is stable. The mergesort_b() function behaves identically to mergesort(), except that it takes a

block, rather than a function pointer.

The qsort() and qsort_r() functions are an implementation of C.A.R. Hoare’s "quicksort" algorithm, a

variant of partition-exchange sorting; in particular, see D.E. Knuth’s Algorithm Q. Quicksort takes O N

lg N average time. This implementation uses median selection to avoid its O N**2 worst-case behavior.

The heapsort() function is an implementation of J.W.J. William’s "heapsort" algorithm, a variant of

selection sorting; in particular, see D.E. Knuth’s Algorithm H. Heapsort takes O N lg N worst-case time.

Its only advantage over qsort() is that it uses almost no additional memory; while qsort() does not

allocate memory, it is implemented using recursion.

The function mergesort() requires additional memory of size nmemb * size bytes; it should be used only

when space is not at a premium. The mergesort() function is optimized for data with pre-existing order;

its worst case time is O N lg N; its best case is O N.

Normally, qsort() is faster than mergesort() is faster than heapsort(). Memory availability and pre-

existing order in the data can make this untrue.

QSORT(3) FreeBSD Library Functions Manual QSORT(3)

FreeBSD 14.0-RELEASE-p6 April 19, 2023 FreeBSD 14.0-RELEASE-p6



The qsort_s() function behaves the same as qsort_r(), except that:

- The order of arguments is different

- The order of arguments to compar is different

- If nmemb or size are greater than RSIZE_MAX, or nmemb is not zero and compar is NULL or size

is zero, then the runtime-constraint handler is called, and qsort_s() returns an error. Note that the

handler is called before qsort_s() returns the error, and the handler function might not return.

RETURN VALUES
The qsort() and qsort_r() functions return no value. The qsort_s() function returns zero on success, non-

zero on error.

The heapsort() and mergesort() functions return the value 0 if successful; otherwise the value -1 is

returned and the global variable errno is set to indicate the error.

EXAMPLES
A sample program that sorts an array of int values in place using qsort(), and then prints the sorted array

to standard output is:

#include <stdio.h>

#include <stdlib.h>

/*

* Custom comparison function that compares ’int’ values through pointers

* passed by qsort(3).

*/

static int

int_compare(const void *p1, const void *p2)

{

int left = *(const int *)p1;

int right = *(const int *)p2;

return ((left > right) - (left < right));

}

/*

* Sort an array of ’int’ values and print it to standard output.

*/

QSORT(3) FreeBSD Library Functions Manual QSORT(3)

FreeBSD 14.0-RELEASE-p6 April 19, 2023 FreeBSD 14.0-RELEASE-p6



int

main(void)

{

int int_array[] = { 4, 5, 9, 3, 0, 1, 7, 2, 8, 6 };

size_t array_size = sizeof(int_array) / sizeof(int_array[0]);

size_t k;

qsort(&int_array, array_size, sizeof(int_array[0]), int_compare);

for (k = 0; k < array_size; k++)

printf(" %d", int_array[k]);

puts("");

return (EXIT_SUCCESS);

}

COMPATIBILITY
The order of arguments for the comparison function used with qsort_r() is different from the one used by

qsort_s(), and the GNU libc implementation of qsort_r(). When porting software written for GNU libc,

it is usually possible to replace qsort_r() with qsort_s() to work around this problem.

qsort_s() is part of the optional Annex K portion of ISO/IEC 9899:2011 ("ISO C11") and may not be

portable to other standards-conforming platforms.

Previous versions of qsort() did not permit the comparison routine itself to call qsort(3). This is no

longer true.

ERRORS
The heapsort() and mergesort() functions succeed unless:

[EINVAL] The size argument is zero, or, the size argument to mergesort() is less than

"sizeof(void *) / 2".

[ENOMEM] The heapsort() or mergesort() functions were unable to allocate memory.

SEE ALSO
sort(1), radixsort(3)

Hoare, C.A.R., "Quicksort", The Computer Journal, 5:1, pp. 10-15, 1962.

Williams, J.W.J, "Heapsort", Communications of the ACM, 7:1, pp. 347-348, 1964.

QSORT(3) FreeBSD Library Functions Manual QSORT(3)

FreeBSD 14.0-RELEASE-p6 April 19, 2023 FreeBSD 14.0-RELEASE-p6



Knuth, D.E., "Sorting and Searching", The Art of Computer Programming, Vol. 3, pp. 114-123,

145-149, 1968.

McIlroy, P.M., "Optimistic Sorting and Information Theoretic Complexity", Fourth Annual ACM-SIAM

Symposium on Discrete Algorithms, January 1992.

Bentley, J.L. and McIlroy, M.D., "Engineering a Sort Function", Software--Practice and Experience,

Vol. 23(11), pp. 1249-1265, November 1993.

STANDARDS
The qsort() function conforms to ISO/IEC 9899:1990 ("ISO C90"). qsort_s() conforms to ISO/IEC

9899:2011 ("ISO C11") K.3.6.3.2.

HISTORY
The variants of these functions that take blocks as arguments first appeared in Mac OS X. This

implementation was created by David Chisnall.

In FreeBSD 14.0, the prototype of qsort_r() was updated to match POSIX.

QSORT(3) FreeBSD Library Functions Manual QSORT(3)

FreeBSD 14.0-RELEASE-p6 April 19, 2023 FreeBSD 14.0-RELEASE-p6


