
NAME
libradius - RADIUS client/server library

SYNOPSIS
#include <radlib.h>

struct rad_handle *

rad_acct_open(void);

int

rad_add_server(struct rad_handle *h, const char *host, int port, const char *secret, int timeout,

int max_tries);

int

rad_add_server_ex(struct rad_handle *h, const char *host, int port, const char *secret, int timeout,

int max_tries, int dead_time, struct in_addr *bindto);

struct rad_handle *

rad_auth_open(void);

void

rad_close(struct rad_handle *h);

int

rad_config(struct rad_handle *h, const char *file);

int

rad_continue_send_request(struct rad_handle *h, int selected, int *fd, struct timeval *tv);

int

rad_create_request(struct rad_handle *h, int code);

int

rad_create_response(struct rad_handle *h, int code);

struct in_addr

rad_cvt_addr(const void *data);

uint32_t

rad_cvt_int(const void *data);

LIBRADIUS(3) FreeBSD Library Functions Manual LIBRADIUS(3)

FreeBSD 14.0-RELEASE-p11 August 5, 2009 FreeBSD 14.0-RELEASE-p11

char *

rad_cvt_string(const void *data, size_t len);

int

rad_get_attr(struct rad_handle *h, const void **data, size_t *len);

int

rad_get_vendor_attr(uint32_t *vendor, const void **data, size_t *len);

int

rad_init_send_request(struct rad_handle *h, int *fd, struct timeval *tv);

int

rad_put_addr(struct rad_handle *h, int type, struct in_addr addr);

int

rad_put_attr(struct rad_handle *h, int type, const void *data, size_t len);

int

rad_put_int(struct rad_handle *h, int type, uint32_t value);

int

rad_put_string(struct rad_handle *h, int type, const char *str);

int

rad_put_message_authentic(struct rad_handle *h);

int

rad_put_vendor_addr(struct rad_handle *h, int vendor, int type, struct in_addr addr);

int

rad_put_vendor_attr(struct rad_handle *h, int vendor, int type, const void *data, size_t len);

int

rad_put_vendor_int(struct rad_handle *h, int vendor, int type, uint32_t value);

int

rad_put_vendor_string(struct rad_handle *h, int vendor, int type, const char *str);

ssize_t

LIBRADIUS(3) FreeBSD Library Functions Manual LIBRADIUS(3)

FreeBSD 14.0-RELEASE-p11 August 5, 2009 FreeBSD 14.0-RELEASE-p11

rad_request_authenticator(struct rad_handle *h, char *buf, size_t len);

int

rad_receive_request(struct rad_handle *h);

int

rad_send_request(struct rad_handle *h);

int

rad_send_response(struct rad_handle *h);

struct rad_handle *

rad_server_open(int fd);

const char *

rad_server_secret(struct rad_handle *h);

void

rad_bind_to(struct rad_handle *h, in_addr_t addr);

u_char *

rad_demangle(struct rad_handle *h, const void *mangled, size_t mlen);

u_char *

rad_demangle_mppe_key(struct rad_handle *h, const void *mangled, size_t mlen, size_t *len);

const char *

rad_strerror(struct rad_handle *h);

DESCRIPTION
The libradius library implements the Remote Authentication Dial In User Service (RADIUS). RADIUS,

defined in RFCs 2865 and 2866, allows clients to perform authentication and accounting by means of

network requests to remote servers.

Initialization
To use the library, an application must first call rad_auth_open(), rad_acct_open() or rad_server_open()

to obtain a struct rad_handle *, which provides the context for subsequent operations. The former

function is used for RADIUS authentication and the latter is used for RADIUS accounting. Calls to

rad_auth_open(), rad_acct_open() and rad_server_open() always succeed unless insufficient virtual

memory is available. If the necessary memory cannot be allocated, the functions return NULL. For

LIBRADIUS(3) FreeBSD Library Functions Manual LIBRADIUS(3)

FreeBSD 14.0-RELEASE-p11 August 5, 2009 FreeBSD 14.0-RELEASE-p11

compatibility with earlier versions of this library, rad_open() is provided as a synonym for

rad_auth_open().

Before issuing any RADIUS requests, the library must be made aware of the servers it can contact. The

easiest way to configure the library is to call rad_config(). rad_config() causes the library to read a

configuration file whose format is described in radius.conf(5). The pathname of the configuration file is

passed as the file argument to rad_config(). This argument may also be given as NULL, in which case

the standard configuration file /etc/radius.conf is used. rad_config() returns 0 on success, or -1 if an

error occurs.

