
NAME
SLIST_CLASS_ENTRY, SLIST_CLASS_HEAD, SLIST_CONCAT, SLIST_EMPTY,

SLIST_ENTRY, SLIST_FIRST, SLIST_FOREACH, SLIST_FOREACH_FROM,

SLIST_FOREACH_FROM_SAFE, SLIST_FOREACH_SAFE, SLIST_HEAD,

SLIST_HEAD_INITIALIZER, SLIST_INIT, SLIST_INSERT_AFTER, SLIST_INSERT_HEAD,

SLIST_NEXT, SLIST_REMOVE, SLIST_REMOVE_AFTER, SLIST_REMOVE_HEAD,

SLIST_SWAP, STAILQ_CLASS_ENTRY, STAILQ_CLASS_HEAD, STAILQ_CONCAT,

STAILQ_EMPTY, STAILQ_ENTRY, STAILQ_FIRST, STAILQ_FOREACH,

STAILQ_FOREACH_FROM, STAILQ_FOREACH_FROM_SAFE, STAILQ_FOREACH_SAFE,

STAILQ_HEAD, STAILQ_HEAD_INITIALIZER, STAILQ_INIT, STAILQ_INSERT_AFTER,

STAILQ_INSERT_HEAD, STAILQ_INSERT_TAIL, STAILQ_LAST, STAILQ_NEXT,

STAILQ_REMOVE, STAILQ_REMOVE_AFTER, STAILQ_REMOVE_HEAD, STAILQ_SWAP,

LIST_CLASS_ENTRY, LIST_CLASS_HEAD, LIST_CONCAT, LIST_EMPTY, LIST_ENTRY,

LIST_FIRST, LIST_FOREACH, LIST_FOREACH_FROM, LIST_FOREACH_FROM_SAFE,

LIST_FOREACH_SAFE, LIST_HEAD, LIST_HEAD_INITIALIZER, LIST_INIT,

LIST_INSERT_AFTER, LIST_INSERT_BEFORE, LIST_INSERT_HEAD, LIST_NEXT,

LIST_PREV, LIST_REMOVE, LIST_SWAP, TAILQ_CLASS_ENTRY, TAILQ_CLASS_HEAD,

TAILQ_CONCAT, TAILQ_EMPTY, TAILQ_ENTRY, TAILQ_FIRST, TAILQ_FOREACH,

TAILQ_FOREACH_FROM, TAILQ_FOREACH_FROM_SAFE, TAILQ_FOREACH_REVERSE,

TAILQ_FOREACH_REVERSE_FROM, TAILQ_FOREACH_REVERSE_FROM_SAFE,

TAILQ_FOREACH_REVERSE_SAFE, TAILQ_FOREACH_SAFE, TAILQ_HEAD,

TAILQ_HEAD_INITIALIZER, TAILQ_INIT, TAILQ_INSERT_AFTER, TAILQ_INSERT_BEFORE,

TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL, TAILQ_LAST, TAILQ_NEXT, TAILQ_PREV,

TAILQ_REMOVE, TAILQ_SWAP - implementations of singly-linked lists, singly-linked tail queues,

lists and tail queues

SYNOPSIS
#include <sys/queue.h>

SLIST_CLASS_ENTRY(CLASSTYPE);

SLIST_CLASS_HEAD(HEADNAME, CLASSTYPE);

SLIST_CONCAT(SLIST_HEAD *head1, SLIST_HEAD *head2, TYPE, SLIST_ENTRY NAME);

SLIST_EMPTY(SLIST_HEAD *head);

SLIST_ENTRY(TYPE);

SLIST_FIRST(SLIST_HEAD *head);

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

SLIST_FOREACH(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME);

SLIST_FOREACH_FROM(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME);

SLIST_FOREACH_FROM_SAFE(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME,

TYPE *temp_var);

SLIST_FOREACH_SAFE(TYPE *var, SLIST_HEAD *head, SLIST_ENTRY NAME,

TYPE *temp_var);

SLIST_HEAD(HEADNAME, TYPE);

SLIST_HEAD_INITIALIZER(SLIST_HEAD head);

