
NAME
readline - get a line from a user with editing

SYNOPSIS
#include <stdio.h>
#include <readline/readline.h>
#include <readline/history.h>

char *

readline (const char *prompt);

COPYRIGHT
Readline is Copyright (C) 1989-2020 Free Software Foundation, Inc.

DESCRIPTION
readline will read a line from the terminal and return it, using prompt as a prompt. If prompt is NULL
or the empty string, no prompt is issued. The line returned is allocated with malloc(3); the caller must

free it when finished. The line returned has the final newline removed, so only the text of the line

remains.

readline offers editing capabilities while the user is entering the line. By default, the line editing

commands are similar to those of emacs. A vi-style line editing interface is also available.

This manual page describes only the most basic use of readline. Much more functionality is available;

see The GNU Readline Library and The GNU History Library for additional information.

RETURN VALUE
readline returns the text of the line read. A blank line returns the empty string. If EOF is encountered

while reading a line, and the line is empty, NULL is returned. If an EOF is read with a non-empty line,

it is treated as a newline.

NOTATION
An Emacs-style notation is used to denote keystrokes. Control keys are denoted by C-key, e.g., C-n

means Control-N. Similarly, meta keys are denoted by M-key, so M-x means Meta-X. (On keyboards

without a meta key, M-x means ESC x, i.e., press the Escape key then the x key. This makes ESC the

meta prefix. The combination M-C-x means ESC-Control-x, or press the Escape key then hold the

Control key while pressing the x key.)

Readline commands may be given numeric arguments, which normally act as a repeat count.

Sometimes, however, it is the sign of the argument that is significant. Passing a negative argument to a

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

command that acts in the forward direction (e.g., kill-line) causes that command to act in a backward

direction. Commands whose behavior with arguments deviates from this are noted below.

When a command is described as killing text, the text deleted is saved for possible future retrieval

(yanking). The killed text is saved in a kill ring. Consecutive kills cause the text to be accumulated

into one unit, which can be yanked all at once. Commands which do not kill text separate the chunks

of text on the kill ring.

INITIALIZATION FILE
Readline is customized by putting commands in an initialization file (the inputrc file). The name of

this file is taken from the value of the INPUTRC environment variable. If that variable is unset, the

default is ~/.inputrc. If that file does not exist or cannot be read, the ultimate default is

/usr/local/etc/inputrc. When a program which uses the readline library starts up, the init file is read,

and the key bindings and variables are set. There are only a few basic constructs allowed in the

readline init file. Blank lines are ignored. Lines beginning with a # are comments. Lines beginning

with a $ indicate conditional constructs. Other lines denote key bindings and variable settings. Each

program using this library may add its own commands and bindings.

For example, placing

M-Control-u: universal-argument

or

C-Meta-u: universal-argument

into the inputrc would make M-C-u execute the readline command universal-argument.

The following symbolic character names are recognized while processing key bindings: DEL, ESC,

ESCAPE, LFD, NEWLINE, RET, RETURN, RUBOUT, SPACE, SPC, and TAB.

In addition to command names, readline allows keys to be bound to a string that is inserted when the

key is pressed (a macro).

Key Bindings
The syntax for controlling key bindings in the inputrc file is simple. All that is required is the name of

the command or the text of a macro and a key sequence to which it should be bound. The name may be

specified in one of two ways: as a symbolic key name, possibly with Meta- or Control- prefixes, or as a

key sequence. The name and key sequence are separated by a colon. There can be no whitespace

between the name and the colon.

When using the form keyname:function-name or macro, keyname is the name of a key spelled out in

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

English. For example:

Control-u: universal-argument

Meta-Rubout: backward-kill-word

Control-o: "> output"

In the above example, C-u is bound to the function universal-argument, M-DEL is bound to the

function backward-kill-word, and C-o is bound to run the macro expressed on the right hand side (that

is, to insert the text ‘‘> output’’ into the line).

In the second form, "keyseq":function-name or macro, keyseq differs from keyname above in that

strings denoting an entire key sequence may be specified by placing the sequence within double quotes.

Some GNU Emacs style key escapes can be used, as in the following example, but the symbolic

character names are not recognized.

"\C-u": universal-argument

"\C-x\C-r": re-read-init-file

"\e[11~": "Function Key 1"

In this example, C-u is again bound to the function universal-argument. C-x C-r is bound to the

function re-read-init-file, and ESC [1 1 ~ is bound to insert the text ‘‘Function Key 1’’.

The full set of GNU Emacs style escape sequences available when specifying key sequences is

\C- control prefix

\M- meta prefix

\e an escape character

\\ backslash

\" literal ", a double quote

\’ literal ’, a single quote

In addition to the GNU Emacs style escape sequences, a second set of backslash escapes is available:

\a alert (bell)

\b backspace

\d delete

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\nnn

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

the eight-bit character whose value is the octal value nnn (one to three digits)

\xHH

the eight-bit character whose value is the hexadecimal value HH (one or two hex digits)

When entering the text of a macro, single or double quotes should be used to indicate a macro

definition. Unquoted text is assumed to be a function name. In the macro body, the backslash escapes

described above are expanded. Backslash will quote any other character in the macro text, including "

and ’.