The library can also be configured programmatically by calls to rad_add_server() or

rad_add_server_ex(). rad_add_server() is a backward compatible function, implemented via

rad_add_server_ex(). The host parameter specifies the server host, either as a fully qualified domain

name or as a dotted-quad IP address in text form. The port parameter specifies the UDP port to contact

on the server. If port is given as 0, the library looks up the ‘radius/udp’ or ‘radacct/udp’ service in the

network services(5) database, and uses the port found there. If no entry is found, the library uses the

standard RADIUS ports, 1812 for authentication and 1813 for accounting. The shared secret for the

server host is passed to the secret parameter. It may be any NUL-terminated string of bytes. The

RADIUS protocol ignores all but the leading 128 bytes of the shared secret. The timeout for receiving

replies from the server is passed to the timeout parameter, in units of seconds. The maximum number of

repeated requests to make before giving up is passed into the max_tries parameter. Time interval in

seconds when the server will not be requested if it is marked as dead (did not answer on the last try) set

with dead_time parameter. bindto parameter is an IP address on the multihomed host that is used as a

source address for all requests. rad_add_server() returns 0 on success, or -1 if an error occurs.

rad_add_server() or rad_add_server_ex() may be called multiple times, and they may be used together

with rad_config(). At most 10 servers may be specified. When multiple servers are given, they are tried

in round-robin fashion until a valid response is received, or until each server’s max_tries limit has been

reached.

Creating a RADIUS Request
A RADIUS request consists of a code specifying the kind of request, and zero or more attributes which

provide additional information. To begin constructing a new request, call rad_create_request(). In

addition to the usual struct rad_handle *, this function takes a code parameter which specifies the type of

the request. Most often this will be RAD_ACCESS_REQUEST. rad_create_request() returns 0 on

success, or -1 on if an error occurs.

After the request has been created with rad_create_request(), attributes can be attached to it. This is

done through calls to rad_put_addr(), rad_put_int(), and rad_put_string(). Each accepts a type parameter

identifying the attribute, and a value which may be an Internet address, an integer, or a NUL-terminated

LIBRADIUS(3) FreeBSD Library Functions Manual LIBRADIUS(3)

FreeBSD 14.0-RELEASE-p11 August 5, 2009 FreeBSD 14.0-RELEASE-p11

string, respectively. Alternatively, rad_put_vendor_addr(), rad_put_vendor_int() or

rad_put_vendor_string() may be used to specify vendor specific attributes. Vendor specific definitions

may be found in <radlib_vs.h>

The library also provides a function rad_put_attr() which can be used to supply a raw, uninterpreted

attribute. The data argument points to an array of bytes, and the len argument specifies its length.

It is possible adding the Message-Authenticator to the request. This is an HMAC-MD5 hash of the

entire Access-Request packet (see RFC 3579). This attribute must be present in any packet that includes

an EAP-Message attribute. It can be added by using the rad_put_message_authentic() function. The

libradius library calculates the HMAC-MD5 hash implicitly before sending the request. If the Message-

Authenticator was found inside the response packet, then the packet is silently dropped, if the validation

failed. In order to get this feature, the library should be compiled with OpenSSL support.

The rad_put_X() functions return 0 on success, or -1 if an error occurs.

Sending the Request and Receiving the Response
After the RADIUS request has been constructed, it is sent either by means of rad_send_request() or by a

combination of calls to rad_init_send_request() and rad_continue_send_request().

The rad_send_request() function sends the request and waits for a valid reply, retrying the defined

servers in round-robin fashion as necessary. If a valid response is received, rad_send_request() returns

the RADIUS code which specifies the type of the response. This will typically be

RAD_ACCESS_ACCEPT, RAD_ACCESS_REJECT, or RAD_ACCESS_CHALLENGE. If no valid

response is received, rad_send_request() returns -1.

As an alternative, if you do not wish to block waiting for a response, rad_init_send_request() and

rad_continue_send_request() may be used instead. If a reply is received from the RADIUS server or a

timeout occurs, these functions return a value as described for rad_send_request(). Otherwise, a value of

zero is returned and the values pointed to by fd and tv are set to the descriptor and timeout that should be

passed to select(2).

rad_init_send_request() must be called first, followed by repeated calls to rad_continue_send_request()
as long as a return value of zero is given. Between each call, the application should call select(2),

passing *fd as a read descriptor and timing out after the interval specified by tv. When select(2) returns,

rad_continue_send_request() should be called with selected set to a non-zero value if select(2) indicated

that the descriptor is readable.

Like RADIUS requests, each response may contain zero or more attributes. After a response has been

received successfully by rad_send_request() or rad_continue_send_request(), its attributes can be

LIBRADIUS(3) FreeBSD Library Functions Manual LIBRADIUS(3)

FreeBSD 14.0-RELEASE-p11 August 5, 2009 FreeBSD 14.0-RELEASE-p11

extracted one by one using rad_get_attr(). Each time rad_get_attr() is called, it gets the next attribute

from the current response, and stores a pointer to the data and the length of the data via the reference

parameters data and len, respectively. Note that the data resides in the response itself, and must not be

modified. A successful call to rad_get_attr() returns the RADIUS attribute type. If no more attributes

remain in the current response, rad_get_attr() returns 0. If an error such as a malformed attribute is

detected, -1 is returned.