SLIST_INIT(SLIST_HEAD *head);

SLIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, SLIST_ENTRY NAME);

SLIST_INSERT_HEAD(SLIST_HEAD *head, TYPE *elm, SLIST_ENTRY NAME);

SLIST_NEXT(TYPE *elm, SLIST_ENTRY NAME);

SLIST_REMOVE(SLIST_HEAD *head, TYPE *elm, TYPE, SLIST_ENTRY NAME);

SLIST_REMOVE_AFTER(TYPE *elm, SLIST_ENTRY NAME);

SLIST_REMOVE_HEAD(SLIST_HEAD *head, SLIST_ENTRY NAME);

SLIST_SWAP(SLIST_HEAD *head1, SLIST_HEAD *head2, TYPE);

STAILQ_CLASS_ENTRY(CLASSTYPE);

STAILQ_CLASS_HEAD(HEADNAME, CLASSTYPE);

STAILQ_CONCAT(STAILQ_HEAD *head1, STAILQ_HEAD *head2);

STAILQ_EMPTY(STAILQ_HEAD *head);

STAILQ_ENTRY(TYPE);

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

STAILQ_FIRST(STAILQ_HEAD *head);

STAILQ_FOREACH(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME);

STAILQ_FOREACH_FROM(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME);

STAILQ_FOREACH_FROM_SAFE(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME,

TYPE *temp_var);

STAILQ_FOREACH_SAFE(TYPE *var, STAILQ_HEAD *head, STAILQ_ENTRY NAME,

TYPE *temp_var);

STAILQ_HEAD(HEADNAME, TYPE);

STAILQ_HEAD_INITIALIZER(STAILQ_HEAD head);

STAILQ_INIT(STAILQ_HEAD *head);

STAILQ_INSERT_AFTER(STAILQ_HEAD *head, TYPE *listelm, TYPE *elm,

STAILQ_ENTRY NAME);

STAILQ_INSERT_HEAD(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_INSERT_TAIL(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_LAST(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_NEXT(TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_REMOVE(STAILQ_HEAD *head, TYPE *elm, TYPE, STAILQ_ENTRY NAME);

STAILQ_REMOVE_AFTER(STAILQ_HEAD *head, TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_REMOVE_HEAD(STAILQ_HEAD *head, STAILQ_ENTRY NAME);

STAILQ_SWAP(STAILQ_HEAD *head1, STAILQ_HEAD *head2, TYPE);

LIST_CLASS_ENTRY(CLASSTYPE);

LIST_CLASS_HEAD(HEADNAME, CLASSTYPE);

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

LIST_CONCAT(LIST_HEAD *head1, LIST_HEAD *head2, TYPE, LIST_ENTRY NAME);

LIST_EMPTY(LIST_HEAD *head);

LIST_ENTRY(TYPE);

LIST_FIRST(LIST_HEAD *head);

LIST_FOREACH(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME);

LIST_FOREACH_FROM(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME);

LIST_FOREACH_FROM_SAFE(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME,

TYPE *temp_var);

LIST_FOREACH_SAFE(TYPE *var, LIST_HEAD *head, LIST_ENTRY NAME, TYPE *temp_var);

LIST_HEAD(HEADNAME, TYPE);

LIST_HEAD_INITIALIZER(LIST_HEAD head);

LIST_INIT(LIST_HEAD *head);

LIST_INSERT_AFTER(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);

LIST_INSERT_BEFORE(TYPE *listelm, TYPE *elm, LIST_ENTRY NAME);

LIST_INSERT_HEAD(LIST_HEAD *head, TYPE *elm, LIST_ENTRY NAME);

LIST_NEXT(TYPE *elm, LIST_ENTRY NAME);

LIST_PREV(TYPE *elm, LIST_HEAD *head, TYPE, LIST_ENTRY NAME);

LIST_REMOVE(TYPE *elm, LIST_ENTRY NAME);

LIST_SWAP(LIST_HEAD *head1, LIST_HEAD *head2, TYPE, LIST_ENTRY NAME);

TAILQ_CLASS_ENTRY(CLASSTYPE);