Bash allows the current readline key bindings to be displayed or modified with the bind builtin

command. The editing mode may be switched during interactive use by using the -o option to the set
builtin command. Other programs using this library provide similar mechanisms. The inputrc file may

be edited and re-read if a program does not provide any other means to incorporate new bindings.

Variables
Readline has variables that can be used to further customize its behavior. A variable may be set in the

inputrc file with a statement of the form

set variable-name value

Except where noted, readline variables can take the values On or Off (without regard to case).

Unrecognized variable names are ignored. When a variable value is read, empty or null values, "on"

(case-insensitive), and "1" are equivalent to On. All other values are equivalent to Off. The variables

and their default values are:

active-region-start-color
A string variable that controls the text color and background when displaying the text in the active

region (see the description of enable-active-region below). This string must not take up any

physical character positions on the display, so it should consist only of terminal escape sequences.

It is output to the terminal before displaying the text in the active region. This variable is reset to

the default value whenever the terminal type changes. The default value is the string that puts the

terminal in standout mode, as obtained from the terminal’s terminfo description. A sample value

might be "\e[01;33m".

active-region-end-color
A string variable that "undoes" the effects of active-region-start-color and restores "normal"

terminal display appearance after displaying text in the active region. This string must not take up

any physical character positions on the display, so it should consist only of terminal escape

sequences. It is output to the terminal after displaying the text in the active region. This variable

is reset to the default value whenever the terminal type changes. The default value is the string

that restores the terminal from standout mode, as obtained from the terminal’s terminfo

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

description. A sample value might be "\e[0m".

bell-style (audible)
Controls what happens when readline wants to ring the terminal bell. If set to none, readline never

rings the bell. If set to visible, readline uses a visible bell if one is available. If set to audible,

readline attempts to ring the terminal’s bell.

bind-tty-special-chars (On)
If set to On (the default), readline attempts to bind the control characters treated specially by the

kernel’s terminal driver to their readline equivalents.

blink-matching-paren (Off)
If set to On, readline attempts to briefly move the cursor to an opening parenthesis when a closing

parenthesis is inserted.

colored-completion-prefix (Off)
If set to On, when listing completions, readline displays the common prefix of the set of possible

completions using a different color. The color definitions are taken from the value of the

LS_COLORS environment variable. If there is a color definition in $LS_COLORS for the custom

suffix "readline-colored-completion-prefix", readline uses this color for the common prefix instead

of its default.

colored-stats (Off)
If set to On, readline displays possible completions using different colors to indicate their file type.

The color definitions are taken from the value of the LS_COLORS environment variable.

comment-begin (‘‘#’’)
The string that is inserted in vi mode when the insert-comment command is executed. This

command is bound to M-# in emacs mode and to # in vi command mode.

completion-display-width (-1)
The number of screen columns used to display possible matches when performing completion.

The value is ignored if it is less than 0 or greater than the terminal screen width. A value of 0 will

cause matches to be displayed one per line. The default value is -1.

completion-ignore-case (Off)
If set to On, readline performs filename matching and completion in a case-insensitive fashion.

completion-map-case (Off)
If set to On, and completion-ignore-case is enabled, readline treats hyphens (-) and underscores (_)

as equivalent when performing case-insensitive filename matching and completion.

completion-prefix-display-length (0)
The length in characters of the common prefix of a list of possible completions that is displayed

without modification. When set to a value greater than zero, common prefixes longer than this

value are replaced with an ellipsis when displaying possible completions.

completion-query-items (100)
This determines when the user is queried about viewing the number of possible completions

generated by the possible-completions command. It may be set to any integer value greater than or

equal to zero. If the number of possible completions is greater than or equal to the value of this

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

variable, readline will ask whether or not the user wishes to view them; otherwise they are simply

listed on the terminal. A negative value causes readline to never ask.

convert-meta (On)
If set to On, readline will convert characters with the eighth bit set to an ASCII key sequence by

stripping the eighth bit and prefixing it with an escape character (in effect, using escape as the

meta prefix). The default is On, but readline will set it to Off if the locale contains eight-bit

characters. This variable is dependent on the LC_CTYPE locale category, and may change if the

locale is changed.

disable-completion (Off)
If set to On, readline will inhibit word completion. Completion characters will be inserted into the

line as if they had been mapped to self-insert.
echo-control-characters (On)

When set to On, on operating systems that indicate they support it, readline echoes a character

corresponding to a signal generated from the keyboard.

editing-mode (emacs)
Controls whether readline begins with a set of key bindings similar to Emacs or vi. editing-mode
can be set to either emacs or vi.

emacs-mode-string (@)
If the show-mode-in-prompt variable is enabled, this string is displayed immediately before the last

line of the primary prompt when emacs editing mode is active. The value is expanded like a key

binding, so the standard set of meta- and control prefixes and backslash escape sequences is

available. Use the \1 and \2 escapes to begin and end sequences of non-printing characters, which

can be used to embed a terminal control sequence into the mode string.