If rad_get_attr() returns RAD_VENDOR_SPECIFIC, rad_get_vendor_attr() may be called to determine

the vendor. The vendor specific RADIUS attribute type is returned. The reference parameters data and

len (as returned from rad_get_attr()) are passed to rad_get_vendor_attr(), and are adjusted to point to the

vendor specific attribute data.

The common types of attributes can be decoded using rad_cvt_addr(), rad_cvt_int(), and

rad_cvt_string(). These functions accept a pointer to the attribute data, which should have been obtained

using rad_get_attr() and optionally rad_get_vendor_attr(). In the case of rad_cvt_string(), the length len

must also be given. These functions interpret the attribute as an Internet address, an integer, or a string,

respectively, and return its value. rad_cvt_string() returns its value as a NUL-terminated string in

dynamically allocated memory. The application should free the string using free(3) when it is no longer

needed.

If insufficient virtual memory is available, rad_cvt_string() returns NULL. rad_cvt_addr() and

rad_cvt_int() cannot fail.

The rad_request_authenticator() function may be used to obtain the Request-Authenticator attribute

value associated with the current RADIUS server according to the supplied rad_handle. The target

buffer buf of length len must be supplied and should be at least 16 bytes. The return value is the number

of bytes written to buf or -1 to indicate that len was not large enough.

The rad_server_secret() returns the secret shared with the current RADIUS server according to the

supplied rad_handle.

The rad_bind_to() assigns a source address for all requests to the current RADIUS server.

The rad_demangle() function demangles attributes containing passwords and MS-CHAPv1 MPPE-Keys.

The return value is NULL on failure, or the plaintext attribute. This value should be freed using free(3)

when it is no longer needed.

The rad_demangle_mppe_key() function demangles the send- and recv-keys when using MPPE (see

RFC 2548). The return value is NULL on failure, or the plaintext attribute. This value should be freed

using free(3) when it is no longer needed.

LIBRADIUS(3) FreeBSD Library Functions Manual LIBRADIUS(3)

FreeBSD 14.0-RELEASE-p11 August 5, 2009 FreeBSD 14.0-RELEASE-p11

Obtaining Error Messages
Those functions which accept a struct rad_handle * argument record an error message if they fail. The

error message can be retrieved by calling rad_strerror(). The message text is overwritten on each new

error for the given struct rad_handle *. Thus the message must be copied if it is to be preserved through

subsequent library calls using the same handle.

Cleanup
To free the resources used by the RADIUS library, call rad_close().

Server operation
Server mode operates much alike to client mode, except packet send and receive steps are swapped. To

operate as server you should obtain server context with rad_server_open() function, passing opened and

bound UDP socket file descriptor as argument. You should define allowed clients and their secrets

using rad_add_server() function. port, timeout and max_tries arguments are ignored in server mode.

You should call rad_receive_request() function to receive request from client. If you do not want to

block on socket read, you are free to use any poll(), select() or non-blocking sockets for the socket.

Received request can be parsed with same parsing functions as for client. To respond to the request you

should call rad_create_response() and fill response content with same packet writing functions as for

client. When packet is ready, it should be sent with rad_send_response().

RETURN VALUES
The following functions return a non-negative value on success. If they detect an error, they return -1

and record an error message which can be retrieved using rad_strerror().

rad_add_server()

rad_config()

rad_create_request()
rad_create_response()

rad_get_attr()

rad_put_addr()

rad_put_attr()

rad_put_int()
rad_put_string()

rad_put_message_authentic()

rad_init_send_request()
rad_continue_send_request()
rad_send_request()
rad_send_response()

The following functions return a non-NULL pointer on success. If they are unable to allocate sufficient

LIBRADIUS(3) FreeBSD Library Functions Manual LIBRADIUS(3)

FreeBSD 14.0-RELEASE-p11 August 5, 2009 FreeBSD 14.0-RELEASE-p11

virtual memory, they return NULL, without recording an error message.

rad_acct_open()

rad_auth_open()

rad_server_open()

rad_cvt_string()

The following functions return a non-NULL pointer on success. If they fail, they return NULL, with

recording an error message.

rad_demangle()

rad_demangle_mppe_key()

FILES
/etc/radius.conf

SEE ALSO
radius.conf(5)

C. Rigney, et al, Remote Authentication Dial In User Service (RADIUS), RFC 2865.

C. Rigney, RADIUS Accounting, RFC 2866.

G. Zorn, Microsoft Vendor-specific RADIUS attributes, RFC 2548.

C. Rigney, et al, RADIUS extensions, RFC 2869.

AUTHORS
This software was originally written by John Polstra, and donated to the FreeBSD project by Juniper

Networks, Inc. Oleg Semyonov subsequently added the ability to perform RADIUS accounting. Later

additions and changes by Michael Bretterklieber. Server mode support was added by Alexander Motin.

LIBRADIUS(3) FreeBSD Library Functions Manual LIBRADIUS(3)

FreeBSD 14.0-RELEASE-p11 August 5, 2009 FreeBSD 14.0-RELEASE-p11