TAILQ_CLASS_HEAD(HEADNAME, CLASSTYPE);

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

TAILQ_CONCAT(TAILQ_HEAD *head1, TAILQ_HEAD *head2, TAILQ_ENTRY NAME);

TAILQ_EMPTY(TAILQ_HEAD *head);

TAILQ_ENTRY(TYPE);

TAILQ_FIRST(TAILQ_HEAD *head);

TAILQ_FOREACH(TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME);

TAILQ_FOREACH_FROM(TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME);

TAILQ_FOREACH_FROM_SAFE(TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME,

TYPE *temp_var);

TAILQ_FOREACH_REVERSE(TYPE *var, TAILQ_HEAD *head, HEADNAME,

TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE_FROM(TYPE *var, TAILQ_HEAD *head, HEADNAME,

TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE_FROM_SAFE(TYPE *var, TAILQ_HEAD *head, HEADNAME,

TAILQ_ENTRY NAME, TYPE *temp_var);

TAILQ_FOREACH_REVERSE_SAFE(TYPE *var, TAILQ_HEAD *head, HEADNAME,

TAILQ_ENTRY NAME, TYPE *temp_var);

TAILQ_FOREACH_SAFE(TYPE *var, TAILQ_HEAD *head, TAILQ_ENTRY NAME,

TYPE *temp_var);

TAILQ_HEAD(HEADNAME, TYPE);

TAILQ_HEAD_INITIALIZER(TAILQ_HEAD head);

TAILQ_INIT(TAILQ_HEAD *head);

TAILQ_INSERT_AFTER(TAILQ_HEAD *head, TYPE *listelm, TYPE *elm,

TAILQ_ENTRY NAME);

TAILQ_INSERT_BEFORE(TYPE *listelm, TYPE *elm, TAILQ_ENTRY NAME);

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

TAILQ_INSERT_HEAD(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_INSERT_TAIL(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_LAST(TAILQ_HEAD *head, HEADNAME);

TAILQ_NEXT(TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_PREV(TYPE *elm, HEADNAME, TAILQ_ENTRY NAME);

TAILQ_REMOVE(TAILQ_HEAD *head, TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_SWAP(TAILQ_HEAD *head1, TAILQ_HEAD *head2, TYPE, TAILQ_ENTRY NAME);

DESCRIPTION
These macros define and operate on four types of data structures which can be used in both C and C++

source code:

1. Lists

2. Singly-linked lists

3. Singly-linked tail queues

4. Tail queues

All four structures support the following functionality:

1. Insertion of a new entry at the head of the list.

2. Insertion of a new entry after any element in the list.

3. O(1) removal of an entry from the head of the list.

4. Forward traversal through the list.

5. Swapping the contents of two lists.

Singly-linked lists are the simplest of the four data structures and support only the above functionality.

Singly-linked lists are ideal for applications with large datasets and few or no removals, or for

implementing a LIFO queue. Singly-linked lists add the following functionality:

1. O(n) removal of any entry in the list.

2. O(n) concatenation of two lists.

Singly-linked tail queues add the following functionality:

1. Entries can be added at the end of a list.

2. O(n) removal of any entry in the list.

3. They may be concatenated.

However:

1. All list insertions must specify the head of the list.

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

2. Each head entry requires two pointers rather than one.

3. Code size is about 15% greater and operations run about 20% slower than singly-linked lists.

Singly-linked tail queues are ideal for applications with large datasets and few or no removals, or for

implementing a FIFO queue.

All doubly linked types of data structures (lists and tail queues) additionally allow:

1. Insertion of a new entry before any element in the list.

2. O(1) removal of any entry in the list.

However:

1. Each element requires two pointers rather than one.

2. Code size and execution time of operations (except for removal) is about twice that of the

singly-linked data-structures.

Linked lists are the simplest of the doubly linked data structures. They add the following functionality

over the above:

1. O(n) concatenation of two lists.

2. They may be traversed backwards.

However:

1. To traverse backwards, an entry to begin the traversal and the list in which it is contained

must be specified.