enable-active-region (On)
The point is the current cursor position, and mark refers to a saved cursor position. The text

between the point and mark is referred to as the region. When this variable is set to On, readline

allows certain commands to designate the region as active. When the region is active, readline

highlights the text in the region using the value of the active-region-start-color, which defaults to

the string that enables the terminal’s standout mode. The active region shows the text inserted by

bracketed-paste and any matching text found by incremental and non-incremental history searches.

enable-bracketed-paste (On)
When set to On, readline configures the terminal to insert each paste into the editing buffer as a

single string of characters, instead of treating each character as if it had been read from the

keyboard. This prevents readline from executing any editing commands bound to key sequences

appearing in the pasted text.

enable-keypad (Off)
When set to On, readline will try to enable the application keypad when it is called. Some systems

need this to enable the arrow keys.

enable-meta-key (On)
When set to On, readline will try to enable any meta modifier key the terminal claims to support

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

when it is called. On many terminals, the meta key is used to send eight-bit characters.

expand-tilde (Off)
If set to On, tilde expansion is performed when readline attempts word completion.

history-preserve-point (Off)
If set to On, the history code attempts to place point at the same location on each history line

retrieved with previous-history or next-history.

history-size (unset)
Set the maximum number of history entries saved in the history list. If set to zero, any existing

history entries are deleted and no new entries are saved. If set to a value less than zero, the number

of history entries is not limited. By default, the number of history entries is not limited. If an

attempt is made to set history-size to a non-numeric value, the maximum number of history entries

will be set to 500.

horizontal-scroll-mode (Off)
When set to On, makes readline use a single line for display, scrolling the input horizontally on a

single screen line when it becomes longer than the screen width rather than wrapping to a new line.

This setting is automatically enabled for terminals of height 1.

input-meta (Off)
If set to On, readline will enable eight-bit input (that is, it will not clear the eighth bit in the

characters it reads), regardless of what the terminal claims it can support. The name meta-flag is a

synonym for this variable. The default is Off, but readline will set it to On if the locale contains

eight-bit characters. This variable is dependent on the LC_CTYPE locale category, and may

change if the locale is changed.

isearch-terminators (‘‘C-[C-J’’)
The string of characters that should terminate an incremental search without subsequently

executing the character as a command. If this variable has not been given a value, the characters

ESC and C-J will terminate an incremental search.

keymap (emacs)
Set the current readline keymap. The set of legal keymap names is emacs, emacs-standard, emacs-

meta, emacs-ctlx, vi, vi-move, vi-command, and vi-insert. vi is equivalent to vi-command; emacs

is equivalent to emacs-standard. The default value is emacs. The value of editing-mode also

affects the default keymap.

keyseq-timeout (500)
Specifies the duration readline will wait for a character when reading an ambiguous key sequence

(one that can form a complete key sequence using the input read so far, or can take additional input

to complete a longer key sequence). If no input is received within the timeout, readline will use

the shorter but complete key sequence. The value is specified in milliseconds, so a value of 1000

means that readline will wait one second for additional input. If this variable is set to a value less

than or equal to zero, or to a non-numeric value, readline will wait until another key is pressed to

decide which key sequence to complete.

mark-directories (On)

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

If set to On, completed directory names have a slash appended.

mark-modified-lines (Off)
If set to On, history lines that have been modified are displayed with a preceding asterisk (*).

mark-symlinked-directories (Off)
If set to On, completed names which are symbolic links to directories have a slash appended

(subject to the value of mark-directories).

match-hidden-files (On)
This variable, when set to On, causes readline to match files whose names begin with a ‘.’ (hidden

files) when performing filename completion. If set to Off, the leading ‘.’ must be supplied by the

user in the filename to be completed.

menu-complete-display-prefix (Off)
If set to On, menu completion displays the common prefix of the list of possible completions

(which may be empty) before cycling through the list.

output-meta (Off)
If set to On, readline will display characters with the eighth bit set directly rather than as a meta-

prefixed escape sequence. The default is Off, but readline will set it to On if the locale contains

eight-bit characters. This variable is dependent on the LC_CTYPE locale category, and may

change if the locale is changed.

page-completions (On)
If set to On, readline uses an internal more-like pager to display a screenful of possible

completions at a time.

print-completions-horizontally (Off)
If set to On, readline will display completions with matches sorted horizontally in alphabetical

order, rather than down the screen.

revert-all-at-newline (Off)
If set to On, readline will undo all changes to history lines before returning when accept-line is

executed. By default, history lines may be modified and retain individual undo lists across calls to

readline.

show-all-if-ambiguous (Off)
This alters the default behavior of the completion functions. If set to On, words which have more

than one possible completion cause the matches to be listed immediately instead of ringing the

bell.

show-all-if-unmodified (Off)
This alters the default behavior of the completion functions in a fashion similar to

show-all-if-ambiguous. If set to On, words which have more than one possible completion without

any possible partial completion (the possible completions don’t share a common prefix) cause the

matches to be listed immediately instead of ringing the bell.

show-mode-in-prompt (Off)
If set to On, add a string to the beginning of the prompt indicating the editing mode: emacs, vi

command, or vi insertion. The mode strings are user-settable (e.g., emacs-mode-string).