Tail queues add the following functionality:

1. Entries can be added at the end of a list.

2. They may be traversed backwards, from tail to head.

3. They may be concatenated.

However:

1. All list insertions and removals must specify the head of the list.

2. Each head entry requires two pointers rather than one.

3. Code size is about 15% greater and operations run about 20% slower than singly-linked lists.

In the macro definitions, TYPE is the name of a user defined structure. The structure must contain a

field called NAME which is of type SLIST_ENTRY, STAILQ_ENTRY, LIST_ENTRY, or

TAILQ_ENTRY. In the macro definitions, CLASSTYPE is the name of a user defined class. The class

must contain a field called NAME which is of type SLIST_CLASS_ENTRY,

STAILQ_CLASS_ENTRY, LIST_CLASS_ENTRY, or TAILQ_CLASS_ENTRY. The argument

HEADNAME is the name of a user defined structure that must be declared using the macros

SLIST_HEAD, SLIST_CLASS_HEAD, STAILQ_HEAD, STAILQ_CLASS_HEAD, LIST_HEAD,

LIST_CLASS_HEAD, TAILQ_HEAD, or TAILQ_CLASS_HEAD. See the examples below for further

explanation of how these macros are used.

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

SINGLY-LINKED LISTS
A singly-linked list is headed by a structure defined by the SLIST_HEAD macro. This structure

contains a single pointer to the first element on the list. The elements are singly linked for minimum

space and pointer manipulation overhead at the expense of O(n) removal for arbitrary elements. New

elements can be added to the list after an existing element or at the head of the list. An SLIST_HEAD

structure is declared as follows:

SLIST_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to

be linked into the list. A pointer to the head of the list can later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro SLIST_HEAD_INITIALIZER evaluates to an initializer for the list head.

The macro SLIST_CONCAT concatenates the list headed by head2 onto the end of the one headed by

head1 removing all entries from the former. Use of this macro should be avoided as it traverses the

entirety of the head1 list. A singly-linked tail queue should be used if this macro is needed in high-

usage code paths or to operate on long lists.

The macro SLIST_EMPTY evaluates to true if there are no elements in the list.

The macro SLIST_ENTRY declares a structure that connects the elements in the list.

The macro SLIST_FIRST returns the first element in the list or NULL if the list is empty.

The macro SLIST_FOREACH traverses the list referenced by head in the forward direction, assigning

each element in turn to var.

The macro SLIST_FOREACH_FROM behaves identically to SLIST_FOREACH when var is NULL,

else it treats var as a previously found SLIST element and begins the loop at var instead of the first

element in the SLIST referenced by head.

The macro SLIST_FOREACH_SAFE traverses the list referenced by head in the forward direction,

assigning each element in turn to var. However, unlike SLIST_FOREACH() here it is permitted to both

remove var as well as free it from within the loop safely without interfering with the traversal.

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

The macro SLIST_FOREACH_FROM_SAFE behaves identically to SLIST_FOREACH_SAFE when

var is NULL, else it treats var as a previously found SLIST element and begins the loop at var instead of

the first element in the SLIST referenced by head.

The macro SLIST_INIT initializes the list referenced by head.

The macro SLIST_INSERT_HEAD inserts the new element elm at the head of the list.

The macro SLIST_INSERT_AFTER inserts the new element elm after the element listelm.

The macro SLIST_NEXT returns the next element in the list.

The macro SLIST_REMOVE_AFTER removes the element after elm from the list. Unlike

SLIST_REMOVE, this macro does not traverse the entire list.

The macro SLIST_REMOVE_HEAD removes the element elm from the head of the list. For optimum

efficiency, elements being removed from the head of the list should explicitly use this macro instead of

the generic SLIST_REMOVE macro.

The macro SLIST_REMOVE removes the element elm from the list. Use of this macro should be

avoided as it traverses the entire list. A doubly-linked list should be used if this macro is needed in high-

usage code paths or to operate on long lists.

The macro SLIST_SWAP swaps the contents of head1 and head2.