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

skip-completed-text (Off)
If set to On, this alters the default completion behavior when inserting a single match into the line.

It’s only active when performing completion in the middle of a word. If enabled, readline does not

insert characters from the completion that match characters after point in the word being

completed, so portions of the word following the cursor are not duplicated.

vi-cmd-mode-string ((cmd))
If the show-mode-in-prompt variable is enabled, this string is displayed immediately before the last

line of the primary prompt when vi editing mode is active and in command mode. The value is

expanded like a key binding, so the standard set of meta- and control prefixes and backslash escape

sequences is available. Use the \1 and \2 escapes to begin and end sequences of non-printing

characters, which can be used to embed a terminal control sequence into the mode string.

vi-ins-mode-string ((ins))
If the show-mode-in-prompt variable is enabled, this string is displayed immediately before the last

line of the primary prompt when vi editing mode is active and in insertion mode. The value is

expanded like a key binding, so the standard set of meta- and control prefixes and backslash escape

sequences is available. Use the \1 and \2 escapes to begin and end sequences of non-printing

characters, which can be used to embed a terminal control sequence into the mode string.

visible-stats (Off)
If set to On, a character denoting a file’s type as reported by stat(2) is appended to the filename

when listing possible completions.

Conditional Constructs
Readline implements a facility similar in spirit to the conditional compilation features of the C

preprocessor which allows key bindings and variable settings to be performed as the result of tests.

There are four parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the terminal being used,

or the application using readline. The text of the test, after any comparison operator, extends to the

end of the line; unless otherwise noted, no characters are required to isolate it.

mode
The mode= form of the $if directive is used to test whether readline is in emacs or vi mode.

This may be used in conjunction with the set keymap command, for instance, to set bindings

in the emacs-standard and emacs-ctlx keymaps only if readline is starting out in emacs mode.

term
The term= form may be used to include terminal-specific key bindings, perhaps to bind the

key sequences output by the terminal’s function keys. The word on the right side of the = is

tested against the full name of the terminal and the portion of the terminal name before the

first -. This allows sun to match both sun and sun-cmd, for instance.

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

version
The version test may be used to perform comparisons against specific readline versions. The

version expands to the current readline version. The set of comparison operators includes =,

(and ==), !=, <=, >=, <, and >. The version number supplied on the right side of the operator

consists of a major version number, an optional decimal point, and an optional minor version

(e.g., 7.1). If the minor version is omitted, it is assumed to be 0. The operator may be

separated from the string version and from the version number argument by whitespace.

application
The application construct is used to include application-specific settings. Each program using

the readline library sets the application name, and an initialization file can test for a particular

value. This could be used to bind key sequences to functions useful for a specific program.

For instance, the following command adds a key sequence that quotes the current or previous

word in bash:

$if Bash

Quote the current or previous word

"\C-xq": "\eb\"\ef\""

$endif

variable

The variable construct provides simple equality tests for readline variables and values. The

permitted comparison operators are =, ==, and !=. The variable name must be separated from

the comparison operator by whitespace; the operator may be separated from the value on the

right hand side by whitespace. Both string and boolean variables may be tested. Boolean

variables must be tested against the values on and off.

$endif
This command, as seen in the previous example, terminates an $if command.

$else
Commands in this branch of the $if directive are executed if the test fails.

$include
This directive takes a single filename as an argument and reads commands and bindings from that

file. For example, the following directive would read /usr/local/etc/inputrc:

$include /usr/local/etc/inputrc

SEARCHING

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

Readline provides commands for searching through the command history for lines containing a

specified string. There are two search modes: incremental and non-incremental.

Incremental searches begin before the user has finished typing the search string. As each character of

the search string is typed, readline displays the next entry from the history matching the string typed so

far. An incremental search requires only as many characters as needed to find the desired history entry.

To search backward in the history for a particular string, type C-r. Typing C-s searches forward

through the history. The characters present in the value of the isearch-terminators variable are used to

terminate an incremental search. If that variable has not been assigned a value the Escape and C-J
characters will terminate an incremental search. C-G will abort an incremental search and restore the

original line. When the search is terminated, the history entry containing the search string becomes the

current line.

To find other matching entries in the history list, type C-s or C-r as appropriate. This will search

backward or forward in the history for the next line matching the search string typed so far. Any other

key sequence bound to a readline command will terminate the search and execute that command. For

instance, a newline will terminate the search and accept the line, thereby executing the command from

the history list. A movement command will terminate the search, make the last line found the current

line, and begin editing.

Non-incremental searches read the entire search string before starting to search for matching history

lines. The search string may be typed by the user or be part of the contents of the current line.