SINGLY-LINKED LIST EXAMPLE
SLIST_HEAD(slisthead, entry) head =

SLIST_HEAD_INITIALIZER(head);

struct slisthead *headp; /* Singly-linked List head. */

struct entry {

...

SLIST_ENTRY(entry) entries; /* Singly-linked List. */

...

} *n1, *n2, *n3, *np;

SLIST_INIT(&head); /* Initialize the list. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

SLIST_INSERT_HEAD(&head, n1, entries);

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

n2 = malloc(sizeof(struct entry)); /* Insert after. */

SLIST_INSERT_AFTER(n1, n2, entries);

SLIST_REMOVE(&head, n2, entry, entries);/* Deletion. */

free(n2);

n3 = SLIST_FIRST(&head);

SLIST_REMOVE_HEAD(&head, entries); /* Deletion from the head. */

free(n3);

/* Forward traversal. */

SLIST_FOREACH(np, &head, entries)

np-> ...

/* Safe forward traversal. */

SLIST_FOREACH_SAFE(np, &head, entries, np_temp) {

np->do_stuff();

...

SLIST_REMOVE(&head, np, entry, entries);

free(np);

}

while (!SLIST_EMPTY(&head)) { /* List Deletion. */

n1 = SLIST_FIRST(&head);

SLIST_REMOVE_HEAD(&head, entries);

free(n1);

}

SINGLY-LINKED TAIL QUEUES
A singly-linked tail queue is headed by a structure defined by the STAILQ_HEAD macro. This

structure contains a pair of pointers, one to the first element in the tail queue and the other to the last

element in the tail queue. The elements are singly linked for minimum space and pointer manipulation

overhead at the expense of O(n) removal for arbitrary elements. New elements can be added to the tail

queue after an existing element, at the head of the tail queue, or at the end of the tail queue. A

STAILQ_HEAD structure is declared as follows:

STAILQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to

be linked into the tail queue. A pointer to the head of the tail queue can later be declared as:

struct HEADNAME *headp;

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

(The names head and headp are user selectable.)

The macro STAILQ_HEAD_INITIALIZER evaluates to an initializer for the tail queue head.

The macro STAILQ_CONCAT concatenates the tail queue headed by head2 onto the end of the one

headed by head1 removing all entries from the former.

The macro STAILQ_EMPTY evaluates to true if there are no items on the tail queue.

The macro STAILQ_ENTRY declares a structure that connects the elements in the tail queue.

The macro STAILQ_FIRST returns the first item on the tail queue or NULL if the tail queue is empty.

The macro STAILQ_FOREACH traverses the tail queue referenced by head in the forward direction,

assigning each element in turn to var.

The macro STAILQ_FOREACH_FROM behaves identically to STAILQ_FOREACH when var is

NULL, else it treats var as a previously found STAILQ element and begins the loop at var instead of the

first element in the STAILQ referenced by head.

The macro STAILQ_FOREACH_SAFE traverses the tail queue referenced by head in the forward

direction, assigning each element in turn to var. However, unlike STAILQ_FOREACH() here it is

permitted to both remove var as well as free it from within the loop safely without interfering with the

traversal.

The macro STAILQ_FOREACH_FROM_SAFE behaves identically to STAILQ_FOREACH_SAFE
when var is NULL, else it treats var as a previously found STAILQ element and begins the loop at var

instead of the first element in the STAILQ referenced by head.

The macro STAILQ_INIT initializes the tail queue referenced by head.

The macro STAILQ_INSERT_HEAD inserts the new element elm at the head of the tail queue.

The macro STAILQ_INSERT_TAIL inserts the new element elm at the end of the tail queue.

The macro STAILQ_INSERT_AFTER inserts the new element elm after the element listelm.

The macro STAILQ_LAST returns the last item on the tail queue. If the tail queue is empty the return

value is NULL.

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

The macro STAILQ_NEXT returns the next item on the tail queue, or NULL this item is the last.

The macro STAILQ_REMOVE_AFTER removes the element after elm from the tail queue. Unlike

STAILQ_REMOVE, this macro does not traverse the entire tail queue.