EDITING COMMANDS
The following is a list of the names of the commands and the default key sequences to which they are

bound. Command names without an accompanying key sequence are unbound by default.

In the following descriptions, point refers to the current cursor position, and mark refers to a cursor

position saved by the set-mark command. The text between the point and mark is referred to as the

region.

Commands for Moving
beginning-of-line (C-a)

Move to the start of the current line.

end-of-line (C-e)
Move to the end of the line.

forward-char (C-f)
Move forward a character.

backward-char (C-b)
Move back a character.

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

forward-word (M-f)
Move forward to the end of the next word. Words are composed of alphanumeric characters

(letters and digits).

backward-word (M-b)
Move back to the start of the current or previous word. Words are composed of alphanumeric

characters (letters and digits).

previous-screen-line
Attempt to move point to the same physical screen column on the previous physical screen line.

This will not have the desired effect if the current readline line does not take up more than one

physical line or if point is not greater than the length of the prompt plus the screen width.

next-screen-line
Attempt to move point to the same physical screen column on the next physical screen line. This

will not have the desired effect if the current readline line does not take up more than one physical

line or if the length of the current readline line is not greater than the length of the prompt plus the

screen width.

clear-display (M-C-l)
Clear the screen and, if possible, the terminal’s scrollback buffer, then redraw the current line,

leaving the current line at the top of the screen.

clear-screen (C-l)
Clear the screen, then redraw the current line, leaving the current line at the top of the screen.

With an argument, refresh the current line without clearing the screen.

redraw-current-line
Refresh the current line.

Commands for Manipulating the History
accept-line (Newline, Return)

Accept the line regardless of where the cursor is. If this line is non-empty, it may be added to the

history list for future recall with add_history(). If the line is a modified history line, the history

line is restored to its original state.

previous-history (C-p)
Fetch the previous command from the history list, moving back in the list.

next-history (C-n)
Fetch the next command from the history list, moving forward in the list.

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line currently being entered.

operate-and-get-next (C-o)
Accept the current line for return to the calling application as if a newline had been entered, and

fetch the next line relative to the current line from the history for editing. A numeric argument, if

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

supplied, specifies the history entry to use instead of the current line.

fetch-history
With a numeric argument, fetch that entry from the history list and make it the current line.

Without an argument, move back to the first entry in the history list.

reverse-search-history (C-r)
Search backward starting at the current line and moving ‘up’ through the history as necessary.

This is an incremental search.

forward-search-history (C-s)
Search forward starting at the current line and moving ‘down’ through the history as necessary.

This is an incremental search.

non-incremental-reverse-search-history (M-p)
Search backward through the history starting at the current line using a non-incremental search for

a string supplied by the user.

non-incremental-forward-search-history (M-n)
Search forward through the history using a non-incremental search for a string supplied by the

user.

history-search-backward
Search backward through the history for the string of characters between the start of the current

line and the current cursor position (the point). The search string must match at the beginning of a

history line. This is a non-incremental search.

history-search-forward
Search forward through the history for the string of characters between the start of the current line

and the point. The search string must match at the beginning of a history line. This is a non-

incremental search.

history-substring-search-backward
Search backward through the history for the string of characters between the start of the current

line and the current cursor position (the point). The search string may match anywhere in a history

line. This is a non-incremental search.

history-substring-search-forward
Search forward through the history for the string of characters between the start of the current line

and the point. The search string may match anywhere in a history line. This is a non-incremental

search.

yank-nth-arg (M-C-y)
Insert the first argument to the previous command (usually the second word on the previous line) at

point. With an argument n, insert the nth word from the previous command (the words in the

previous command begin with word 0). A negative argument inserts the nth word from the end of

the previous command. Once the argument n is computed, the argument is extracted as if the "!n"

history expansion had been specified.

yank-last-arg (M-., M-_)
Insert the last argument to the previous command (the last word of the previous history entry).

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

With a numeric argument, behave exactly like yank-nth-arg. Successive calls to yank-last-arg
move back through the history list, inserting the last word (or the word specified by the argument

to the first call) of each line in turn. Any numeric argument supplied to these successive calls

determines the direction to move through the history. A negative argument switches the direction

through the history (back or forward). The history expansion facilities are used to extract the last

argument, as if the "!$" history expansion had been specified.

Commands for Changing Text
end-of-file (usually C-d)

The character indicating end-of-file as set, for example, by ‘‘stty’’. If this character is read when

there are no characters on the line, and point is at the beginning of the line, readline interprets it as

the end of input and returns EOF.

delete-char (C-d)
Delete the character at point. If this function is bound to the same character as the tty EOF
character, as C-d commonly is, see above for the effects.

backward-delete-char (Rubout)
Delete the character behind the cursor. When given a numeric argument, save the deleted text on

the kill ring.

forward-backward-delete-char
Delete the character under the cursor, unless the cursor is at the end of the line, in which case the

character behind the cursor is deleted.

quoted-insert (C-q, C-v)
Add the next character that you type to the line verbatim. This is how to insert characters like C-q,

for example.

tab-insert (M-TAB)
Insert a tab character.

self-insert (a, b, A, 1, !, ...)
Insert the character typed.

transpose-chars (C-t)
Drag the character before point forward over the character at point, moving point forward as well.

If point is at the end of the line, then this transposes the two characters before point. Negative

arguments have no effect.

transpose-words (M-t)
Drag the word before point past the word after point, moving point over that word as well. If point

is at the end of the line, this transposes the last two words on the line.

upcase-word (M-u)
Uppercase the current (or following) word. With a negative argument, uppercase the previous

word, but do not move point.

downcase-word (M-l)
Lowercase the current (or following) word. With a negative argument, lowercase the previous

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

word, but do not move point.

capitalize-word (M-c)
Capitalize the current (or following) word. With a negative argument, capitalize the previous

word, but do not move point.

overwrite-mode
Toggle overwrite mode. With an explicit positive numeric argument, switches to overwrite mode.

With an explicit non-positive numeric argument, switches to insert mode. This command affects

only emacs mode; vi mode does overwrite differently. Each call to readline() starts in insert mode.

In overwrite mode, characters bound to self-insert replace the text at point rather than pushing the

text to the right. Characters bound to backward-delete-char replace the character before point with

a space. By default, this command is unbound.

Killing and Yanking
kill-line (C-k)

Kill the text from point to the end of the line.

backward-kill-line (C-x Rubout)
Kill backward to the beginning of the line.

unix-line-discard (C-u)
Kill backward from point to the beginning of the line. The killed text is saved on the kill-ring.

kill-whole-line
Kill all characters on the current line, no matter where point is.

kill-word (M-d)
Kill from point the end of the current word, or if between words, to the end of the next word.

Word boundaries are the same as those used by forward-word.

backward-kill-word (M-Rubout)
Kill the word behind point. Word boundaries are the same as those used by backward-word.

unix-word-rubout (C-w)
Kill the word behind point, using white space as a word boundary. The killed text is saved on the

kill-ring.

unix-filename-rubout
Kill the word behind point, using white space and the slash character as the word boundaries. The

killed text is saved on the kill-ring.

delete-horizontal-space (M-\)
Delete all spaces and tabs around point.

kill-region
Kill the text between the point and mark (saved cursor position). This text is referred to as the

region.

copy-region-as-kill
Copy the text in the region to the kill buffer.

copy-backward-word

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

Copy the word before point to the kill buffer. The word boundaries are the same as

backward-word.

copy-forward-word
Copy the word following point to the kill buffer. The word boundaries are the same as

forward-word.

yank (C-y)
Yank the top of the kill ring into the buffer at point.

yank-pop (M-y)
Rotate the kill ring, and yank the new top. Only works following yank or yank-pop.

Numeric Arguments
digit-argument (M-0, M-1, ..., M--)

Add this digit to the argument already accumulating, or start a new argument. M-- starts a

negative argument.

universal-argument
This is another way to specify an argument. If this command is followed by one or more digits,

optionally with a leading minus sign, those digits define the argument. If the command is followed

by digits, executing universal-argument again ends the numeric argument, but is otherwise

ignored. As a special case, if this command is immediately followed by a character that is neither

a digit or minus sign, the argument count for the next command is multiplied by four. The

argument count is initially one, so executing this function the first time makes the argument count

four, a second time makes the argument count sixteen, and so on.

Completing
complete (TAB)

Attempt to perform completion on the text before point. The actual completion performed is

application-specific. Bash, for instance, attempts completion treating the text as a variable (if the

text begins with $), username (if the text begins with ~), hostname (if the text begins with @), or

command (including aliases and functions) in turn. If none of these produces a match, filename

completion is attempted. Gdb, on the other hand, allows completion of program functions and

variables, and only attempts filename completion under certain circumstances.

possible-completions (M-?)
List the possible completions of the text before point. When displaying completions, readline sets

the number of columns used for display to the value of completion-display-width, the value of the

environment variable COLUMNS, or the screen width, in that order.

insert-completions (M-*)
Insert all completions of the text before point that would have been generated by

possible-completions.

menu-complete
Similar to complete, but replaces the word to be completed with a single match from the list of

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

possible completions. Repeated execution of menu-complete steps through the list of possible

completions, inserting each match in turn. At the end of the list of completions, the bell is rung

(subject to the setting of bell-style) and the original text is restored. An argument of n moves n

positions forward in the list of matches; a negative argument may be used to move backward

through the list. This command is intended to be bound to TAB, but is unbound by default.

menu-complete-backward
Identical to menu-complete, but moves backward through the list of possible completions, as if

menu-complete had been given a negative argument. This command is unbound by default.

delete-char-or-list
Deletes the character under the cursor if not at the beginning or end of the line (like delete-char).

If at the end of the line, behaves identically to possible-completions.

Keyboard Macros
start-kbd-macro (C-x ()

Begin saving the characters typed into the current keyboard macro.

end-kbd-macro (C-x))
Stop saving the characters typed into the current keyboard macro and store the definition.

call-last-kbd-macro (C-x e)
Re-execute the last keyboard macro defined, by making the characters in the macro appear as if

typed at the keyboard.

print-last-kbd-macro ()
Print the last keyboard macro defined in a format suitable for the inputrc file.