The macro STAILQ_REMOVE_HEAD removes the element at the head of the tail queue. For optimum

efficiency, elements being removed from the head of the tail queue should use this macro explicitly

rather than the generic STAILQ_REMOVE macro.

The macro STAILQ_REMOVE removes the element elm from the tail queue. Use of this macro should

be avoided as it traverses the entire list. A doubly-linked tail queue should be used if this macro is

needed in high-usage code paths or to operate on long tail queues.

The macro STAILQ_SWAP swaps the contents of head1 and head2.

SINGLY-LINKED TAIL QUEUE EXAMPLE
STAILQ_HEAD(stailhead, entry) head =

STAILQ_HEAD_INITIALIZER(head);

struct stailhead *headp; /* Singly-linked tail queue head. */

struct entry {

...

STAILQ_ENTRY(entry) entries; /* Tail queue. */

...

} *n1, *n2, *n3, *np;

STAILQ_INIT(&head); /* Initialize the queue. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

STAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */

STAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */

STAILQ_INSERT_AFTER(&head, n1, n2, entries);

/* Deletion. */

STAILQ_REMOVE(&head, n2, entry, entries);

free(n2);

/* Deletion from the head. */

n3 = STAILQ_FIRST(&head);

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

STAILQ_REMOVE_HEAD(&head, entries);

free(n3);

/* Forward traversal. */

STAILQ_FOREACH(np, &head, entries)

np-> ...

/* Safe forward traversal. */

STAILQ_FOREACH_SAFE(np, &head, entries, np_temp) {

np->do_stuff();

...

STAILQ_REMOVE(&head, np, entry, entries);

free(np);

}

/* TailQ Deletion. */

while (!STAILQ_EMPTY(&head)) {

n1 = STAILQ_FIRST(&head);

STAILQ_REMOVE_HEAD(&head, entries);

free(n1);

}

/* Faster TailQ Deletion. */

n1 = STAILQ_FIRST(&head);

while (n1 != NULL) {

n2 = STAILQ_NEXT(n1, entries);

free(n1);

n1 = n2;

}

STAILQ_INIT(&head);

LISTS
A list is headed by a structure defined by the LIST_HEAD macro. This structure contains a single

pointer to the first element on the list. The elements are doubly linked so that an arbitrary element can

be removed without traversing the list. New elements can be added to the list after an existing element,

before an existing element, or at the head of the list. A LIST_HEAD structure is declared as follows:

LIST_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to

be linked into the list. A pointer to the head of the list can later be declared as:

struct HEADNAME *headp;

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

(The names head and headp are user selectable.)

The macro LIST_HEAD_INITIALIZER evaluates to an initializer for the list head.

The macro LIST_CONCAT concatenates the list headed by head2 onto the end of the one headed by

head1 removing all entries from the former. Use of this macro should be avoided as it traverses the

entirety of the head1 list. A tail queue should be used if this macro is needed in high-usage code paths

or to operate on long lists.

The macro LIST_EMPTY evaluates to true if there are no elements in the list.

The macro LIST_ENTRY declares a structure that connects the elements in the list.

The macro LIST_FIRST returns the first element in the list or NULL if the list is empty.

The macro LIST_FOREACH traverses the list referenced by head in the forward direction, assigning

each element in turn to var.

The macro LIST_FOREACH_FROM behaves identically to LIST_FOREACH when var is NULL, else

it treats var as a previously found LIST element and begins the loop at var instead of the first element in

the LIST referenced by head.

The macro LIST_FOREACH_SAFE traverses the list referenced by head in the forward direction,

assigning each element in turn to var. However, unlike LIST_FOREACH() here it is permitted to both

remove var as well as free it from within the loop safely without interfering with the traversal.

The macro LIST_FOREACH_FROM_SAFE behaves identically to LIST_FOREACH_SAFE when var

is NULL, else it treats var as a previously found LIST element and begins the loop at var instead of the

first element in the LIST referenced by head.

The macro LIST_INIT initializes the list referenced by head.

The macro LIST_INSERT_HEAD inserts the new element elm at the head of the list.

The macro LIST_INSERT_AFTER inserts the new element elm after the element listelm.

The macro LIST_INSERT_BEFORE inserts the new element elm before the element listelm.

The macro LIST_NEXT returns the next element in the list, or NULL if this is the last.

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

The macro LIST_PREV returns the previous element in the list, or NULL if this is the first. List head

must contain element elm.

The macro LIST_REMOVE removes the element elm from the list.

The macro LIST_SWAP swaps the contents of head1 and head2.

LIST EXAMPLE
LIST_HEAD(listhead, entry) head =

LIST_HEAD_INITIALIZER(head);

struct listhead *headp; /* List head. */

struct entry {

...

LIST_ENTRY(entry) entries; /* List. */

...

} *n1, *n2, *n3, *np, *np_temp;

LIST_INIT(&head); /* Initialize the list. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

LIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */

LIST_INSERT_AFTER(n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before. */

LIST_INSERT_BEFORE(n2, n3, entries);

LIST_REMOVE(n2, entries); /* Deletion. */

free(n2);

/* Forward traversal. */

LIST_FOREACH(np, &head, entries)

np-> ...

/* Safe forward traversal. */

LIST_FOREACH_SAFE(np, &head, entries, np_temp) {

np->do_stuff();

...

LIST_REMOVE(np, entries);

free(np);

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

}

while (!LIST_EMPTY(&head)) { /* List Deletion. */

n1 = LIST_FIRST(&head);

LIST_REMOVE(n1, entries);

free(n1);

}

n1 = LIST_FIRST(&head); /* Faster List Deletion. */

while (n1 != NULL) {

n2 = LIST_NEXT(n1, entries);

free(n1);

n1 = n2;

}

LIST_INIT(&head);

TAIL QUEUES
A tail queue is headed by a structure defined by the TAILQ_HEAD macro. This structure contains a

pair of pointers, one to the first element in the tail queue and the other to the last element in the tail

queue. The elements are doubly linked so that an arbitrary element can be removed without traversing

the tail queue. New elements can be added to the tail queue after an existing element, before an existing

element, at the head of the tail queue, or at the end of the tail queue. A TAILQ_HEAD structure is

declared as follows:

TAILQ_HEAD(HEADNAME, TYPE) head;

where HEADNAME is the name of the structure to be defined, and TYPE is the type of the elements to

be linked into the tail queue. A pointer to the head of the tail queue can later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

The macro TAILQ_HEAD_INITIALIZER evaluates to an initializer for the tail queue head.

The macro TAILQ_CONCAT concatenates the tail queue headed by head2 onto the end of the one

headed by head1 removing all entries from the former.

The macro TAILQ_EMPTY evaluates to true if there are no items on the tail queue.

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

The macro TAILQ_ENTRY declares a structure that connects the elements in the tail queue.

The macro TAILQ_FIRST returns the first item on the tail queue or NULL if the tail queue is empty.

The macro TAILQ_FOREACH traverses the tail queue referenced by head in the forward direction,

assigning each element in turn to var. var is set to NULL if the loop completes normally, or if there

were no elements.

The macro TAILQ_FOREACH_FROM behaves identically to TAILQ_FOREACH when var is NULL,

else it treats var as a previously found TAILQ element and begins the loop at var instead of the first

element in the TAILQ referenced by head.

The macro TAILQ_FOREACH_REVERSE traverses the tail queue referenced by head in the reverse

direction, assigning each element in turn to var.

The macro TAILQ_FOREACH_REVERSE_FROM behaves identically to

TAILQ_FOREACH_REVERSE when var is NULL, else it treats var as a previously found TAILQ

element and begins the reverse loop at var instead of the last element in the TAILQ referenced by head.

The macros TAILQ_FOREACH_SAFE and TAILQ_FOREACH_REVERSE_SAFE traverse the list

referenced by head in the forward or reverse direction respectively, assigning each element in turn to

var. However, unlike their unsafe counterparts, TAILQ_FOREACH and

TAILQ_FOREACH_REVERSE permit to both remove var as well as free it from within the loop safely

without interfering with the traversal.