Miscellaneous
re-read-init-file (C-x C-r)

Read in the contents of the inputrc file, and incorporate any bindings or variable assignments found

there.

abort (C-g)
Abort the current editing command and ring the terminal’s bell (subject to the setting of bell-style).

do-lowercase-version (M-A, M-B, M-x, ...)
If the metafied character x is uppercase, run the command that is bound to the corresponding

metafied lowercase character. The behavior is undefined if x is already lowercase.

prefix-meta (ESC)
Metafy the next character typed. ESC f is equivalent to Meta-f.

undo (C-_, C-x C-u)
Incremental undo, separately remembered for each line.

revert-line (M-r)
Undo all changes made to this line. This is like executing the undo command enough times to

return the line to its initial state.

tilde-expand (M-&)

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

Perform tilde expansion on the current word.

set-mark (C-@, M-<space>)
Set the mark to the point. If a numeric argument is supplied, the mark is set to that position.

exchange-point-and-mark (C-x C-x)
Swap the point with the mark. The current cursor position is set to the saved position, and the old

cursor position is saved as the mark.

character-search (C-])
A character is read and point is moved to the next occurrence of that character. A negative

argument searches for previous occurrences.

character-search-backward (M-C-])
A character is read and point is moved to the previous occurrence of that character. A negative

argument searches for subsequent occurrences.

skip-csi-sequence
Read enough characters to consume a multi-key sequence such as those defined for keys like

Home and End. Such sequences begin with a Control Sequence Indicator (CSI), usually ESC-[. If

this sequence is bound to "\[", keys producing such sequences will have no effect unless explicitly

bound to a readline command, instead of inserting stray characters into the editing buffer. This is

unbound by default, but usually bound to ESC-[.

insert-comment (M-#)
Without a numeric argument, the value of the readline comment-begin variable is inserted at the

beginning of the current line. If a numeric argument is supplied, this command acts as a toggle: if

the characters at the beginning of the line do not match the value of comment-begin, the value is

inserted, otherwise the characters in comment-begin are deleted from the beginning of the line. In

either case, the line is accepted as if a newline had been typed. The default value of

comment-begin makes the current line a shell comment. If a numeric argument causes the

comment character to be removed, the line will be executed by the shell.

dump-functions
Print all of the functions and their key bindings to the readline output stream. If a numeric

argument is supplied, the output is formatted in such a way that it can be made part of an inputrc

file.

dump-variables
Print all of the settable variables and their values to the readline output stream. If a numeric

argument is supplied, the output is formatted in such a way that it can be made part of an inputrc

file.

dump-macros
Print all of the readline key sequences bound to macros and the strings they output. If a numeric

argument is supplied, the output is formatted in such a way that it can be made part of an inputrc

file.

emacs-editing-mode (C-e)
When in vi command mode, this causes a switch to emacs editing mode.

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

vi-editing-mode (M-C-j)
When in emacs editing mode, this causes a switch to vi editing mode.

DEFAULT KEY BINDINGS
The following is a list of the default emacs and vi bindings. Characters with the eighth bit set are

written as M-<character>, and are referred to as metafied characters. The printable ASCII characters

not mentioned in the list of emacs standard bindings are bound to the self-insert function, which just

inserts the given character into the input line. In vi insertion mode, all characters not specifically

mentioned are bound to self-insert. Characters assigned to signal generation by stty(1) or the terminal

driver, such as C-Z or C-C, retain that function. Upper and lower case metafied characters are bound to

the same function in the emacs mode meta keymap. The remaining characters are unbound, which

causes readline to ring the bell (subject to the setting of the bell-style variable).