The macro TAILQ_FOREACH_FROM_SAFE behaves identically to TAILQ_FOREACH_SAFE when

var is NULL, else it treats var as a previously found TAILQ element and begins the loop at var instead

of the first element in the TAILQ referenced by head.

The macro TAILQ_FOREACH_REVERSE_FROM_SAFE behaves identically to

TAILQ_FOREACH_REVERSE_SAFE when var is NULL, else it treats var as a previously found

TAILQ element and begins the reverse loop at var instead of the last element in the TAILQ referenced

by head.

The macro TAILQ_INIT initializes the tail queue referenced by head.

The macro TAILQ_INSERT_HEAD inserts the new element elm at the head of the tail queue.

The macro TAILQ_INSERT_TAIL inserts the new element elm at the end of the tail queue.

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

The macro TAILQ_INSERT_AFTER inserts the new element elm after the element listelm.

The macro TAILQ_INSERT_BEFORE inserts the new element elm before the element listelm.

The macro TAILQ_LAST returns the last item on the tail queue. If the tail queue is empty the return

value is NULL.

The macro TAILQ_NEXT returns the next item on the tail queue, or NULL if this item is the last.

The macro TAILQ_PREV returns the previous item on the tail queue, or NULL if this item is the first.

The macro TAILQ_REMOVE removes the element elm from the tail queue.

The macro TAILQ_SWAP swaps the contents of head1 and head2.

TAIL QUEUE EXAMPLE
TAILQ_HEAD(tailhead, entry) head =

TAILQ_HEAD_INITIALIZER(head);

struct tailhead *headp; /* Tail queue head. */

struct entry {

...

TAILQ_ENTRY(entry) entries; /* Tail queue. */

...

} *n1, *n2, *n3, *np;

TAILQ_INIT(&head); /* Initialize the queue. */

n1 = malloc(sizeof(struct entry)); /* Insert at the head. */

TAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */

TAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after. */

TAILQ_INSERT_AFTER(&head, n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before. */

TAILQ_INSERT_BEFORE(n2, n3, entries);

TAILQ_REMOVE(&head, n2, entries);/* Deletion. */

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

free(n2);

/* Forward traversal. */

TAILQ_FOREACH(np, &head, entries)

np-> ...

/* Safe forward traversal. */

TAILQ_FOREACH_SAFE(np, &head, entries, np_temp) {

np->do_stuff();

...

TAILQ_REMOVE(&head, np, entries);

free(np);

}

/* Reverse traversal. */

TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)

np-> ...

/* TailQ Deletion. */

while (!TAILQ_EMPTY(&head)) {

n1 = TAILQ_FIRST(&head);

TAILQ_REMOVE(&head, n1, entries);

free(n1);

}

/* Faster TailQ Deletion. */

n1 = TAILQ_FIRST(&head);

while (n1 != NULL) {

n2 = TAILQ_NEXT(n1, entries);

free(n1);

n1 = n2;

}

TAILQ_INIT(&head);

DIAGNOSTICS
When debugging queue(3), it can be useful to trace queue changes. To enable tracing, define the macro

QUEUE_MACRO_DEBUG_TRACE at compile time.

It can also be useful to trash pointers that have been unlinked from a queue, to detect use after removal.

To enable pointer trashing, define the macro QUEUE_MACRO_DEBUG_TRASH at compile time.

The macro QMD_IS_TRASHED(void *ptr) returns true if ptr has been trashed by the

QUEUE_MACRO_DEBUG_TRASH option.

In the kernel (with INVARIANTS enabled), the SLIST_REMOVE_PREVPTR() macro is available to

aid debugging:

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

SLIST_REMOVE_PREVPTR(TYPE **prev, TYPE *elm, SLIST_ENTRY NAME)

Removes elm, which must directly follow the element whose &SLIST_NEXT() is prev, from

the SLIST. This macro validates that elm follows prev in INVARIANTS mode.

SEE ALSO
arb(3), tree(3)

HISTORY
The queue functions first appeared in 4.4BSD.

QUEUE(3) FreeBSD Library Functions Manual QUEUE(3)

FreeBSD 14.0-RELEASE-p6 September 8, 2016 FreeBSD 14.0-RELEASE-p6