Emacs Mode

Emacs Standard bindings

"C-@" set-mark

"C-A" beginning-of-line

"C-B" backward-char

"C-D" delete-char

"C-E" end-of-line

"C-F" forward-char

"C-G" abort

"C-H" backward-delete-char

"C-I" complete

"C-J" accept-line

"C-K" kill-line

"C-L" clear-screen

"C-M" accept-line

"C-N" next-history

"C-P" previous-history

"C-Q" quoted-insert

"C-R" reverse-search-history

"C-S" forward-search-history

"C-T" transpose-chars

"C-U" unix-line-discard

"C-V" quoted-insert

"C-W" unix-word-rubout

"C-Y" yank

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

"C-]" character-search

"C-_" undo

" " to "/" self-insert

"0" to "9" self-insert

":" to "~" self-insert

"C-?" backward-delete-char

Emacs Meta bindings

"M-C-G" abort

"M-C-H" backward-kill-word

"M-C-I" tab-insert

"M-C-J" vi-editing-mode

"M-C-L" clear-display

"M-C-M" vi-editing-mode

"M-C-R" revert-line

"M-C-Y" yank-nth-arg

"M-C-[" complete

"M-C-]" character-search-backward

"M-space" set-mark

"M-#" insert-comment

"M-&" tilde-expand

"M-*" insert-completions

"M--" digit-argument

"M-." yank-last-arg

"M-0" digit-argument

"M-1" digit-argument

"M-2" digit-argument

"M-3" digit-argument

"M-4" digit-argument

"M-5" digit-argument

"M-6" digit-argument

"M-7" digit-argument

"M-8" digit-argument

"M-9" digit-argument

"M-<" beginning-of-history

"M-=" possible-completions

"M->" end-of-history

"M-?" possible-completions

"M-B" backward-word

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

"M-C" capitalize-word

"M-D" kill-word

"M-F" forward-word

"M-L" downcase-word

"M-N" non-incremental-forward-search-history

"M-P" non-incremental-reverse-search-history

"M-R" revert-line

"M-T" transpose-words

"M-U" upcase-word

"M-Y" yank-pop

"M-\" delete-horizontal-space

"M-~" tilde-expand

"M-C-?" backward-kill-word

"M-_" yank-last-arg

Emacs Control-X bindings

"C-XC-G" abort

"C-XC-R" re-read-init-file

"C-XC-U" undo

"C-XC-X" exchange-point-and-mark

"C-X(" start-kbd-macro

"C-X)" end-kbd-macro

"C-XE" call-last-kbd-macro

"C-XC-?" backward-kill-line

VI Mode bindings

VI Insert Mode functions

"C-D" vi-eof-maybe

"C-H" backward-delete-char

"C-I" complete

"C-J" accept-line

"C-M" accept-line

"C-R" reverse-search-history

"C-S" forward-search-history

"C-T" transpose-chars

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

"C-U" unix-line-discard

"C-V" quoted-insert

"C-W" unix-word-rubout

"C-Y" yank

"C-[" vi-movement-mode

"C-_" undo

" " to "~" self-insert

"C-?" backward-delete-char

VI Command Mode functions

"C-D" vi-eof-maybe

"C-E" emacs-editing-mode

"C-G" abort

"C-H" backward-char

"C-J" accept-line

"C-K" kill-line

"C-L" clear-screen

"C-M" accept-line

"C-N" next-history

"C-P" previous-history

"C-Q" quoted-insert

"C-R" reverse-search-history

"C-S" forward-search-history

"C-T" transpose-chars

"C-U" unix-line-discard

"C-V" quoted-insert

"C-W" unix-word-rubout

"C-Y" yank

"C-_" vi-undo

" " forward-char

"#" insert-comment

"$" end-of-line

"%" vi-match

"&" vi-tilde-expand

"*" vi-complete

"+" next-history

"," vi-char-search

"-" previous-history

"." vi-redo

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

"/" vi-search

"0" beginning-of-line

"1" to "9" vi-arg-digit

";" vi-char-search

"=" vi-complete

"?" vi-search

"A" vi-append-eol

"B" vi-prev-word

"C" vi-change-to

"D" vi-delete-to

"E" vi-end-word

"F" vi-char-search

"G" vi-fetch-history

"I" vi-insert-beg

"N" vi-search-again

"P" vi-put

"R" vi-replace

"S" vi-subst

"T" vi-char-search

"U" revert-line

"W" vi-next-word

"X" backward-delete-char

"Y" vi-yank-to

"\" vi-complete

"^" vi-first-print

"_" vi-yank-arg

"‘" vi-goto-mark

"a" vi-append-mode

"b" vi-prev-word

"c" vi-change-to

"d" vi-delete-to

"e" vi-end-word

"f" vi-char-search

"h" backward-char

"i" vi-insertion-mode

"j" next-history

"k" prev-history

"l" forward-char

"m" vi-set-mark

"n" vi-search-again

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

"p" vi-put

"r" vi-change-char

"s" vi-subst

"t" vi-char-search

"u" vi-undo

"w" vi-next-word

"x" vi-delete

"y" vi-yank-to

"|" vi-column

"~" vi-change-case

SEE ALSO
The Gnu Readline Library, Brian Fox and Chet Ramey

The Gnu History Library, Brian Fox and Chet Ramey

bash(1)

FILES
~/.inputrc

Individual readline initialization file

AUTHORS
Brian Fox, Free Software Foundation

bfox@gnu.org

Chet Ramey, Case Western Reserve University

chet.ramey@case.edu

BUG REPORTS
If you find a bug in readline, you should report it. But first, you should make sure that it really is a

bug, and that it appears in the latest version of the readline library that you have.

Once you have determined that a bug actually exists, mail a bug report to bug-readline@gnu.org. If

you have a fix, you are welcome to mail that as well! Suggestions and ‘philosophical’ bug reports may

be mailed to bug-readline@gnu.org or posted to the Usenet newsgroup gnu.bash.bug.

Comments and bug reports concerning this manual page should be directed to chet.ramey@case.edu.

BUGS
It’s too big and too slow.

READLINE(3) FreeBSD Library Functions Manual READLINE(3)

GNU Readline 8.2 2022 September 19 READLINE(3)

